Как найти точки интегрирования

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие «интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

математика для чайников интегралы

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Исаак Ньютон и Готфрид Лейбниц

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

найти интегралы для чайников

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов

Первообразные элементарных функций

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Определенный интеграл - площадь фигуры

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:

Определенный интеграл
Точки а и b называются пределами интегрирования.

Бари Алибасов и группа

Бари Алибасов и группа

«Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

как решать определенный интеграл для чайников

  • Константу можно выносить из-под знака интеграла:

интегралы начало

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

как решать интегралы для чайников

Свойства определенного интеграла

  • Линейность:

интегралы для чайников подробно

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

интегралы для чайников подробно

  • При любых точках a, b и с:

высшая математика для чайников интегралы

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Формула Ньютона-Лейбница

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Примеры

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Содержание:

Интеграл

Центр Гейдара Алиева славится своим архитектурным стилем и является уникальной архитектурной работой. Красота архитектуры была достигнута при помощи решения многих систематических задач. Стены здания выполнены в виде волны и можно сказать, что в проекте не использовались прямые линии. Структура здания крыши, касаясь земли, формирует гладкое и гармоничное изображение. Такая структура представляет собой постмодернистскую архитектуру, а также эффект бесконечности. Линии здания символизируют связь прошлого и будущего. Для построения здания были использованы конструкции в виде металлической решетки, общая длина которой составила 90 км. При установки крыши, общая площадь которой составила 4 га, были использованы 12027 штук специальных панелей, имеющих форму треугольников, прямоугольников, трапеций и параллелограммов различных размеров. Если мы захотим найти площадь какой-либо части здания в виде волны, то нам придется прибегнуть к интегрированию.

Интеграл и его применение с примерами решения

Первообразная функции. Неопределенный интеграл

Исследование. Путь, пройденный свободно падающим телом за время Интеграл и его применение с примерами решения

экспериментально. Дифференцируя, находим скорость: Интеграл и его применение с примерами решения Дифференцируя второй раз, найдем ускорение: Интеграл и его применение с примерами решения А как, зная ускорение, найти закон, по которому изменяется скорость Интеграл и его применение с примерами решения а также закон движения Интеграл и его применение с примерами решения

Дифференцирование — это нахождение производной функции. Нахождение функции с заданной производной является действием, обратным к дифференцированию. В этом случае, зная производную или дифференциал, надо найти саму функцию, т. е для функции Интеграл и его применение с примерами решения заданной на определенном интервале, нужно найти такую функцию Интеграл и его применение с примерами решения что на этом интервале выполнялось Интеграл и его применение с примерами решения или Интеграл и его применение с примерами решения

Определение. Функция Интеграл и его применение с примерами решения удовлетворяющая равенству Интеграл и его применение с примерами решения для всех точек на заданном промежутке, называется первообразной для функции Интеграл и его применение с примерами решениязаданной на том же промежутке.

Например, функция Интеграл и его применение с примерами решения есть первообразная для функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения так как для всех Интеграл и его применение с примерами решения справедливо

Интеграл и его применение с примерами решения

С другой стороны, Интеграл и его применение с примерами решения вообще для любой постоянной Интеграл и его применение с примерами решения имеем Интеграл и его применение с примерами решения поэтому каждая из функций Интеграл и его применение с примерами решения является первообразной для функции Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Таким образом, для заданной функции первообразная функция не является единственной. Если, функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения первообразные функции Интеграл и его применение с примерами решения на определенном промежутке, то для функции Интеграл и его применение с примерами решения на этом же промежутке выполняется тождество Интеграл и его применение с примерами решения Тогда касательная к графику функции в каждой точке параллельна оси абсцисс. Значит график функции Интеграл и его применение с примерами решения будет параллелен оси абсцисс, т. е. на том же промежутке Интеграл и его применение с примерами решения (здесь Интеграл и его применение с примерами решения произвольная постоянная). Отсюда Интеграл и его применение с примерами решения Таким образом получаем, что если функция Интеграл и его применение с примерами решения на заданном промежутке является первообразной для функции Интеграл и его применение с примерами решения то для любой постоянной Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения называется общим выражением для первообразных функций.

Неопределенный интеграл

Определение. Множество всех первообразных для функции Интеграл и его применение с примерами решения называется неопределенным интегралом, обозначается Интеграл и его применение с примерами решения и читается как «интеграл эф от икс де икс».

Если функция Интеграл и его применение с примерами решения является одной из первообразных для Интеграл и его применение с примерами решения то но определению Интеграл и его применение с примерами решения

Здесь Интеграл и его применение с примерами решения — знак интеграла, Интеграл и его применение с примерами решения — подынтегральная функция, Интеграл и его применение с примерами решения — переменная интегрирования, Интеграл и его применение с примерами решения — постоянная интегрирования. За переменную интегрирования можно принять любую переменную. Нахождение функции по производной называется интегрированием.

Пример 1. По определению найдите неопределенные интегралы.

a) Интеграл и его применение с примерами решения b) Интеграл и его применение с примерами решения с) Интеграл и его применение с примерами решения

Решение: Интеграл и его применение с примерами решения

Так как: Интеграл и его применение с примерами решения

Пример 2. Найдите интеграл Интеграл и его применение с примерами решения

Решение: подумаем, производной какой функции является функция Интеграл и его применение с примерами решения Например, известно, что производной функции Интеграл и его применение с примерами решения является функция Интеграл и его применение с примерами решения Значит, множителем искомой функции является дробь Интеграл и его применение с примерами решения которая

потом сократиться с коэффициентом 4 и получится Интеграл и его применение с примерами решения

Такой функцией является функция Интеграл и его применение с примерами решения Значит, Интеграл и его применение с примерами решения

Интеграл постоянной и степенной функции

Интеграл постоянной: Интеграл и его применение с примерами решения

Интеграл степенной Интеграл и его применение с примерами решения

функции Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Пример 1. Найдите неопределенный интеграл Интеграл и его применение с примерами решения

Решение: Интеграл и его применение с примерами решения

Пример 2. Найдите общий вид первообразных функции Интеграл и его применение с примерами решения

Решение: Так как функция Интеграл и его применение с примерами решения одна из первообразных функции Интеграл и его применение с примерами решения то одна из первообразных функции Интеграл и его применение с примерами решения будет

Интеграл и его применение с примерами решения

Тогда общий вид первообразных имеет вид:

Интеграл и его применение с примерами решения Значит, Интеграл и его применение с примерами решения

Свойства неопределенного интеграла

При интегрировании используют следующие свойства:

  1. Интеграл и его применение с примерами решения
  2. Интеграл и его применение с примерами решения
  3. Интеграл и его применение с примерами решения
  4. Интеграл и его применение с примерами решения
  5. Интеграл и его применение с примерами решения

Пример 1. Найдите интеграл Интеграл и его применение с примерами решения

Решение: Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

В отличии от производной, у интеграла нет формулы для интегрирования произведения и частного. Поэтому, если это возможно, функцию представляют в виде суммы или разности, а потом находят первообразную.

Пример. Найдите первообразную функции Интеграл и его применение с примерами решения

Решение: запишем заданную функцию в виде

Интеграл и его применение с примерами решения

Тогда получим, Интеграл и его применение с примерами решения

Интегралы показательной функции и функции Интеграл и его применение с примерами решения

Интеграл показательной функции Интеграл и его применение с примерами решения

Интеграл функции Интеграл и его применение с примерами решения

При Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

При Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

При Интеграл и его применение с примерами решения в любом промежутке Интеграл и его применение с примерами решения

В общем случае: Интеграл и его применение с примерами решения

Пример. Найдите неопределенные интегралы: a)Интеграл и его применение с примерами решения b) Интеграл и его применение с примерами решения

Решение: a) Интеграл и его применение с примерами решения

b) Интеграл и его применение с примерами решения

Интегралы тригонометрических функций

Интеграл и его применение с примерами решения

Пример 1. Найдите интеграл Интеграл и его применение с примерами решения

Решение: Интеграл и его применение с примерами решения

При интегрировании тригонометрических функций удобно использовать тригонометрические тождества.

Пример 2. Найдите первообразную функции Интеграл и его применение с примерами решения

Решение: Так как Интеграл и его применение с примерами решения то

Интеграл и его применение с примерами решения

Пример 3. Вычислите интеграл Интеграл и его применение с примерами решения

Решение: Воспользуемся тождеством Интеграл и его применение с примерами решения Тогда,Интеграл и его применение с примерами решения

Пример 4. Найдите интеграл Интеграл и его применение с примерами решения

Решение: Воспользуемся формулой

Интеграл и его применение с примерами решения

Прикладные задания

Задании на нахождение постоянной интегрирования

Пример. Найдите первообразную функции Интеграл и его применение с примерами решения график которой проходит через точку: Интеграл и его применение с примерами решения

Решение: Сначала запишем общий вид первообразных функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

a) По условию Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения отсюда Интеграл и его применение с примерами решения Значит, первообразная функции Интеграл и его применение с примерами решения график которой проходит через точку Интеграл и его применение с примерами решения имеет вид Интеграл и его применение с примерами решения

b) По условию Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения отсюда Интеграл и его применение с примерами решения Значит, первообразная функции Интеграл и его применение с примерами решения график которой проходит через точку Интеграл и его применение с примерами решения имеет вид: Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Задания на реальную жизненную ситуацию

Пример 1. Движение. Скорость мяча, брошенного с высоты 1 м вверх, можно выразить как Интеграл и его применение с примерами решения Здесь Интеграл и его применение с примерами решения показывает время в секундах. Запишите функцию, которая позволит найти на какой высоте находится мяч через Интеграл и его применение с примерами решения секунд после начала движения и найдите на какой высоте окажется мяч на 2 секунде.

Решение: гак как Интеграл и его применение с примерами решения то для функции Интеграл и его применение с примерами решения неопределенным интегралом является функция Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Как можно найти постоянную Интеграл и его применение с примерами решения

Мяч брошен с высоты 1 м. Т. е. в момент Интеграл и его применение с примерами решения мяч находился на высоте 1 м и Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения отсюда Интеграл и его применение с примерами решения Значит, в момент Интеграл и его применение с примерами решения высоту на которой находится мяч, можно найти но формуле Интеграл и его применение с примерами решения При Интеграл и его применение с примерами решения получим

Интеграл и его применение с примерами решения

Т. е. в момент Интеграл и его применение с примерами решения секундам мяч будет находится на высоте 5,4 м.

Пример 2. Прирост населении. Статистические исследования показывают, что при помощи отношения Интеграл и его применение с примерами решения можно найти прирост городского населения за год. Здесь Интеграл и его применение с примерами решения показывает количество лег после 1960 года, Интеграл и его применение с примерами решения — численность населения в данный Интеграл и его применение с примерами решения год в тыс. человек. Если в 1990 году в городе было 820 тыс. человек, то сколько, приблизительно, тыс. человек будет в городе в 2020 году?

Решение: найдем первообразную для функции Интеграл и его применение с примерами решения показывающую численность населения, соответствующую функции Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Теперь найдем постоянную Интеграл и его применение с примерами решения

Например, по условию при Интеграл и его применение с примерами решения численность населения достигла 820 тыс. человек. Подставим (30; 820) в формулу функции. Интеграл и его применение с примерами решенияТогда Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Численность населения в 2020 году соответствует значению функции Интеграл и его применение с примерами решения в Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

Т. е. в 2020 году численность городского населения будет приблизительно равна 1979800 человек.

Площадь, ограниченная кривой

Представьте, что вы проводите следующее исследование: определение количества солнечной энергии, которую получает растение. Для этого вам необходимо узнать площадь поверхности листа. Разместите лист на бумаге в клетку и приблизительно найдите площадь.

Интеграл и его применение с примерами решения

Если продолжить уменьшать размер клеток, то площадь листа можно найти, подсчитав сумму клеток, и, уменьшая приближения, можно достаточно точно найти значение действительной площади. Применяя этот способ, можно найти площади фигур различной формы. Например, можно найти площадь, ограниченную графиком неотрицательной функции Интеграл и его применение с примерами решения непрерывной на отрезке Интеграл и его применение с примерами решения и ограниченной осью абсцисс Интеграл и его применение с примерами решения слева прямой Интеграл и его применение с примерами решения справа прямой Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Пример 1. Определите, приблизительно, площадь фигуры, ограниченной графиком Интеграл и его применение с примерами решения осью абсцисс и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Решение: На рисунке изображена площадь, ограниченная графиком функции Интеграл и его применение с примерами решения осью абсцисс и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решенияПоказанную площадь можно приблизительно найти при помощи прямоугольников высотой Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Площадь: Интеграл и его применение с примерами решения

Разбивая показанную площадь на еще более маленькие прямоугольники и найдя сумму площадей полученных прямоугольников, можно достаточно точно найти значение, близкое к реальному.

Интеграл и его применение с примерами решения

Если отрезок [2; 4] разделить на две части ([2;3] и [3;4]) (рис.а и b), то площадь, приблизительно, равна сумме площадей двух прямоугольников.

a) площадь, приблизительно, равна сумме площадей прямоугольников шириной, равной 1, с высотами Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

b) площадь, приблизительно, равна сумме площадей прямоугольников шириной равной 1 с высотами Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения Значит реальное значение площади удовлетворяет соотношению Интеграл и его применение с примерами решения

В рассмотренном случае площадь точно можно найти по формуле площади трапеции: Интеграл и его применение с примерами решения и дать оценку погрешности, проведенных вычислений.

В 1-ом случае количество интервалов Интеграл и его применение с примерами решения и вычисления отличаются от действительных размеров площади на 1 кв.ед., во 2-ом случае Интеграл и его применение с примерами решения и разность уменьшается до 0,5 кв.ед. Если заданный интервал разделить на еще большее количество малых интервалов, то площадь можно найти как сумму более маленьких прямоугольников и получить значение, достаточно близкое к точному.

Интеграл и его применение с примерами решения Под площадью фигуры, ограниченной графиком функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решенияпонимают площадь фигуры, ограниченной графиком функции Интеграл и его применение с примерами решения осью абсцисс и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (эту фигуру также называют криволинейной трапецией). В заданиях мы коротко будем называть это как «площадь, ограниченная кривой». Здесь функция/должна удовлетворять условиям.

Интеграл и его применение с примерами решения

Интеграл и его применение

Первообразная

Вы умеете по заданной функции находить ее производную, знаете, что производная применяется во многих областях. В частности, умея дифференцировать, по данному закону Интеграл и его применение с примерами решения движения материальной точки по координатной прямой можно найти закон Интеграл и его применение с примерами решения изменения ее скорости, а именно: Интеграл и его применение с примерами решения

Нередко в механике приходится решать обратную задачу: находить закон движения по известному закону изменения скорости.

Например, из курса физики вам известен такой факт: если скорость изменяется по закону и Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения то закон движения задается формулой Интеграл и его применение с примерами решения

Вы знаете, что нахождение производной заданной функции называют дифференцированием. Обратную операцию, то есть нахождение функции по ее производной, называют интегрированием.

Определение. Функцию Интеграл и его применение с примерами решения называют первообразной функцией (или коротко первообразной) функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения если для всех Интеграл и его применение с примерами решения выполняется равенство Интеграл и его применение с примерами решения

Например, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения поскольку на Интеграл и его применение с примерами решения выполняется равенство Интеграл и его применение с примерами решения

Часто в задачах, связанных с первообразной функции, промежуток Интеграл и его применение с примерами решения опускают. В таких случаях считают, что Интеграл и его применение с примерами решения Так, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения поскольку выполняется равенство Интеграл и его применение с примерами решения

Рассмотрим еще один пример. Функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения поскольку на этом промежутке выполняется равенство Интеграл и его применение с примерами решения

Однако на промежутке Интеграл и его применение с примерами решения функция Интеграл и его применение с примерами решения не является первообразной функции Интеграл и его применение с примерами решениятак как в точке Интеграл и его применение с примерами решения не выполняется равенство Интеграл и его применение с примерами решения

Рассмотрим функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения Каждая из них имеет одну и ту же производную Интеграл и его применение с примерами решения Поэтому обе функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения являются первообразными функции Интеграл и его применение с примерами решения Понятно, что каждая из функций вида Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения любое число, является первообразной функции Интеграл и его применение с примерами решения Следовательно, задача нахождения первообразной имеет бесконечно много решений.

Цель интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные на заданном промежутке.

Как связаны между собой все первообразные данной функции, указывает следующая теорема.

Теорема 24.1 (основное свойство первообразной). Если функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения любое число, то функция Интеграл и его применение с примерами решения также является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения. Любую первообразную функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения можно представить в виде Интеграл и его применение с примерами решения, где Интеграл и его применение с примерами решения некоторое число.

Доказательство. Поскольку функция Интеграл и его применение с примерами решения первообразная функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения то для всех Интеграл и его применение с примерами решения выполняется равенство Интеграл и его применение с примерами решения Тогда

Интеграл и его применение с примерами решения

Следовательно, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Пусть функция Интеграл и его применение с примерами решения одна из первообразных функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения для всех Интеграл и его применение с примерами решения Имеем:

Интеграл и его применение с примерами решения

Согласно признаку постоянства функции (теорема 11.1) получаем, что функция Интеграл и его применение с примерами решения является константой на промежутке Интеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторое число. Отсюда Интеграл и его применение с примерами решения

Если функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения то запись Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения любое число, называют общим видом первообразных функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Из основного свойства первообразной следует, что графики любых двух первообразных данной функции можно получить друг из друга параллельным переносом вдоль оси координат (рис. 24.1).

Интеграл и его применение с примерами решения

Совокупность всех первообразных функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения называют ее неопределенным интегралом и обозначаютИнтеграл и его применение с примерами решения (читают: «интеграл эф от икс де икс»).

Например, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Из теоремы 24.1 следует, что любую первообразную функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения можно представить в виде Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторое число. Это можно записать так: Интеграл и его применение с примерами решения

При решении задач на первообразную удобно пользоваться таблицей, приведенной на форзаце 3.

Покажем на примерах, с помощью каких соображений можно обосновать утверждения, приведенные в этой таблице.

Пример:

Найдите общий вид первообразных функции Интеграл и его применение с примерами решения

Решение:

Поскольку Интеграл и его применение с примерами решения то одной из первообразных функции Интеграл и его применение с примерами решенияявляется функция Интеграл и его применение с примерами решения

Тогда согласно теореме 24.1 запись Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения любое число, является общим видом первообразных.

Из решения примера 1 следует, что Интеграл и его применение с примерами решения

Пример:

Найдите общий вид первообразных функции Интеграл и его применение с примерами решенияна каждом из промежутков Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Решение:

На промежутке Интеграл и его применение с примерами решения имеет место равенствоИнтеграл и его применение с примерами решенияна промежутке Интеграл и его применение с примерами решения имеют место равенства Интеграл и его применение с примерами решения

Следовательно, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения а функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения.

Поскольку Интеграл и его применение с примерами решения то на любом промежутке, не содержащем точку 0, записьИнтеграл и его применение с примерами решения где Интеграл и его применение с примерами решения любое число, является общим видом первообразных функции Интеграл и его применение с примерами решения

Пример:

Для функции Интеграл и его применение с примерами решения найдите первообразную, график которой проходит через точку Интеграл и его применение с примерами решения

Решение:

Поскольку Интеграл и его применение с примерами решения то функция Интеграл и его применение с примерами решения является одной из первообразных функции Интеграл и его применение с примерами решения Следовательно, искомая первообразная имеет вид Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторое число. Найдем это число.

Из условия следует, что Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения Отсюда Интеграл и его применение с примерами решения

Таким образом, искомая первообразная имеет вид Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения

Замечание.

Можно доказать, что функция Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Пользуясь этим, можно найти, например, первообразную функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Поскольку Интеграл и его применение с примерами решениято функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Учитывая равенства Интеграл и его применение с примерами решения можно записать: Интеграл и его применение с примерами решения

Правила нахождения первообразной

При нахождении производных функций вы пользовались не только формулами, записанными в таблице (см. форзац 2), но и правилами дифференцирования. В этом пункте мы рассмотрим три правила нахождения первообразных.

Теорема 25.1. Если функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения являются соответственно первообразными функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения то на этом промежутке функция Интеграл и его применение с примерами решенияявляется первообразной функции Интеграл и его применение с примерами решения

Доказательство. Из условия следует, что для любого Интеграл и его применение с примерами решения выполняются равенства Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения Тогда для любого Интеграл и его применение с примерами решения из промежутка Интеграл и его применение с примерами решения имеем: Интеграл и его применение с примерами решения

Из теоремы 25.1 следует, что

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения произвольное число.

Аналогично можно доказать, что

Интеграл и его применение с примерами решения

Теорема 25.2. Если функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения некоторое число, то на этом промежутке функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения

Докажите теорему 25.2 самостоятельно.

Теперь можно записать: Интеграл и его применение с примерами решениягде Интеграл и его применение с примерами решенияпроизвольное число.

Теорема 25.3. Если функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения некоторое число, отличное от нуля, то на соответствующем промежутке функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения

Доказательство. Используя правило нахождения производной сложной функции, запишем: Интеграл и его применение с примерами решения

Коротко записывают: Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения произвольное число.

Пример:

Найдите общий вид первообразных функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Решение:

Напомним, что функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Поскольку на данном промежутке выполняется равенство Интеграл и его применение с примерами решения то функция Интеграл и его применение с примерами решения то есть функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Поскольку Интеграл и его применение с примерами решения то функция Интеграл и его применение с примерами решения то есть функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Тогда по теореме 25.2 функция Интеграл и его применение с примерами решенияявляется первообразной функции Интеграл и его применение с примерами решения

Воспользовавшись теоремой 25.1, получаем, что функцияИнтеграл и его применение с примерами решенияявляется первообразной заданной в условии функции Интеграл и его применение с примерами решения Тогда запись Интеграл и его применение с примерами решения является общим видом первообразных функции Интеграл и его применение с примерами решения

Решение примера 1 можно записать и так:

Интеграл и его применение с примерами решения

Пример:

Найдите одну из первообразных функции:

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Решение:

1) Поскольку функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения то по теореме 25.3 функция Интеграл и его применение с примерами решения то есть функция Интеграл и его применение с примерами решенияявляется первообразной функции Интеграл и его применение с примерами решения 2) Поскольку Интеграл и его применение с примерами решения то первообразной функции Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения является функция Интеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решения

Тогда первообразная функции Интеграл и его применение с примерами решения имеет вид Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решения

Пример:

Для функции Интеграл и его применение с примерами решениянайдите первообразную на промежутке Интеграл и его применение с примерами решения график которой проходит через точку Интеграл и его применение с примерами решения

Решение:

Согласно теореме 25.3 запись Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения любое число, является общим видом первообразных функции Интеграл и его применение с примерами решения на данном промежутке.

На промежутке Интеграл и его применение с примерами решения искомая первообразная имеет вид

Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторое число. Из условия следует, что Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения отсюда Интеграл и его применение с примерами решения Следовательно, Интеграл и его применение с примерами решения

Пример:

Скорость движения материальной точки по координатной прямой изменяется по закону Интеграл и его применение с примерами решения Найдите закон движения Интеграл и его применение с примерами решения если Интеграл и его применение с примерами решения (перемещение измеряется в метрах, время — в секундах).

Решение:

Функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Тогда можно записать

Интеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения некоторое число. Найдем Интеграл и его применение с примерами решения из условия Интеграл и его применение с примерами решения

Имеем: Интеграл и его применение с примерами решения отсюда Интеграл и его применение с примерами решения

Тогда искомый закон движения задается формулой Интеграл и его применение с примерами решения

В пункте 8 вы узнали, как найти производные произведения функций, частного функций и производную сложной функции. Наверное, после ознакомления с материалом этого пункта у вас возник вопрос: как найти первообразные функций Интеграл и его применение с примерами решения или Интеграл и его применение с примерами решения если известны первообразные функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения К сожалению, общих правил нахождения первообразных таких функций не существует.

Площадь криволинейной трапеции. Определенный интеграл

Рассмотрим функцию Интеграл и его применение с примерами решения которая непрерывна на отрезке Интеграл и его применение с примерами решения и принимает на этом промежутке неотрицательные значения. Фигуру, ограниченную графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения называют криволинейной трапецией.

На рисунке 26.1 приведены примеры криволинейных трапеций. Интеграл и его применение с примерами решения

Рассмотрим теорему, которая позволяет вычислять площади криволинейных трапеций.

Теорема 26.1. Площадь Интеграл и его применение с примерами решения криволинейной трапеции, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми и Интеграл и его применение с примерами решения можно вычислить по формуле

Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения любая первообразная функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения

Доказательство. Рассмотрим функцию Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения которая определена таким правилом.

Если Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения если Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения это площадь криволинейной трапеции, показанной штриховкой на рисунке 26.2.

Докажем, что Интеграл и его применение с примерами решения для всех Интеграл и его применение с примерами решения

Пусть Интеграл и его применение с примерами решения произвольная точка отрезка Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения приращение аргумента в точке Интеграл и его применение с примерами решения Ограничимся рассмотрением случая, когда Интеграл и его применение с примерами решения (случай, когда Интеграл и его применение с примерами решения рассматривают аналогично).

Имеем: Интеграл и его применение с примерами решения

Получаем, что Интеграл и его применение с примерами решения это площадь криволинейной трапеции, заштрихованной на рисунке 26.3.

Интеграл и его применение с примерами решения

На отрезке Интеграл и его применение с примерами решения как на стороне построим прямоугольник, площадь которого равна Интеграл и его применение с примерами решения (рис. 26.4). Длины сторон этого прямоугольника равны Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторая точка промежутка Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения Отсюда

Интеграл и его применение с примерами решения

Если Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения Поскольку функция Интеграл и его применение с примерами решения непрерывна в точке Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения Отсюда, если Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения

Имеем Интеграл и его применение с примерами решения

Поскольку Интеграл и его применение с примерами решения произвольная точка области определения функции Интеграл и его применение с примерами решения то для любого Интеграл и его применение с примерами решения выполняется равенство Интеграл и его применение с примерами решения Получили, что функция Интеграл и его применение с примерами решения является одной из первообразных функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения

Пусть Интеграл и его применение с примерами решения некоторая первообразная функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения Тогда по основному свойству первообразной можно записать Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решениянекоторое число.

Имеем:

Интеграл и его применение с примерами решения

По определению функции Интеграл и его применение с примерами решения искомая площадь Интеграл и его применение с примерами решения криволинейной трапеции равна Интеграл и его применение с примерами решения Следовательно, Интеграл и его применение с примерами решения

Пример:

Найдите площадь Интеграл и его применение с примерами решения фигуры, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решенияи Интеграл и его применение с примерами решения

Решение:

На рисунке 26.5 изображена криволинейная трапеция, площадь которой требуется найти.

Интеграл и его применение с примерами решения

Одной из первообразных функции Интеграл и его применение с примерами решения на отрезке я Интеграл и его применение с примерами решения

является функция Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения

Пример:

Найдите площадь Интеграл и его применение с примерами решения фигуры, ограниченной графиком функции Интеграл и его применение с примерами решения и прямой Интеграл и его применение с примерами решения

Решение:

График функции Интеграл и его применение с примерами решения пересекает прямую Интеграл и его применение с примерами решения в точках Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 26.6). Тогда фигура, площадь которой требуется найти, является криволинейной трапецией, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

Одной из первообразных функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения является функция Интеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Определение. Пусть Интеграл и его применение с примерами решения первообразная функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения, числа Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения принадлежат промежутку Интеграл и его применение с примерами решения. Разность Интеграл и его применение с примерами решения называют определенным интегралом функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения

Определенный интеграл функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решенияобозначают Интеграл и его применение с примерами решения (читают: «интеграл от а до Ъ эф от икс де икс»). Следовательно,

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения произвольная первообразная функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Например, функция Интеграл и его применение с примерами решения является первообразной функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения Тогда для произвольных чисел Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения можно записать:

Интеграл и его применение с примерами решения

Заметим, что значение разности Интеграл и его применение с примерами решения не зависит от того, какую именно первообразную функции Интеграл и его применение с примерами решения выбрали.

Действительно, каждую первообразную Интеграл и его применение с примерами решения функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения можно представить в виде Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения некоторая постоянная. Тогда

Интеграл и его применение с примерами решения

Равенство (1) называют формулой Ньютона—Лейбница.

Следовательно, для вычисления определенного интеграла Интеграл и его применение с примерами решения по формуле Ньютона-Лейбница надо:

  1. найти любую первообразную Интеграл и его применение с примерами решения функции Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения
  2. вычислить значение первообразной Интеграл и его применение с примерами решения в точках Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения
  3. найти разность Интеграл и его применение с примерами решения

При вычислении определенных интегралов разность Интеграл и его применение с примерами решения обозначают Интеграл и его применение с примерами решения

Используя такое обозначение, вычислим, например, Интеграл и его применение с примерами решения Имеем:

Интеграл и его применение с примерами решения

Пример:

Вычислите Интеграл и его применение с примерами решения

Решение:

Имеем:

Интеграл и его применение с примерами решения

Если функция Интеграл и его применение с примерами решения имеет первообразную Интеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения то из формулы Ньютона-Лейбница следует такое свойство определенного интеграла:

Интеграл и его применение с примерами решения

Действительно,

Интеграл и его применение с примерами решения

Если каждая из функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения имеет первообразную на отрезке Интеграл и его применение с примерами решения то, используя теоремы 25.1 и 25.2, можно доказать (сделайте это самостоятельно) такие свойства определенного интеграла:

Формула Ньютона-Лейбница позволяет установить связь между определенным интегралом и площадью Интеграл и его применение с примерами решения криволинейной трапеции, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Используя теорему 26.1, можно записать: Интеграл и его применение с примерами решения

Заметим, что в этой формуле рассматриваются непрерывные функции Интеграл и его применение с примерами решения, которые на отрезке Интеграл и его применение с примерами решения принимают только неотрицательные значения. Однако определенный интеграл можно использовать для вычисления площадей более сложных фигур.

Рассмотрим непрерывные на отрезке Интеграл и его применение с примерами решения функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения такие, что для всех Интеграл и его применение с примерами решения выполняется неравенство Интеграл и его применение с примерами решения

Покажем, как найти площадь Интеграл и его применение с примерами решения фигуры Интеграл и его применение с примерами решения, ограниченной графиками функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 26.7).

Перенесем фигуру Интеграл и его применение с примерами решения вверх на Интеграл и его применение с примерами решения единиц так, чтобы полученная фигура Интеграл и его применение с примерами решения находилась выше оси абсцисс (рис. 26.8). Фигура Интеграл и его применение с примерами решения ограничена графиками функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Поскольку фигуры Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения имеют равные площади, то искомая площадь Интеграл и его применение с примерами решения равна разности Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения площадь криволинейной трапеции, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 26.9, а);

Интеграл и его применение с примерами решения площадь криволинейной трапеции, ограниченной графиком функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 26.9, б)

Интеграл и его применение с примерами решения

Таким образом, используя свойства определенного интеграла, можем записать:

Интеграл и его применение с примерами решения

Следовательно, если функции Интеграл и его применение с примерами решенияи Интеграл и его применение с примерами решения непрерывны на отрезке Интеграл и его применение с примерами решения и для всех Интеграл и его применение с примерами решения выполняется неравенство Интеграл и его применение с примерами решения то площадь Интеграл и его применение с примерами решения фигуры, ограниченной графиками функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения можно вычислить по формуле

Интеграл и его применение с примерами решения

Пример:

Найдите площадь Интеграл и его применение с примерами решения фигуры, ограниченной графиками функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Решение:

На рисунке 26.10 изображена фигура, площадь которой требуется найти.

Интеграл и его применение с примерами решения

Решив уравнение Интеграл и его применение с примерами решения устанавливаем, что графики функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения пересекаются в двух точках с абсциссами Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения

Тогда искомая площадь

Интеграл и его применение с примерами решения

Вычисление объемов тел

В предыдущем пункте вы узнали, как с помощью интегрирования можно вычислять площадь криволинейной трапеции. Напомним, что если фигура ограничена графиками функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 27.1), то ее площадь можно вычислить по формуле

Интеграл и его применение с примерами решения

Рассмотрим функцию Интеграл и его применение с примерами решения Величина Интеграл и его применение с примерами решения равна длине отрезка, по которому вертикальная прямая Интеграл и его применение с примерами решения пересекает данную фигуру (рис. 27.2). Следовательно, можно записать:

Интеграл и его применение с примерами решения Оказывается, что последнюю формулу можно обобщить для решения задач на вычисление объемов пространственных тел.

Интеграл и его применение с примерами решения

В пространственной прямоугольной декартовой системе координат рассмотрим тело Интеграл и его применение с примерами решения, объем которого равен Интеграл и его применение с примерами решения Пусть плоскость Интеграл и его применение с примерами решения пересекает тело Интеграл и его применение с примерами решения по фигуре с площадью Интеграл и его применение с примерами решения а проекцией тела Интеграл и его применение с примерами решения на ось абсцисс является отрезок Интеграл и его применение с примерами решения (рис. 27.3). Если Интеграл и его применение с примерами решения непрерывная на отрезке Интеграл и его применение с примерами решения функция, то объем тела Интеграл и его применение с примерами решения можно вычислить по формуле

Интеграл и его применение с примерами решения

Эту формулу можно доказать, используя идею доказательства теоремы 26.1.

Покажем, как с помощью полученной формулы вывести формулу объема пирамиды.

Пусть дана пирамида с высотой Интеграл и его применение с примерами решения, равной Интеграл и его применение с примерами решения и основанием, площадь которого равна Интеграл и его применение с примерами решения (рис. 27.4). Докажем, что объем пирамиды равен Интеграл и его применение с примерами решения Введем систему координат так, чтобы вершина пирамиды Интеграл и его применение с примерами решения совпала с началом координат, а высота пирамиды Интеграл и его применение с примерами решения принадлежала положительной полуоси абсцисс (рис. 27.5). Тогда основание пирамиды лежит в плоскости Интеграл и его применение с примерами решения Поэтому проекцией пирамиды на ось абсцисс является отрезок Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Пусть плоскость Интеграл и его применение с примерами решения пересекает пирамиду по многоугольнику с площадью Интеграл и его применение с примерами решения Понятно, что плоскость сечения параллельна плоскости основания пирамиды. Поэтому многоугольник, образованный в сечении, подобен многоугольнику основания пирамиды. При этом коэффициент неподобия равен Интеграл и его применение с примерами решения Воспользовавшись теоремой об отношении площадей подобных фигур, можно записать: Интеграл и его применение с примерами решения

Отсюда Интеграл и его применение с примерами решения Теперь можно записать:

Интеграл и его применение с примерами решения

Пример:

Фигура, ограниченная графиком функции Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения (рис. 27.6), вращается вокруг оси абсцисс, образуя тело объема Интеграл и его применение с примерами решения (рис. 27.7). Найдите Интеграл и его применение с примерами решения.

Решение:

При пересечении образовавшегося тела плоскостью Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения получаем круг (рис. 27.8), радиус которого равен Интеграл и его применение с примерами решения Тогда площадь этого круга равна Интеграл и его применение с примерами решения

Поэтому

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Вообще, имеет место такое утверждение.

Если при вращении фигуры, ограниченной графиком непрерывной и неотрицательной на отрезке Интеграл и его применение с примерами решения функции Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения вокруг оси абсцисс образуется тело объема Интеграл и его применение с примерами решения то

Интеграл и его применение с примерами решения

Интеграл и его применения

Понятия первообразной и неопределённого интеграла

А вы знаете, что если точка двигаясь по прямой, за время t после начала движения проходит путь s(t), то её мгновенная скорость равна производной функцииИнтеграл и его применение с примерами решения. На практике встречается обратная задача: найти пройденный путь s(t), если задана скорость движения v(t).

Эту задачу можно переформулировать так: найти функцию s(t), если задана ее производная v(t).

Если Интеграл и его применение с примерами решения, то функция s(t) называется первообразной функцией функции v(t). В общем случае можно ввести такое определение: Функция F(x) называется первообразной для функции f(х) на заданном промежутке (a; b), если для всех х из промежутка (а; b) выполненоИнтеграл и его применение с примерами решения.

Пример:

Пусть а — заданное число, a v(t)=at. Тогда функция

Интеграл и его применение с примерами решения является первообразной для функции v(t), так как Интеграл и его применение с примерами решения

Пример:

Пусть Интеграл и его применение с примерами решения. Тогда функция Интеграл и его применение с примерами решения является первообразной для функции Интеграл и его применение с примерами решения, так как

Интеграл и его применение с примерами решения

Пример:

Пусть Интеграл и его применение с примерами решения, при Интеграл и его применение с примерами решения

Тогда функция Интеграл и его применение с примерами решения является первообразной для функции Интеграл и его применение с примерами решения,

так как Интеграл и его применение с примерами решения

Пример:

Пусть Интеграл и его применение с примерами решения,*>0, Тогда функция Интеграл и его применение с примерами решения

является первообразной для функции Интеграл и его применение с примерами решения, так как Интеграл и его применение с примерами решения

Пример:

Докажите, что функции Интеграл и его применение с примерами решения,

Интеграл и его применение с примерами решенияявляются первообразными для функции Интеграл и его применение с примерами решения

Используя таблицу производных, мы можем написать:

Интеграл и его применение с примерами решения

Из этой задачи можно сделать вывод: Интеграл и его применение с примерами решения

где С -постоянная является первообразной функцией для функции Интеграл и его применение с примерами решения.

Действительно, Интеграл и его применение с примерами решения

Для заданной функцииИнтеграл и его применение с примерами решения её первообразная однозначно не определяется.

Именно, любая первообразная для функции Интеграл и его применение с примерами решения на некотором промежутке может быть записана в виде Интеграл и его применение с примерами решения, где F(x) — одна из первообразных для функции Интеграл и его применение с примерами решения на этом промежутке, (С -произвольная постоянная).

Совокупность всех функций вида Интеграл и его применение с примерами решения называется неопределённым интегралом функции Интеграл и его применение с примерами решения и обозначается так: Интеграл и его применение с примерами решения. Таким образом, Интеграл и его применение с примерами решения

В этом обозначении Интеграл и его применение с примерами решения — знак интеграла, f(x) — подынтегральная функция, а выражение Интеграл и его применение с примерами решения — подынтегральное выражение.

Пример:

Интеграл и его применение с примерами решения, так как согласно таблице производных, Интеграл и его применение с примерами решения .

Пример:

Интеграл и его применение с примерами решения

Так как Интеграл и его применение с примерами решения.

Пусть Интеграл и его применение с примерами решения

Согласно примеру 4. Интеграл и его применение с примерами решения

График функции Интеграл и его применение с примерами решения можно получить из графика функции Интеграл и его применение с примерами решения с помощью параллельного переноса вдоль оси Оу (рисунок 1). За счет выбора постоянной С можно добиться, чтобы график первообразной проходил через заданную точку.

Интеграл и его применение с примерами решения

Пример:

Найдите первообразную для функции Интеграл и его применение с примерами решения, график которой проходит через точку А(3; 10).

Решение:

Любая первообразная функции Интеграл и его применение с примерами решения имеет вид Интеграл и его применение с примерами решения,

так как Интеграл и его применение с примерами решения.

Подберём постоянную С такую, чтобы график функции

Интеграл и его применение с примерами решенияпроходил через точку (3; 10): Для этого необходимо,

чтобы при х=3 выполнялось F (3)=10. Отсюда Интеграл и его применение с примерами решения, С = 1.

Следовательно, искомая первообразная имеет видИнтеграл и его применение с примерами решения .

Ответ:Интеграл и его применение с примерами решения

Пример:

Найдите первообразную для функции Интеграл и его применение с примерами решения, график которой проходит через точку А(5; 15).

Решение:

Любая первообразная функцииИнтеграл и его применение с примерами решения имеет видИнтеграл и его применение с примерами решения

Интеграл и его применение с примерами решения , так как Интеграл и его применение с примерами решения Подберём постоянную С такую, чтобы график функции

Интеграл и его применение с примерами решения проходил через точку (5; 15).

Для этого необходимо, чтобы выполнялось Интеграл и его применение с примерами решения .

Значит Интеграл и его применение с примерами решения отсюда С= 3.

Следовательно, искомая первообразная имеет вид Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Докажите, чтоИнтеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решения

Таблица интегралов

Опираясь на таблицу производных можно составить таблицу интегралов.

Интеграл и его применение с примерами решения

Для того, чтобы функция F(x) была первообразной для функции f(х) на некотором промежутке X, необходимо, чтобы обе функции F(x) и f(х) были определены на этом промежутке X.

Например, Интеграл и его применение с примерами решения при Интеграл и его применение с примерами решения, то есть при х > 1,6, согласно таблице интегралов, первообразная равна — Интеграл и его применение с примерами решения

Используя правила дифференцирования, можно сформулировать некоторые правила интегрирования.

Пусть функции F(x) и G(x) на некотором промежутке являются первообразными для функций Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения соответственно. Справедливы правила:

Правило 1: Функция Интеграл и его применение с примерами решения является первообразной для функции Интеграл и его применение с примерами решения, то есть Интеграл и его применение с примерами решения

Правило 2: Функция Интеграл и его применение с примерами решения является первообразной для функцииИнтеграл и его применение с примерами решения, то есть:

Интеграл и его применение с примерами решения

Пример:

Проинтегрируйте функциюИнтеграл и его применение с примерами решения

Решение:

Согласно правилу 1 и 9 пункту таблицы интегралов: Интеграл и его применение с примерами решения

Так как согласно таблице интегралов Интеграл и его применение с примерами решения

Ответ:Интеграл и его применение с примерами решения

Пример:

Проинтегрируйте функцию Интеграл и его применение с примерами решения

Решение:

Найдём интеграл этой функции, используя правила 1, 2 интегирования, а также пункты 1 и 10 таблицы интегралов:Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

При решении таких примеров удобно использовать замену переменных.

Именно, обозначим х2 + 8 = u тогда,Интеграл и его применение с примерами решения Отсюда

Интеграл и его применение с примерами решения

Проверка: Найдём производную от полученной функции и получим

подынтегральную функциюИнтеграл и его применение с примерами решения. Действительно,

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интегралИнтеграл и его применение с примерами решения

Решение:

Сделаем замену sinx = t. Тогда Интеграл и его применение с примерами решения и заданный интеграл

получит вид Интеграл и его применение с примерами решения . Согласно пункту 3 таблицы интегралов Интеграл и его применение с примерами решения,

Интеграл и его применение с примерами решения

Проверка. Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

При вычислении этого интеграла помогает тождество Интеграл и его применение с примерами решения

Тогда

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

Согласно тождеству Интеграл и его применение с примерами решения и пункту 10 таблицы интегралов: Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

Для подынтегральной функции справедлива равенства: Интеграл и его применение с примерами решения

Тогда Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

Для вычисления этого интеграла воспользуемся Интеграл и его применение с примерами решения

и Интеграл и его применение с примерами решения. Тогда Интеграл и его применение с примерами решения

Проверка:

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интеграл Интеграл и его применение с примерами решения

Решение:

Для вычисления этого интеграла воспользуемся Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Приведём также правило интегрирования по частям.

Правило 3*.

Если на некотором интервале X функции Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решенияимеют непрерывные производные Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения, то справедлива формула

Интеграл и его применение с примерами решения (1)

Эта формула называется формулой интегрирования по частям.

Доказательство формулы следует из правила дифференцирования произведения функций Интеграл и его применение с примерами решенияи Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Примечание. Для использования этого правила: 1) Подъинтсграль-ная функция представляется в виде произведения Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения; 2) выражения Интеграл и его применение с примерами решенияи Интеграл и его применение с примерами решения подбираются таким образом, чтобы интеграл в правой части формулы вычислялся непосредственно.

Пример:

Вычислить интегралИнтеграл и его применение с примерами решения

Решение:

Подберём Интеграл и его применение с примерами решения. Поэтому

Интеграл и его применение с примерами решения. Согласно (1), Интеграл и его применение с примерами решения

Поэтому Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить интегралИнтеграл и его применение с примерами решения .

Решение:

Представим подынтегральную функцию Интеграл и его применение с примерами решенияв виде произведения функцийИнтеграл и его применение с примерами решения. Поэтому:Интеграл и его применение с примерами решения.

Тогда Интеграл и его применение с примерами решения

Согласно формуле (1),

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Значит, Интеграл и его применение с примерами решения

Проверка:

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример 3.

Для нахождения интеграла удобно положить Интеграл и его применение с примерами решения.

Решение:

В этом случае Интеграл и его применение с примерами решения(здесь мы взяли первообразную без постоянной С). Согласно формуле интегрирования по частям,

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Определенный интеграл, формула ньютона — лейбница

Фигура, изображённая на рисунке 2, называется криволинейной трапецией. Криволинейная трапеция — фигура, ограниченная сверху графиком функции Интеграл и его применение с примерами решения, снизу — отрезком [а; b], а по бокам -отрезками прямых х = а, х = b. Отрезок[а; b] называется основанием криволинейной трапеции.

Возникает вопрос: «Как вычислить площадь криволинейной трапеции?»

Обозначим эту площадь через S. Оказывается, площадь S можно вычислить, опираясь на первообразную для функции f(х). Приведём соответствующие рассуждения.Интеграл и его применение с примерами решения

Обозначим площадь криволинейной трапеции с основанием [a; х] через S (х) (рисунок 3). Точка х — произвольная точка из отрезка [a; b]. В случае х = а отрезок [а; х] превращается в точку, поэтому S(a)=0; а при х = b S(b) = S.

Покажем, что функция S(х) является первообразной для функции f(х), то есть Интеграл и его применение с примерами решения.

Интеграл и его применение с примерами решения

Рассмотрим разность Интеграл и его применение с примерами решения, где h > 0 (случай h < 0 рассматривается аналогично). Эта разность равна площади криволинейной трапеции с основанием [х; x + h] (рисунок 4). Отмeтим, что при достаточно малых h эта площадь приблизительно равна Интеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решения Значит, Интеграл и его применение с примерами решения

По определению производной, левая часть этого приближенного равенства при Интеграл и его применение с примерами решения стремится к S'(х). Поэтому при Интеграл и его применение с примерами решения получим равенство Интеграл и его применение с примерами решения. Поэтому S(x) является первообразной для функции Интеграл и его применение с примерами решения

Первообразная S(x) отличается от произвольной первообразной F(x) па постоянную величину, то естьИнтеграл и его применение с примерами решения

Положим в этом равенстве х=а получим Интеграл и его применение с примерами решения Отсюда следует, что Интеграл и его применение с примерами решения. Тогда равенство (1) можно записать в виде: Интеграл и его применение с примерами решения. Положим в этом равенстве х=b, получим Интеграл и его применение с примерами решения.

Значит, площадь криволинейной трапеции (рисунок 2) можно вычислить по формуле: Интеграл и его применение с примерами решения, (2)

где F(x) — любая первообразная для функции f (х).

Таким образом, вычисление площади криволинейной трапеции сводится к нахождению первообразной функции F(x) для функции f(х), то есть к интегрированию функции f(х).

Разность F(b) F(a) называется определённым интегралом от функции f(х) на отрезке [а; b] и обозначается так: Интеграл и его применение с примерами решения (читается как «интеграл от а до б от эф икс де икс»).

Таким образом, Интеграл и его применение с примерами решения

Формула (3) называется формулой Ньютона-Лейбница. Из (2) и (3) имеем:

Интеграл и его применение с примерами решения

Обычно при вычислении определенного интеграла принято обозначение:

Интеграл и его применение с примерами решения. В этом случае: Интеграл и его применение с примерами решения

Приведём дополнительные сведения.

Задачу нахождения криволинейной фигуры свели к вычислению определённого интеграла. Рассмотрим непрерывную функцию, определённую на отрезке [а; b]. Разобьем этот отрезок точками а=х0, х1.., х1-n , хn= b на равные отрезки Интеграл и его применение с примерами решения, и на каждом из этих отрезков Интеграл и его применение с примерами решения, отметим произвольную точку Интеграл и его применение с примерами решения . Умножим длину Интеграл и его применение с примерами решения отрезка Интеграл и его применение с примерами решенияна значение Интеграл и его применение с примерами решения заданной функции f(х) в точке Интеграл и его применение с примерами решения и составим сумму

Интеграл и его применение с примерами решения (6)

Видно, что каждое слагаемое в этой сумме есть площадь прямоугольника с основанием Интеграл и его применение с примерами решения и высотой Sn. Тогда сумма S приближенно равна площади криволинейной трапеции Интеграл и его применение с примерами решения (рисунок 5).

Интеграл и его применение с примерами решения

Сумма (6) называется интегральной суммой функции f(х) по отрезку [а; b]. Пусть при стремлении n к бесконечностиИнтеграл и его применение с примерами решения стремится к нулю. Тогда интегральная сумма Sn стремится к некоторому числу. Вот это число называется определенным интегралом от функции f (х) на отрезке [а; b].

Пример:

Найдите площадь криволинейной трапеции, изображённой на рисунке 6.

Решение:

Согласно формуле (4) Интеграл и его применение с примерами решения. Вычислим это значение по

формуле Ньютона — Лейбиица (3). Очевидно, что функция

Интеграл и его применение с примерами решения одна из первообразных для функцииИнтеграл и его применение с примерами решения. Значит, Интеграл и его применение с примерами решения Ответ: S = 21 (кв. единиц).

Пример:

Найдите площадь заштрихованной фигуры на рисунке 7.

Интеграл и его применение с примерами решения

Решение:

По формуле Ньютона-Лейбница и формуле (5): Интеграл и его применение с примерами решения (кв.единиц) Ответ: 2 (кв.единиц). Интеграл и его применение с примерами решения

Пример:

Вычислить определённый интеграл Интеграл и его применение с примерами решения.

Решение:

По формуле Ньютона-Лейбница и формуле (5):

Интеграл и его применение с примерами решения

Ответ: 0. Интеграл и его применение с примерами решения

Пример:

Вычислить определённый интеграл Интеграл и его применение с примерами решения

Решение:

По формуле Ньютона-Лейбница и формуле (5):

Интеграл и его применение с примерами решения

Ответ: 13,5. Интеграл и его применение с примерами решения

Пример:

Вычислить определенный интеграл Интеграл и его применение с примерами решения

Решение:

Сначала найдём неопределенный интеграл: Интеграл и его применение с примерами решения

Значит Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Ответ: Интеграл и его применение с примерами решения

Пример:

Вычислить определённый интеграл Интеграл и его применение с примерами решения

Решение:

Сначала найдем неопределенный интеграл:

Согласно таблице интегралов Интеграл и его применение с примерами решения Значит Интеграл и его применение с примерами решения Ответ: Интеграл и его применение с примерами решения

Определённый интеграл обладает следующими свойствами:

1.Интеграл и его применение с примерами решения Действительно Интеграл и его применение с примерами решения

2. Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Значит, Интеграл и его применение с примерами решения

3.Пусть а, b, с — действительные числа. Тогда

Интеграл и его применение с примерами решения

(свойство аддитивности определённого интеграла).

4.Пусть Интеграл и его применение с примерами решения — четная функция, тогда Интеграл и его применение с примерами решения

5.Если Интеграл и его применение с примерами решения, тогда Интеграл и его применение с примерами решения.

6.Если Интеграл и его применение с примерами решения,тогда Интеграл и его применение с примерами решения.

——

Эйлеровы интегралы

Определение 1. Эйлеровым интегралом 1-го рода или бета-функцией называется интеграл Интеграл и его применение с примерами решения
Эйлеровым интегралом 2-го рода или гамма-функцией называется интеграл
Интеграл и его применение с примерами решения (2)
Теорема 1. При Интеграл и его применение с примерами решения интеграл (1) сходится.
Доказательство.
Интеграл и его применение с примерами решения
Если Интеграл и его применение с примерами решения то функция Интеграл и его применение с примерами решения− ограничена, при Интеграл и его применение с примерами решения сходится, поэтому Интеграл и его применение с примерами решения — сходится .
Если Интеграл и его применение с примерами решения то функция Интеграл и его применение с примерами решения− ограничена, при Интеграл и его применение с примерами решениясходится, поэтому Интеграл и его применение с примерами решения — сходится.
Таким образом Интеграл и его применение с примерами решения сходится.
Теорема 2. При a >0 интеграл (2) – сходится.
Доказательство.
Интеграл и его применение с примерами решения
Если x∈[0,1], то функция Интеграл и его применение с примерами решения − ограничена, при Интеграл и его применение с примерами решениясходится, поэтому
Интеграл и его применение с примерами решения-сходится.
Если Интеграл и его применение с примерами решения− ограничена, Интеграл и его применение с примерами решения
сходится, поэтому Интеграл и его применение с примерами решения -сходится.
Следовательно Интеграл и его применение с примерами решения сходится.

Свойства функций В(а,b), Г(а)

Найти Интеграл и его применение с примерами решения
Решение. По формуле (11): Интеграл и его применение с примерами решения
n.4. Перепишем формулу (4) в виде:  Интеграл и его применение с примерами решения (14)
что позволяет доопределить функцию Г (а) для отрицательных значений а:
Интеграл и его применение с примерами решения
Пример 2.

Найти Интеграл и его применение с примерами решения
Решение.
Интеграл и его применение с примерами решения

Пример 3.

Вычислить интеграл Интеграл и его применение с примерами решения
Решение.
Интеграл и его применение с примерами решения
 

n.5. Рассмотрим
Интеграл и его применение с примерами решения
Поэтому Интеграл и его применение с примерами решения значение интеграла Пуассона.

—-в математике

Интеграл и его применение

1. Первообразная

Определение:

  • Функция F (х) называется первообразной для функции Интеграл и его применение с примерами решения на заданном промежутке, если для любого х из этого промежутке F’ (х) = f (х).

Пример:

Для функции Интеграл и его применение с примерами решения на интервалеИнтеграл и его применение с примерами решенияпервообразной является функция Интеграл и его применение с примерами решения поскольку Интеграл и его применение с примерами решения

2. Основное свойство первообразной

Свойство:

Пример:

Поскольку функция Интеграл и его применение с примерами решения яляется первообразной для функции Интеграл и его применение с примерами решения на интервале Интеграл и его применение с примерами решения (см. выше), то общий вид всех первообразных для функции Интеграл и его применение с примерами решения можно записать следующим образом: Интеграл и его применение с примерами решения где С — произвольная постоянная.

Геометрический смысл:

  • Графики любых первообразных для данной функции получаются один из другого параллельным переносом вдоль оси Оу.

Интеграл и его применение с примерами решения

3. Неопределенный интеграл

Определение:

Совокупность всех первообразных для данной функции f(x) называется неопределенным интегралом и обозначается символом Интеграл и его применение с примерами решения то естьИнтеграл и его применение с примерами решения где F (х) — одна из первообразных для функции f(x), а С — произвольная постоянная.

Пример:

Интеграл и его применение с примерами решения поскольку для функции Интеграл и его применение с примерами решения на интервале Интеграл и его применение с примерами решения все первообразные можно записать следующим образом:Интеграл и его применение с примерами решения .

4. Правила нахождения первообразных (правила интегрирования)

  1. Если F — первообразная для f, a G — первообразная для g, то F + G — первообразная для f + g. Первообразная для суммы равна сумме первообразных для слагаемых.
  2. Если F — первообразная для f и с — постоянная, то cF — первообразная для функции Интеграл и его применение с примерами решения
  3. Если F — первообразная для f, а k и b — постоянные (причем Интеграл и его применение с примерами решения то Интеграл и его применение с примерами решения — первообразная для функции Интеграл и его применение с примерами решения

Пример:

5. Таблица первообразных (неопределенных интегралов) Функция Интеграл и его применение с примерами решения

Общий вид первообразныхИнтеграл и его применение с примерами решения где С — произвольная постоянная

  1. 1.Интеграл и его применение с примерами решения
  2. 2.Интеграл и его применение с примерами решения
  3. 3.Интеграл и его применение с примерами решения
  4. 4.Интеграл и его применение с примерами решения

Запись с помощью неопределенного интеграла

Интеграл и его применение с примерами решения

Объяснение и обоснование:

Понятие первообразной. Основное свойство первообразной

В первом разделе мы по заданной функции находили ее производную и применяли эту операцию дифференцирования к решению разнообразных задач. Одной из таких задач было нахождение скорости и ускорения прямолинейного движения по известному закону изменения координаты х (t) материальной точки: Интеграл и его применение с примерами решения Например, если в начальный момент времени t = 0 скорость тела равна нулю, то есть v (0) = 0, то при свободном падении тело на момент времени t пройдет путь Интеграл и его применение с примерами решения Тогда скорость и ускорение находят с помощью дифференцирования: Интеграл и его применение с примерами решения

Важно уметь не только находить производную заданной функции, но и решать обратную задачу: находить функцию f (х) по ее заданной производной Интеграл и его применение с примерами решения Например, в механике часто приходится определять координату х (t), зная закон изменения скорости v(t), а также определять скорость v (t), зная закон изменения ускорения Интеграл и его применение с примерами решения Нахождение функции f (х) по ее заданной производной f’ (х) называют операцией интегрирования.

Таким образом, операция интегрирования является обратной операции дифференцирования. Операция интегрирования позволяет по заданной производной f’ (х) найти (восстановить) функцию Интеграл и его применение с примерами решения(латинское слово integratio означает «восстановление»).

Приведем определения понятий, связанных с операцией интегрирования.

Функция F (х) называется первообразной для функции f (х) на данном промежутке, если для любого х из этого промежутка Интеграл и его применение с примерами решения

Например, для функции Интеграл и его применение с примерами решения на интервалеИнтеграл и его применение с примерами решенияпервообразной является функцияИнтеграл и его применение с примерами решения поскольку Интеграл и его применение с примерами решения

Отметим, что функция Интеграл и его применение с примерами решения имеет ту же производную Интеграл и его применение с примерами решенияСледовательно, функцияИнтеграл и его применение с примерами решения также является первообразной для функцииИнтеграл и его применение с примерами решения на множестве R. Понятно, что вместо числа 5 можно подставить любое другое число. Поэтому задача нахождения первообразной имеет бесконечное множество решений. Найти все эти решения позволяет основное свойство первообразной.

Если функция F (х) является первообразной для функции f (х) на заданном промежутке, а С — произвольной постоянной, то функция F (х) + С также является первообразной для функции Интеграл и его применение с примерами решения при этом любая первообразная для функции Интеграл и его применение с примерами решенияна данном промежутке может быть записана в виде F (х) + С, где С — произвольная постоянная.

Выражение F (х) + С называют общим видом первообразных для функции f (х).

Интеграл и его применение с примерами решения 1) По условию функция F (х) является первообразной для функции f (х) на некотором промежутке I. Следовательно, F’ (х) = f (х) для любого х из этого промежуткаИнтеграл и его применение с примерами решения ТогдаИнтеграл и его применение с примерами решениято есть F (х) + С также является первообразной для функции f (х).

2) Пусть функцияИнтеграл и его применение с примерами решения — другая первообразная для функции f (х) на том же промежутке I, то есть Интеграл и его применение с примерами решения для всехИнтеграл и его применение с примерами решенияТогда Интеграл и его применение с примерами решения По условию постоянства функции, если производная функции Интеграл и его применение с примерами решения равна нулю на промежутке I, то эта функция принимает некоторое постоянное значение С на этом промежутке. Следовательно, для всех Интеграл и его применение с примерами решения функцияИнтеграл и его применение с примерами решения Отсюда Интеграл и его применение с примерами решения Таким образом, любая первообразная для функции f (х) на данном промежутке может быть записана в виде F (х) + С, где С — произвольная постоянная.Интеграл и его применение с примерами решения Например, поскольку для функции f (х) = 2х на интервале Интеграл и его применение с примерами решения одной из первообразных является функция Интеграл и его применение с примерами решения(действительно, F’ (х) =Интеграл и его применение с примерами решения то общий вид всех первообразных функции Интеграл и его применение с примерами решенияможно записать так: Интеграл и его применение с примерами решения где С — произвольная постоянная.

Замечание. Для краткости при нахождении первообразной функции f (х) промежуток, на котором задана функция Интеграл и его применение с примерами решения, чаще всего не указывают. При этом имеются в виду промежутки возможно большей длины.

Геометрически основное свойство первообразной означает, что графики любых первообразных для данной функции f (х) получаются друг из друга параллельным переносом вдоль оси Оу (рис. 100). Действительно, график произвольной первообразной F (х) + С можно получить из графика первообразной F (х) параллельным переносом вдоль оси Оу на С единиц.

Интеграл и его применение с примерами решения

  • Заказать решение задач по высшей математике

Неопределенный интеграл

Пусть функция f (х) имеет на некотором промежутке первообразную F (х). Тогда по основному свойству первообразной совокупность всех первообразных для функции f (х) на заданном промежутке задается формулой F (х) + С, где С — произвольная постоянная.

Совокупность всех первообразных для данной функции f (х) называется неопределенным интегралом и обозначается символом Интеграл и его применение с примерами решения то есть Интеграл и его применение с примерами решениягде F (х) — одна из первообразных для функции f (х), а С — произвольная постоянная.

В приведенном равенстве знакИнтеграл и его применение с примерами решения называют знаком интеграла, функцию Интеграл и его применение с примерами решения — подынтегральной функцией, выражение f (х) dx — подынтегральным выражением, переменную х — переменной интегрирования и слагаемое С — постоянной интегрирования.

Например, как отмечалось выше, общий вид первообразных для функции Интеграл и его применение с примерами решениязаписывается так: Интеграл и его применение с примерами решения следовательно, Интеграл и его применение с примерами решения

Правила нахождения первообразных (правила интегрирования)

Эти правила аналогичны соответствующим правилам дифференцирования.

Правило 1. Если F — первообразная для f, a G — первообразная для g, то F + G — первообразная для f + g.

Первообразная для суммы равна сумме первообразных для слагаемых.

1 ) Действительно, если F — первообразная для f (в этой кратком формулировке имеется в виду, что функция F(x) — первообразная для функции f (х)), то F’ = f. Аналогично, если G — первообразная для g, то G’ = g. Тогда по правилу вычисления производной суммы имеем (F + G)’ = F’ + G’ = f + g, а это и означает, что F + G — первообразная для f + g. Интеграл и его применение с примерами решенияС помощью неопределенного интеграла это правило можно записать так:

Интеграл и его применение с примерами решения

то есть интеграл от суммы равен сумме интегралов от слагаемых. Отметим, что правило 1 может быть распространено на любое количестве слагаемых (поскольку производная от любого количества слагаемых равна сумме производных слагаемых).

Правило 2. Если F — первообразная для Интеграл и его применение с примерами решения — постоянная, то cF — первообразная для функции cf.

Интеграл и его применение с примерами решения Действительно, если F — первообразная для f, то F’ = f. Учитывая, что постоянный множитель можно выносить за знак производной, имеем Интеграл и его применение с примерами решения следовательно, cF — первообразная для cf.Интеграл и его применение с примерами решения

С помощью неопределенного интеграла это правило можно записать так:

Интеграл и его применение с примерами решения где с — постоянная, то есть постоянный множитель можно выносить за знак интеграла.

Правило З. Если F — первообразная для f,Интеграл и его применение с примерами решения — постоянные (причемИнтеграл и его применение с примерами решения тоИнтеграл и его применение с примерами решения— первообразная для функции Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения Действительно, если F — первообразная для f, то F’ = f. Учитывая правило вычисления производной сложной функции, имеем

Интеграл и его применение с примерами решения

а это и означает, что Интеграл и его применение с примерами решения — первообразная для функции Интеграл и его применение с примерами решения

С помощью неопределенного интеграла это правило можно записать так: Интеграл и его применение с примерами решения

Таблица первообразных (неопределенных интегралов)

Для вычисления первообразных (или неопределенных интегралов), кроме правил нахождения первообразных, полезно помнить табличные значения первообразных для некоторых функций. Чтобы обосновать правильность этих формул, достаточно проверить, что производная от указанной первообразной (без постоянного слагаемого С) равна заданной функции. Это будет означать, что рассмотренная функция действительно является первообразной для заданной функции. Поскольку в записи всех первообразных во второй колонке присутствует постоянное слагаемое С, то по основному свойству первообразных можно сделать вывод, что это действительно общий вид всех первообразных заданной функции. Приведем обоснование формул для нахождения первообразных функций Интеграл и его применение с примерами решенияа для других функций предлагаем провести аналогичную проверку самостоятельно.

Интеграл и его применение с примерами решенияДля всех Интеграл и его применение с примерами решения

Следовательно, функцияИнтеграл и его применение с примерами решения является первообразной для функции Интеграл и его применение с примерами решения Тогда по основному свойству первообразных общий вид всех первообразных для функции Интеграл и его применение с примерами решения будет Интеграл и его применение с примерами решения

С помощью неопределенного интеграла это утверждение записывается так:

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решенияУ функции Интеграл и его применение с примерами решения область определения Интеграл и его применение с примерами решения Рассмотрим функцию

Интеграл и его применение с примерами решения

Следовательно, на каждом из промежутков Интеграл и его применение с примерами решенияфункция

Интеграл и его применение с примерами решенияявляется первообразной для функции Интеграл и его применение с примерами решения Тогда

общий вид всех первообразных для функции Интеграл и его применение с примерами решения С помощью неопределенного интеграла это утверждение записывается так:

Интеграл и его применение с примерами решения

Примеры решения задач:

Пример №292

Проверьте, что функция Интеграл и его применение с примерами решенияявляется первообразной для функции Интеграл и его применение с примерами решения на промежутке Интеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решения а это и означает, что F (х) является первообразной для функции Интеграл и его применение с примерами решения

Комментарий:

По определению функция F (х) является первообразной для функции f (х), если Интеграл и его применение с примерами решения

Пример №293

1) Найдите одну из первообразных для функцииИнтеграл и его применение с примерами решения

2) Найдите все первообразные для функции Интеграл и его применение с примерами решения

3*) Найдите Интеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решения 1) Одной из первообразных для функции Интеграл и его применение с примерами решенияна множестве R

будет функция Интеграл и его применение с примерами решения поскольку Интеграл и его применение с примерами решения

Комментарий:

1) Первообразную для функции Интеграл и его применение с примерами решения можно попытаться найти подбором. При этом можно рассуждать так: чтобы после нахождения производной получить Интеграл и его применение с примерами решения необходимо брать производную от Интеграл и его применение с примерами решения Но Интеграл и его применение с примерами решения Чтобы производная равняласьИнтеграл и его применение с примерами решениядостаточно поставить перед функцией Интеграл и его применение с примерами решения коэффициент Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения 2) По основному свойству первообразных все первообразные для функции Интеграл и его применение с примерами решения можно записать в виде 1Интеграл и его применение с примерами решения где С — произвольная. Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения где С — произвольная постоянная.Интеграл и его применение с примерами решения Проще непосредственно использовать формулу из пункта 5 таблицы 17: одной из первообразных для для функции Интеграл и его применение с примерами решенияявляется функция Интеграл и его применение с примерами решения

2) если мы знаем одну первообразную F (х) для функции f (х), то по основному свойству первообразных любую первообразную для функции f (х) можно записать в виде F (х) + С, где С — произвольная постоянная.

3) По определениюИнтеграл и его применение с примерами решения то есть неопределенный интеграл Интеграл и его применение с примерами решения— это просто специальное обозначение общего вида всех первообразных для данной функции f (х) (которые мы уже нашли в пункте 2 решения).

Пример №294

Для функции Интеграл и его применение с примерами решения найдите первообразную, график которой проходит через точку М (9; 10).

Решение:

Интеграл и его применение с примерами решенияОбщий вид всех первообразных для функции f (х) следующий:

Интеграл и его применение с примерами решения

По условию график первообразной проходит через точку М (9; 10). Следовательно, при х = 9 получаемИнтеграл и его применение с примерами решения

Отсюда С = -8. Тогда искомая первообразная: Интеграл и его применение с примерами решения

Комментарий:

Сначала запишем общий вид первообразных для заданной функции F(x) + С, затем воспользуемся тем, что график полученной функции проходит через точку М (9; 10). Следовательно, при х = 9 значение функции F (х) + С равно 10. Чтобы найти первообразную для функцииИнтеграл и его применение с примерами решенияучтем, что область определения этой функции Интеграл и его применение с примерами решения Тогда эту функцию можно записать так: Интеграл и его применение с примерами решения и использовать формулу нахождения первообразной для функцииИнтеграл и его применение с примерами решения а именно:Интеграл и его применение с примерами решения

Пример №295

Найдите общий вид первообразных для функции

Интеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решенияЗапишем одну из первообразных для каждого слагаемого. Для функции Интеграл и его применение с примерами решения

первообразной является функция Интеграл и его применение с примерами решения Второе слагаемое запишем так: Интеграл и его применение с примерами решения Тогда первообразной для этой функции будет функция:

Интеграл и его применение с примерами решения

Первообразной для функции будет функцияИнтеграл и его применение с примерами решения будет функция Интеграл и его применение с примерами решения

Тогда общий вид первообразных для заданной функции будет:

Интеграл и его применение с примерами решения

Комментарий:

Используем правила нахождения первообразных. Сначала обратим внимание на то, что заданная функция является алгебраической суммой трех слагаемых. Следовательно, ее первообразная равна соответствующей алгебраической сумме первообразных для слагаемых (правило 1). Затем учтем, что все функции-слагаемые являются сложными функциями от аргументов видаИнтеграл и его применение с примерами решенияСледовательно, по правилу 3 мы должны перед каждой функцией-первообразной (аргументаИнтеграл и его применение с примерами решения), которую мы получим по таблице первообразных, поставить 1 множитель Интеграл и его применение с примерами решения

Для каждого из слагаемых удобно сначала записать одну из первообразных (без постоянного слагаемого С), а затем уже записать общий вид первообразных для заданной функции (прибавить к полученной функции постоянное слагаемое С).

Для третьего слагаемого также учтем, что постоянный множитель 2 можно поставить перед соответствующей первообразной (правило 2).

Для первого слагаемого учитываем, что первообразной для Интеграл и его применение с примерами решенияявляется (-ctg х), для второго первообразной для Интеграл и его применение с примерами решения являетсяИнтеграл и его применение с примерами решениятретьего — первообразной для cos х является sin х (конечно, преобразование второго слагаемого выполняются на области определения этой функции, то есть при 2 — х > 0).

Определенный интеграл и его применение

1. Вычисление определенного интеграла (формула Ньютона-Лейбница)

Формула:

Если функция f (х) определена и непрерывна на отрезке [а; b], a F (х)— произвольная ее первообразная на этом отрезке (то есть F’ (х) = f (х)), то

Интеграл и его применение с примерами решения

Пример:

Так как для функцииИнтеграл и его применение с примерами решения одной из первообразных является

Интеграл и его применение с примерами решения

2. Криволинейная трапеция

Определение:

Пусть на отрезке Интеграл и его применение с примерами решения оси Ох задана непрерывная функция f(x), принимающая на этом отрезке только неотрицательные значения. Фигуру, ограниченную графиком функции у = f (х), отрезкомИнтеграл и его применение с примерами решения оси Ох и прямыми х = а и Интеграл и его применение с примерами решенияназывают криволинейной трапецией.

Иллюстрация:

Интеграл и его применение с примерами решения

3. Площадь криволинейной трапеции

Формула:

Интеграл и его применение с примерами решения

Пример:

Вычислите площадь фигуры, ограниченной линиями Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Изображая эти линии, видим, что заданная фигура — криволинейная трапеция. Тогда Интеграл и его применение с примерами решения

4. Свойства определенных интегралов Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

Если функция f (х) интегрируема на Интеграл и его применение с примерами решенияи Интеграл и его применение с примерами решениятоиИнтеграл и его применение с примерами решения

5. Определение определенного интеграла через интегральные суммыИнтеграл и его применение с примерами решения

Пусть функция Интеграл и его применение с примерами решения непрерывна на отрезке Интеграл и его применение с примерами решения. Выполним следующие операции.

  1. Разобьем отрезок Интеграл и его применение с примерами решения на Интеграл и его применение с примерами решения отрезков точками Интеграл и его применение с примерами решения (полагаем, что Интеграл и его применение с примерами решения
  2. Обозначим длину первого отрезка через Интеграл и его применение с примерами решения, второго — черезИнтеграл и его применение с примерами решения и т. д. (то есть Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения
  3. На каждом из полученных отрезков выберем произвольную точку Интеграл и его применение с примерами решения
  4. Составим суммуИнтеграл и его применение с примерами решения

Эту сумму называют интегральной суммой функции Интеграл и его применение с примерами решенияна отрезке Интеграл и его применение с примерами решения

Если Интеграл и его применение с примерами решения и длины отрезков разбиения стремятся к нулю, то интегральная сумма Интеграл и его применение с примерами решения стремится к некоторому числу, которое называют определенным интегралом функцииИнтеграл и его применение с примерами решения на отрезке Интеграл и его применение с примерами решения и обозначаютИнтеграл и его применение с примерами решения

Объяснение и обоснование:

Геометрический смысл и определение определенного интеграла

Как отмечалось, интегрирование — это действие, обратное дифференцированию. Оно позволяет по заданной производной функции найти (восстановить) эту функцию. Покажем, что эта операция тесно связана с задачей вычисления площади.

Например, в механике часто приходится определять координату Интеграл и его применение с примерами решения точки при прямолинейном движении, зная закон изменения ее скорости Интеграл и его применение с примерами решения (напомним, что Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Рассмотрим сначала случай, когда точка двигается с постоянной скоростью Интеграл и его применение с примерами решения Графиком скорости в системе координат Интеграл и его применение с примерами решения является прямая Интеграл и его применение с примерами решения, параллельная оси времени t (рис. 101). Если считать, что в начальный момент времени t = 0 точка находилась в начале координат, то ее путь s, пройденный за время t, вычисляется по формуле Интеграл и его применение с примерами решения. Величина Интеграл и его применение с примерами решения равна площади прямоугольника, ограниченного графиком скорости, осью абсцисс и двумя вертикальными прямыми, то есть путь точки можно вычислить как площадь под графиком скорости.

Рассмотрим случай неравномерного движения. Теперь скорость можно считать постоянной только на маленьком отрезке времени Интеграл и его применение с примерами решения. Если скорость v изменяется по закону v = v (t), то путь, пройденный за отрезок времени Интеграл и его применение с примерами решения приближенно выражается произведениемИнтеграл и его применение с примерами решения. А на графике это произведение равно площади прямоугольника со сторонами Интеграл и его применение с примерами решения (рис. 102). Точное значение пути за отрезок времени Интеграл и его применение с примерами решения равно площади криволинейной трапеции, выделенной на этом рисунке. Тогда весь путь за отрезок времени Интеграл и его применение с примерами решения может быть вычислен в результате сложения площадей таких криволинейных трапеций, то есть путь будет равняться площади заштрихованной фигуры под графиком скорости (рис. 103).

Приведем соответствующие определения и обоснования, которые позволяют сделать эти рассуждения более строгими.

Пусть на отрезке Интеграл и его применение с примерами решения оси Интеграл и его применение с примерами решения задана непрерывная функция Интеграл и его применение с примерами решения, которая принимает на этом отрезке только положительные значения. Фигуру, ограниченную графиком функции Интеграл и его применение с примерами решения отрезком Интеграл и его применение с примерами решения оси Интеграл и его применение с примерами решения и прямыми Интеграл и его применение с примерами решения, называют криволинейной трапецией (рис. 104).

Отрезок Интеграл и его применение с примерами решения называют основанием этой криволинейной трапеции. Выясним, как можно вычислить площадь криволинейной трапеции с помощью первообразной для функции f (х).

Интеграл и его применение с примерами решения

Обозначим через S (х) площадь криволинейной трапеции с основанием [а; х] (рис. 105, а), где х — любая точка отрезка Интеграл и его применение с примерами решения При х = а отрезок [а; х] вырождается в точку, и поэтому S (а) = 0, при х = b имеем S (6) = S, где S — площадь криволинейно

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решенияПокажем, что S (х) является первообразной для функции Интеграл и его применение с примерами решения, то есть чтоИнтеграл и его применение с примерами решения

По определению производной нам необходимо доказать, что Интеграл и его применение с примерами решения

при Интеграл и его применение с примерами решения Для упрощения рассуждений рассмотрим случайИнтеграл и его применение с примерами решения (случай Интеграл и его применение с примерами решения рассматривается аналогично).

Поскольку Интеграл и его применение с примерами решения, то геометрически Интеграл и его применение с примерами решения — площадь фигуры, выделенной на рисунке 105, б.

Рассмотрим теперь прямоугольник с такой же площадью AS, одной из сторон которого является отрезокИнтеграл и его применение с примерами решения (рис. 105, в). Поскольку функция f (х) непрерывна, то верхняя сторона этого прямоугольника пересекает график функции в некоторой точке с абсциссой Интеграл и его применение с примерами решения(иначе, рассмотренный прямоугольник или содержит криволинейную трапецию, выделенную на рисунке 105, в, или содержится в ней, и соответственно его площадь будет больше или меньше площади Интеграл и его применение с примерами решения). Высота прямоугольника равна f (с).

По формуле площади прямоугольника имеем Интеграл и его применение с примерами решения. ТогдаИнтеграл и его применение с примерами решения(Эта формула будет верной и при Интеграл и его применение с примерами решения

Поскольку точка с лежит междуИнтеграл и его применение с примерами решения то с стремится к х, если Интеграл и его применение с примерами решенияУчитывая непрерывность функции f (х), также получаем, что то есть S (х) является первообразной для функции Интеграл и его применение с примерами решения

Поскольку S (х) является первообразной для функции f (х), то по основному свойству первообразных любая другая первообразная F (х) для функции f (х) для всех Интеграл и его применение с примерами решения отличается от S (х) на постоянную С, то есть

Интеграл и его применение с примерами решения

Чтобы найти С, подставим х = а. Получаем F (а) = S (а) + С. Поскольку S (а) = 0, то С = F (а), и равенство (1) можно записать так:

Интеграл и его применение с примерами решения

Учитывая, что площадь криволинейной трапеции равна S (b), подставляем в формулу (2) х = b и получаем S = S (b) = F (b) — F (а). Следовательно, площадь криволинейной трапеции (рис. 104) можно вычислить по формуле

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения— произвольная первообразная для функции Интеграл и его применение с примерами решения

Таким образом, вычисление площади криволинейной трапеции сводится к нахождению первообразной F (х) для функции f (x), то есть к интегрированию функции f (х).

Разность Интеграл и его применение с примерами решения называют определенным интегралом функции Интеграл и его применение с примерами решенияна отрезкеИнтеграл и его применение с примерами решения и обозначают так: Интеграл и его применение с примерами решения

ЗаписьИнтеграл и его применение с примерами решения читается: «Интеграл от а до b эф от икс де икс». Числа а и b называются пределами интегрирования: а — нижним пределом, b — верхним. Следовательно, по приведенному определению

Интеграл и его применение с примерами решения

Формулу (4) называют формулой Ньютона—Лейбница.

Вычисляя определенный интеграл, удобно разность F (b) -F (а) обозначать следующим образом: Интеграл и его применение с примерами решения Пользуясь этим обозначением, формулу Ньютона-Лейбница можно записать в следующем виде:

Интеграл и его применение с примерами решения

Например, поскольку для функцииИнтеграл и его применение с примерами решения одной из первообразных является Интеграл и его применение с примерами решения

Отметим, что в том случае, когда для функции f (х) на отрезкеИнтеграл и его применение с примерами решения существует определенный интегралИнтеграл и его применение с примерами решения функцию f (х) называют интегрируемой на отрезке Интеграл и его применение с примерами решения

Из формул (3) и (4) получаем, что площадь криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на отрезке Интеграл и его применение с примерами решенияфункции у = f (х), отрезкомИнтеграл и его применение с примерами решения оси Ох и прямыми х = а и х = b (рис. 104), можно вычислить по формуле Интеграл и его применение с примерами решения Например, площадь криволинейной трапеции, ограниченной графиком функции у = cos х, отрезком Интеграл и его применение с примерами решения оси Ох и прямыми х = 0 и х = — (рис. 106), можно вычислить по формуле Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

(При вычислении определенного интеграла учтено, что для функции f (х) = cos х одной из первообразных является функция Интеграл и его применение с примерами решения

Замечание. В задачах из курса алгебры и начал анализа на вычисление площадей как ответ чаще всего приводится числовое значение площади. Поскольку на координатной плоскости, где изображается фигура, всегда указывается единица измерения по осям, то в этом случае мы всегда имеем и единицу измерения площади — квадрат со стороной 1. Иногда, чтобы подчеркнуть, что полученное число выражает именно площадь, ответ записывают так: Интеграл и его применение с примерами решения (кв.ед.),то есть квадратных единиц. Отметим, что так записываются только числовые ответы. Если в результате вычисления площади мы получили, например, что Интеграл и его применение с примерами решения то никаких обозначений квадратных единиц не записывается, поскольку отрезок а был измерен в каких-то линейных единицах и тогда выражениеИнтеграл и его применение с примерами решенияуже содержит информацию о тех квадратных единицах, в которых измеряется площадь в этом случае.

Свойства определенных интегралов

При формулировании определения определенного интеграла мы полагали, что Интеграл и его применение с примерами решения Удобно расширить понятие определенного интеграла и для случая а > b принять по определению, что

Интеграл и его применение с примерами решения Для случая а = b также по определению будем считать, что

Интеграл и его применение с примерами решения Отметим, что формальное применение формулы Ньютона-Лейбница к вычислению интегралов в формулах (5) и (6) дает такой же результат. Действительно, если функция F (х) является первообразной для функции f (х), то

Интеграл и его применение с примерами решения

С помощью формулы Ньютона-Лейбница легко обосновываются и другие свойства определенных интегралов, приведенные в пункте 4 таблицы 18.

Интеграл и его применение с примерами решения Если F (х) является первообразной для функции f (х), то для функции Интеграл и его применение с примерами решения первообразной будет функция Интеграл и его применение с примерами решения Тогда

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения Если F (x) является первообразной для функции f (х), a G (х) — первообразной для функции g (х), то для функции f (х) + g (х) первообразной будет функция F (х) + +G (х). Тогда

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения Если F (x) является первообразной для функции Интеграл и его применение с примерами решения то

Интеграл и его применение с примерами решения

Следовательно, если функция f (х) интегрируема на отрезке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решениято

Интеграл и его применение с примерами решения

Определение определенного интеграла через интегральные суммы

Исторически интеграл возник в связи с вычислением площадей фигур, ограниченных кривыми, в частности, в связи с вычислением площади криволинейной трапеции.

Рассмотрим криволинейную трапецию, изображенную на рисунке 107 (функция f (х) — непрерывна на отрезке Интеграл и его применение с примерами решения). На этом рисунке основание трапеции— отрезок Интеграл и его применение с примерами решения — разбито наИнтеграл и его применение с примерами решения отрезков (не обязательно равных) точками Интеграл и его применение с примерами решения (для удобства будем считать, чтоИнтеграл и его применение с примерами решения Через эти точки проведены вертикальные прямые. На первом отрезке выбрана произвольная точкаИнтеграл и его применение с примерами решения и на этом отрезке как на основании построен прямоугольник с высотой Интеграл и его применение с примерами решения Аналогично на втором отрезке выбрана произвольная точкаИнтеграл и его применение с примерами решенияи на этом отрезке f /с ^ как на основании построен прямоугольник с высотой Интеграл и его применение с примерами решения и т. д.

Площадь S заданной криволинейной трапеции приближенно равна сумме площадей построенных прямоугольников. Обозначим эту сумму через Интеграл и его применение с примерами решения длину первого отрезка черезИнтеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Следовательно, площадь S криволинейной трапеции можно приближенно вычислять по формуле (9), то есть Интеграл и его применение с примерами решения

Сумму (9) называют интегральной суммой функции f (х) на отрезке Интеграл и его применение с примерами решения При этом считают, что функция f (х) непрерывна на отрезке Интеграл и его применение с примерами решения и может принимать любые значения: положительные, отрицательные и равные нулю (а не только неотрицательные, как для случая криволинейной трапеции). Если Интеграл и его применение с примерами решения и длины отрезков, на которые разбито основание трапеции, стремятся к нулю, то интегральная сумма Интеграл и его применение с примерами решения стремится к некоторому числу, которое называют определенным интегралом функции f (х) на отрезкеИнтеграл и его применение с примерами решения и обозначаютИнтеграл и его применение с примерами решения Можно доказать, что при этом также выполняется формула Ньютона — Лейбница и все рассмотренные свойства определенного интеграла.

Замечание. Изменяя способ разбиения отрезкаИнтеграл и его применение с примерами решения на Интеграл и его применение с примерами решения частей (то есть фиксируя другие точки Интеграл и его применение с примерами решения и выбирая на каждом из полученных отрезков другие точкиИнтеграл и его применение с примерами решения мы будем получать для функции f (х) другие интегральные суммы. В курсе математического анализа доказывается, что для любой непрерывной на отрезке Интеграл и его применение с примерами решения функции f (х) независимо от способа разбиения этого отрезка и выбора точек Интеграл и его применение с примерами решения еслиИнтеграл и его применение с примерами решения и длины отрезков стремятся к нулю, то интегральные суммыИнтеграл и его применение с примерами решениястремятся к одному и тому же числу.

Определение определенного интеграла через интегральные суммы позволяет приближенно вычислять определенные интегралы по формуле (9). Но такой способ требует громоздких вычислений, и его используют в тех случаях, когда для функции f (х) не удается найти первообразную (в этих случаях приближенное вычисление определенного интеграла обычно проводят на компьютере с использованием специальных программ). Если же первообразная для функции f(x) известна, то интеграл можно вычислить точно, используя формулу Ньютона-Лейбница (см. пример в пункте 1 таблицы 19 и примеры, приведенные далее).

Примеры решения задач:

Пример №296

Вычислите Интеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решения

Ответ: 1.

Комментарий:

Поскольку для функции Интеграл и его применение с примерами решения мы знаем первообразную — это F(x) = tg х , то заданный интеграл вычисляется непосредственным применением формулы Ньютона-ЛейбницаИнтеграл и его применение с примерами решения

Пример №297

Вычислите Интеграл и его применение с примерами решения

Решение:

I способ

Интеграл и его применение с примерами решенияДля функции Интеграл и его применение с примерами решения одной из первообразных является

Интеграл и его применение с примерами решения

Комментарий:

Возможны два способа вычисления заданного интеграла.

1) Сначала найти первообразную для функции Интеграл и его применение с примерами решенияиспользуя правила вычисления первообразных и таблицу первообразных, а затем найти интеграл по формуле Ньютона-Лейбница.

2) Использовать формулу (8)

Интеграл и его применение с примерами решения

и записать заданный интеграл как алгебраическую сумму двух интегралов, каждый из которых можно непосредственно вычислить, как в задаче 1 (для первого слагаемого можно также использовать формулу (7) и вынести постоянный множитель 4 за знак интеграла).

Замечание. Заданный интеграл рассматривается на отрезке [1; 3], где х > 0. Но при х > 0 одной из первообразных для функции Интеграл и его применение с примерами решения является функция F (х) = In х. Поэтому, учитывая, что х > 0, можно, например, записать,что Интеграл и его применение с примерами решенияХотя, конечно, приведенная выше запись первообразной также является верной (поскольку при Интеграл и его применение с примерами решения

Пример №298

Вычислите площадь фигуры, ограниченной прямыми х = 1, х = 8, осью Ох и графиком функции Интеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решенияИзображая эти линии, видим, что заданная фигура — криволинейная трапеция (рис. 108).

Интеграл и его применение с примерами решения

Тогда ее площадь ровна

Интеграл и его применение с примерами решения

Комментарий:

Заданная фигура является криволинейной трапецией, и поэтому ее площадь можно вычислить по формуле Интеграл и его применение с примерами решения

Также необходимо учесть, что на заданном отрезке [1; 8] значения х > 0, и при этом условии можно записатьИнтеграл и его применение с примерами решения

Вычисление площадей и объемов с помощью определенных интегралов

1. Площадь криволинейной трапеции

Площадь криволинейной трапеции, ограниченной графиком непрерывной неотрицательной на отрезкеИнтеграл и его применение с примерами решения функции Интеграл и его применение с примерами решения осью Ох и прямыми х = а иИнтеграл и его применение с примерами решенияравна Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

2. Площадь фигуры, ограниченной графиками двух функций и прямыми х = а и Интеграл и его применение с примерами решения

Формула

Интеграл и его применение с примерами решения

Если на заданном отрезке Интеграл и его применение с примерами решения непрерывные функцииИнтеграл и его применение с примерами решения и Интеграл и его применение с примерами решенияимеют такое свойство, чтоИнтеграл и его применение с примерами решения для всех Интеграл и его применение с примерами решения тоИнтеграл и его применение с примерами решения Пример Вычислите площадь фигуры, ограниченной линиями

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения Изобразим заданные линии и абсциссы их точек пересечения. Абсциссы точек пересечения:

Интеграл и его применение с примерами решения

3. Объемы тел

Интеграл и его применение с примерами решения

Если тело помещено между двумя перпендикулярными к оси Ох плоскостями, проходящими через точки Интеграл и его применение с примерами решениягде Интеграл и его применение с примерами решения — площадь сечения тела плоскостью, которая проходит через точку Интеграл и его применение с примерами решения и перпендикулярна к оси Ох.

Интеграл и его применение с примерами решения

Если тело получено в результате вращения вокруг оси Ох криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на отрезке Интеграл и его применение с примерами решения функции у = f (х) и прямыми х = а иИнтеграл и его применение с примерами решения то Интеграл и его применение с примерами решения

Объяснение и обоснование:

Вычисление площадей фигур

Обоснование формулы площади криволинейной трапеции и примеры ее применения были приведены выше.

Интеграл и его применение с примерами решения Выясним, как можно вычислить площадь фигуры, изображенной на рисунке 109. Эта фигура ограничена сверху графиком функции Интеграл и его применение с примерами решения снизу графиком функции Интеграл и его применение с примерами решения а также вертикальными прямыми Интеграл и его применение с примерами решенияфункции Интеграл и его применение с примерами решения непрерывны и неотрицательны на отрезке Интеграл и его применение с примерами решения

Площадь S этой фигуры равна разности площадей Интеграл и его применение с примерами решениякриволинейных трапеций (Интеграл и его применение с примерами решения — площадь криволинейной трапеции Интеграл и его применение с примерами решения — площадь криволинейной трапеции Интеграл и его применение с примерами решения Но Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Следовательно,Интеграл и его применение с примерами решения Таким образом, площадь заданной фигуры можно вычислить по формуле

Интеграл и его применение с примерами решения

Эта формула будет верной и в том случае, когда заданные функции не являются неотрицательными на отрезке Интеграл и его применение с примерами решения для этого достаточно выполнения условий, что функцииИнтеграл и его применение с примерами решения непрерывны на отрезке Интеграл и его применение с примерами решения и Интеграл и его применение с примерами решения (рис. 110, а). Для обоснования справедливости формулы достаточно перенести заданную фигуру параллельно вдоль оси Оу на Интеграл и его применение с примерами решения единиц так, чтобы она разместилась над осью Ох (рис. 110, б). Такое преобразование означает, что заданные функции Интеграл и его применение с примерами решения мы заменили соответственно на функции Интеграл и его применение с примерами решения Площадь фигуры, ограниченной графиками этих функций и прямыми х = а и Интеграл и его применение с примерами решения равна площади заданной фигуры. Следовательно, искомая площадьИнтеграл и его применение с примерами решения

Например, площадь фигуры, изображенной на рисунке 111, равна Интеграл и его применение с примерами решения

Вычисление объемов тел

Задача вычисления объема тела с помощью определенного интеграла аналогична задаче нахождение площади криволинейной трапеции. Интеграл и его применение с примерами решения

Пусть задано тело объемом V, причем есть такая прямая (ось Ох на рисунке 112), что какую бы ни взяли плоскость, перпендикулярную к этой прямой, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная к оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х из отрезка Интеграл и его применение с примерами решения (см. рис. 112) поставлено в соответствие единственное число Интеграл и его применение с примерами решения — площадь сечения тела этой плоскостью. Таким образом, на отрезке Интеграл и его применение с примерами решения задана функция S (х). Если функция S непрерывна на отрезке Интеграл и его применение с примерами решения, то справедлива Интеграл и его применение с примерами решения Полное доказательство этой формулы приведено в курсе математического анализа, а мы остановимся на наглядных соображениях, которые приводят к этой формуле.

Интеграл и его применение с примерами решения Разделим отрезок Интеграл и его применение с примерами решенияна Интеграл и его применение с примерами решения отрезков одинаковой длины точками Интеграл и его применение с примерами решения

Через каждую точку Интеграл и его применение с примерами решения проведем плоскостьИнтеграл и его применение с примерами решения перпендикулярную к оси Ох. Эти плоскости разрезают данное тело на слои (рис. 113, а). Объем слоя между плоскостямиИнтеграл и его применение с примерами решения (рис. 113, б) при достаточно больших п приближенно равен площади Интеграл и его применение с примерами решения сечения, умноженной на «толщину слоя»Интеграл и его применение с примерами решения и поэтому

Интеграл и его применение с примерами решения Точность этого приближенного равенства тем выше, чем тоньше слои, на которые разрезано тело, то есть чем больше Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Поэтому Интеграл и его применение с примерами решения По определению определенного интеграла через интегральные суммы получаем, чтоИнтеграл и его применение с примерами решения Следовательно, Интеграл и его применение с примерами решения

Используем полученный результат для обоснования формулы объема тел вращения.

Интеграл и его применение с примерами решения Пусть криволинейная трапеция опирается на отрезокИнтеграл и его применение с примерами решения оси Ох и ограничена сверху графиком функции у = f (х), неотрицательной и непрерывной на отрезке Интеграл и его применение с примерами решения. Вследствие вращения этой криволинейной трапеции вокруг оси Ох образуется тело (рис. 114, а), объем которого можно найти по формуле

Интеграл и его применение с примерами решения

Действительно, каждая плоскость, которая перпендикулярна к оси Ох и пересекает отрезок Интеграл и его применение с примерами решения этой оси в точке х, дает в сечении с телом круг радиуса f (х) и площадью Интеграл и его применение с примерами решения(рис. 114, б). Отсюда по формуле (2) получаем формулу (3).Интеграл и его применение с примерами решения

Примеры решения задач:

Пример №299

Вычислите площадь фигуры, ограниченной линиями Интеграл и его применение с примерами решения иИнтеграл и его применение с примерами решения

Решение:

Интеграл и его применение с примерами решенияИзобразим заданные линии (рис. 115) и найдем абциссы точек их пересечения:

Интеграл и его применение с примерами решения

Комментарий:

Изображая заданные линии (рис. 115), видим, что искомая фигура находится между графиками двух функций. Сверху она ограничена графиком функции Интеграл и его применение с примерами решенияа снизу — графиком функции Интеграл и его применение с примерами решения Следовательно, ее площадь можно вычислить по формуле Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения(оба корня удовлетворяют уравнению (1)).Площадь заданной фигуры равна

Интеграл и его применение с примерами решения

Комментарий:

Чтобы найти пределы интегрирования, найдем абсциссы точек пересечения графиков заданных функций. Поскольку ординаты обеих кривых в точках пересечения одинаковы, то достаточно решить уравнениеИнтеграл и его применение с примерами решения

Для решения полученного иррационального уравнения можно использовать уравнения-следствия (в конце выполнить проверку) или равносильные преобразования (на ОДЗ, то есть при Интеграл и его применение с примерами решения).

Отметим также, что на полученном отрезке [-1; 0] значение Интеграл и его применение с примерами решения Задача 2 Вычислите объем тела, полученного вращением вокруг оси абсцисс фигуры, ограниченной линиями Интеграл и его применение с примерами решения Решение

Интеграл и его применение с примерами решенияНайдем абциссы точек пересечения заданных линий.

Интеграл и его применение с примерами решения

Поскольку заданная фигура — криволинейная трапеция, то объем тела вращения равен

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Комментарий:

Интеграл и его применение с примерами решения

Изобразим заданную фигуру (рис. 116) и убедимся, что она является криволинейной трапецией. В этом случае объем тела вращения можно вычислять по формуле: Интеграл и его применение с примерами решения

Чтобы найти пределы интегрирования, достаточно найти абсциссы точек пересечения заданных линий.

Как и для задач на вычисление площадей, в ответ записывают числовое значение объема, но можно подчеркнуть, что мы получили именно величину объема, и записать ответ: Интеграл и его применение с примерами решения куб. ед. (то есть кубических единиц).

Замечание. Можно было обратить внимание на то, что заданная фигура симметрична относительно осиИнтеграл и его применение с примерами решения и поэтому объем тела, полученного вращением всей фигуры вокруг оси абсцисс, будет вдвое больше объема тела, полученного вращением криволинейной трапеции, которая опирается на отрезок [0; 2].

Простейшие дифференциальные уравнения

Понятия дифференциального уравнения и его решения

До сих пор мы рассматривали уравнения, в которых неизвестными были числа. В математике и ее применениях приходится рассматривать уравнения, в которых неизвестными являются функции. Так, задача о нахождении пути s (t) по заданной скорости Интеграл и его применение с примерами решениясводится к решению уравнения s’ (t) = v (t), где v (t) — заданная функция, a s (t) — искомая функция.

Например, если v (t) = 3 — Интеграл и его применение с примерами решения то для нахождения s (t) необходимо решить уравнение s’ (t) = 3 — Интеграл и его применение с примерами решения

Это уравнение содержит производную неизвестной функции. Такие уравнения называют дифференциальными уравнениями. Решением дифференциального уравнения называется любая функция, удовлетворяющая этому уравнению (то есть функция, при подстановке которой в заданное уравнение получаем тождество).

Пример №300

Решите дифференциальное уравнение Интеграл и его применение с примерами решения

Решение:

Необходимо найти функцию у (х), производная которой равна х + 3, то есть

найти первообразную для функции х + 3. По правилам нахождения первообразных получаем Интеграл и его применение с примерами решения где С — произвольная постоянная.Интеграл и его применение с примерами решения

При решении дифференциальных уравнений следует учитывать, что решение дифференциального уравнения определяется неоднозначно, с точностью до постоянной. Такое решение называют общим решением заданного уравнения.

Обычно к дифференциальному уравнению добавляется условие, из которого эта постоянная определяется. Решение, полученное с использованием такого условия, называют частным решением заданного дифференциального уравнение.

Пример №301

Найдите решение у (х) дифференциального уравнения у’ = sin х, удовлетворяющего условию у (0) = 2.

Решение:

Интеграл и его применение с примерами решенияВсе решения этого уравнения записываются формулой у (х) = -cos х + С. Из условия у (0) = 2 находим -cos 0 + С = 2. Тогда С = 3. Ответ: у = -cos х + 3. Интеграл и его применение с примерами решения

Решения многих физических, биологических, технических и других практических задач сводится к решению дифференциального уравнения

Интеграл и его применение с примерами решения

где k — заданное число. Решениями этого уравнения являются функции

Интеграл и его применение с примерами решения

где С — постоянная, которая определяется условиями конкретной задачи.

Например, в опытах установлено, что скоростьИнтеграл и его применение с примерами решения размножения бактерий (для которых достаточно пищи) связана с массойИнтеграл и его применение с примерами решения бактерий в момент времени t уравнениемИнтеграл и его применение с примерами решения

гдеИнтеграл и его применение с примерами решения — положительное число, которое зависит от вида бактерий и внешних условий. Решениями этого уравнение являются функцииИнтеграл и его применение с примерами решения

Постоянную С можно найти, например, при условии, что в момент t = 0 масса Интеграл и его применение с примерами решения бактерий известна. Тогда Интеграл и его применение с примерами решения и, следовательно,Интеграл и его применение с примерами решения

Другим примером применения уравнения (1) является задача о радиоактивном распаде вещества. ЕслиИнтеграл и его применение с примерами решения — скорость радиоактивного распада в момент времени t, то Интеграл и его применение с примерами решения — постоянная, которая зависит от радиоактивности вещества. Решениями этого уравнения являются функции

Интеграл и его применение с примерами решения

Если в момент времени t масса вещества равна Интеграл и его применение с примерами решения и тогда

Интеграл и его применение с примерами решения

Отметим, как на практике скорость распада радиоактивного вещества характеризуется периодом полураспада, то есть промежутком времени, в течение которого распадается половина исходного вещества.

Пусть Т — период полураспада, тогда из равенства (3) при t = Т получаем

Интеграл и его применение с примерами решения В этом случае формула (3) записывается

так: Интеграл и его применение с примерами решения

Гармонические колебания

На практике часто встречаются процессы, которые периодически повторяются, например колебательные движения маятника, струны, пружины и т. п.; процессы, связанные с переменным электрическим током, магнитным полем и т. д. Решение многих таких задач сводится к решению дифференциального уравнения

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения — заданное положительное число, Интеграл и его применение с примерами решения

Решением уравнения (4) является функция

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения — постоянные, которые определяются условиями конкретной задачи. Уравнение (4) называют дифференциальным уравнением гармонических колебаний.

Например, если у (t) — отклонение точки струны, которая свободно колеблется, от положения равновесия в момент времени t, то

Интеграл и его применение с примерами решениягде А — амплитуда колебания, Интеграл и его применение с примерами решения— угловая частота,Интеграл и его применение с примерами решения — начальная фаза колебания.

Графиком гармонического колебания является синусоида.

Примеры применения первообразной и интеграла к решению практических задач

Пример №302

Цилиндрический бак, высота которого равна 4,5 м, а радиус основания равен 1 м, заполнен водой. За какое время вода вытечет из бака через круглое отверстие в дне, если радиус отверстия равен 0,05 м?

Решение:

Интеграл и его применение с примерами решенияОбозначим высоту бака Н, радиус его основания R, радиус отверстияИнтеграл и его применение с примерами решения (длины измеряем в метрах, время — в секундах) (рис. 117).

Интеграл и его применение с примерами решения

Скорость вытекания жидкости v зависит от высоты столба жидкости х и вычисляется по формуле Бернулли

Интеграл и его применение с примерами решения

где Интеграл и его применение с примерами решения — коэффициент, который зависит от свойства жидкости; для воды Интеграл и его применение с примерами решенияПоэтому при уменьшении уровня воды в баке скорость вытекания уменьшается (а не остается постоянной).

Пусть t (х) — время, за которое из бака высоты х с основанием радиуса R вытекает вода через отверстие радиуса Интеграл и его применение с примерами решения (рис. 117).

Найдем приближенно отношениеИнтеграл и его применение с примерами решения считая, что за время Интеграл и его применение с примерами решения Интеграл и его применение с примерами решенияскорость вытекания воды постоянна и выражается формулой (6).

За время Интеграл и его применение с примерами решения объем воды, которая вытекла из бака, равен объему цилиндра высоты Интеграл и его применение с примерами решения с основанием радиуса R (см. рис. 117), то есть равен Интеграл и его применение с примерами решения С другой стороны, этот объем равен объему цилиндра, основанием которого служит отверстие в дне бака, а высота равна произведению скорости вытекания о на время Интеграл и его применение с примерами решения, то есть объем равен Интеграл и его применение с примерами решения Следовательно,Интеграл и его применение с примерами решения Учитывая формулу (6), получаем

Интеграл и его применение с примерами решения

Тогда при Интеграл и его применение с примерами решенияполучаем равенство

Интеграл и его применение с примерами решения

Если x = 0 (в баке нет воды), то t (0) = 0, отсюда С = 0. При х = Н находим искомое времяИнтеграл и его применение с примерами решения

Используя данные задачи, получаем

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Пример №303

Вычислите работу силы F при сжатии пружины на 0,06 м, если для ее сжатия на 0,01 м необходима сила 5 Н.

Решение:

Интеграл и его применение с примерами решенияПо закону Гука, сила F пропорциональна растяжению или сжатию пружины, то есть Интеграл и его применение с примерами решениягде х — величина растяжения или сжатия (в метрах), Интеграл и его применение с примерами решения — постоянная. По условию задачи находим Интеграл и его применение с примерами решения. Поскольку при х = 0,01 м

силаИнтеграл и его применение с примерами решения.

Следовательно, Интеграл и его применение с примерами решения

Найдем формулу для вычисления работы при перемещении тела (оно рассматривается как материальная точка), которое двигается под действием переменной силы F (х), направленной вдоль оси Ох. Пусть тело переместилось из точки х = а в точкуИнтеграл и его применение с примерами решения

Обозначим через А (х) работу, выполненную при перемещении тела из точки а в точку х. Дадим х приращениеИнтеграл и его применение с примерами решения Тогда Интеграл и его применение с примерами решенияработа, которая выполняется силой F (х) при перемещении тела из точки х в точкуИнтеграл и его применение с примерами решениябудем считать постоянной и равной F (х). Поэтому Интеграл и его применение с примерами решения

Тогда при Интеграл и его применение с примерами решения Последнее равенство означает, что А (х) является первообразной для функции F (х).

Учитывая, что А (а) = 0, по формуле Ньютона-Лейбница получаем

Интеграл и его применение с примерами решения

Таким образом, работа переменной силы F (х) при перемещении тела из точки а в точку Интеграл и его применение с примерами решения равна Интеграл и его применение с примерами решения

Используя данные задачи, получаем

Интеграл и его применение с примерами решения

Сведения из истории:

Интегральное исчисление и само понятие интеграла возникло из необходимости вычисления площадей плоских фигур и объемов тел. Идеи интегрального исчисления берут свое начало в работах древних математиков. В частности, важное значение для развития интегрального исчисления имел метод исчерпывания, предложенный Евдоксом Книдским (ок. 408 — ок. 355 гг. до н. э.) и усовершенствованный А р х им е д о м. По этому методу для вычисления площади плоской фигуры вокруг нее описывается ступенчатая фигура и в нее вписывается ступенчатая фигура. Увеличивая количество сторон полученных многоугольников, находят предел, к которому стремятся площади ступенчатых фигур (именно так в курсе геометрии вы доказывали формулу площади круга). Архимед предвосхитил многие идеи интегрального исчисления. Но прошло более полутора тысяч лет, прежде чем эти идеи были доведены до уровня исчисления. Отметим, что математики XVII в., получившие множество новых результатов, учились на работах Архимеда. Именно в XVII в. было сделано много открытий, касающихся интегрального исчисления, введены основные понятия и термины.

Символ Интеграл и его применение с примерами решения ввел Лейбниц (1675 г.). Этот знак является измененной латинской буквой S (первая буква слова summa). Само слово интеграл ввел Я. Бернулли (1690 г.). Другие известные вам термины, касающие интегрального исчисления, появились значительно позже. Название первообразная для функции, которое применяется сейчас, заменило более раннее «примитивная функция», введенное Лагранжем (1797 г.). Латинское слово primitivus переводится как «начальный»: функция Интеграл и его применение с примерами решения — начальная (или первообразная) для функции f (х), которая образуется из F (х) дифференцированием. Понятие неопределенного интеграла и его обозначение ввел Лейбниц, а обозначение определенного интегралаИнтеграл и его применение с примерами решения ввел К. Ф у р ь е (1768—1830).

Следует отметить, что при всей значимости результатов, полученных математиками XVII в., интегрального исчисления еще не было. Необходимо было выделить общие идеи, на которых основывается решение многих отдельных задач, а также установить связь операций дифференцирования и интегрирования. Это сделали Ньютон и Лейбниц, которые независимо друг от друга открыли факт, известный нам под названием формулы Ньютона-Лейбница. Тем самым окончательно оформился общий метод. Необходимо было еще научиться находить первообразные для многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисления созданы. Методы интегрального исчисления активно развивались в следующем столетии (прежде всего следует назвать имена Л.Эйлера, который закончил систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитие интегрального исчисления значительный вклад внесли российские математики украинского происхождения М. В. Остроградский (1801 — 1862), В.Я.Буняковский (1804-1889).

—11клас

Применение интеграла

С помощью интегралов можно определять не только площади фигур, но и многие другие величины, приближённые значения которых выражаются интегральными суммами, т.е. суммами вида Интеграл и его применение с примерами решения Такие суммы принято обозначать Интеграл и его применение с примерами решения Подграфик функции Интеграл и его применение с примерами решения — математическая модель каждой такой величины, поэтому вычислять границы этих сумм можно по формуле Ньютона—Лейбница. Рассмотрим четыре примера таких задач.

Интеграл и его применение с примерами решения

 Объём тела вращения

Пусть тело образовано вращением подграфика функции Интеграл и его применение с примерами решения вокруг оси Интеграл и его применение с примерами решения Каждое тело вращения можно представить составленным из очень большого количества круглых пластинок, цилиндров с малыми высотами Интеграл и его применение с примерами решения (рис. 127). Радиус каждого такого цилиндра зависит от Интеграл и его применение с примерами решения и равен Интеграл и его применение с примерами решения Объём одного цилиндрика, соответствующего переменной Интеграл и его применение с примерами решения равен Интеграл и его применение с примерами решения Всему телу вращения соответствует интегральная сумма

Интеграл и его применение с примерами решения

Следовательно, его объём

Интеграл и его применение с примерами решения

Пример №594

Пусть надо найти вместимость сосуда высотой 4 дм, осевое сечение которого — график функции Интеграл и его применение с примерами решения (рис. 128). Для неотрицательных значений Интеграл и его применение с примерами решения график такой функции симметричен относительно биссектрисы первого координатного угла графику функции Интеграл и его применение с примерами решения Поэтому искомый объём сосуда равен объёму тела, образованного вращением подграфика функции Интеграл и его применение с примерами решения на Интеграл и его применение с примерами решения вокруг оси Интеграл и его применение с примерами решения (рис. 129). Итак, искомый объём

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

С помощью определённых интегралов можно вычислять не только объёмы тел вращения, но и многих других тел: пирамид, усечённых пирамид и т. д.

Работа переменной силы

Если в результате действия постоянной силы Интеграл и его применение с примерами решения тело перемещается в направлении её действия на расстояние Интеграл и его применение с примерами решения то при этом выполняется работа Интеграл и его применение с примерами решения А если на тело действует сила не постоянная, а переменная?

Например, чтобы растянуть пружину на 1 см, на 2 см и т. д., надо прикладывать всё большую и большую силу. Согласно закона Гука, сила Интеграл и его применение с примерами решения которую необходимо приложить, чтобы растянуть пружину на расстояние Интеграл и его применение с примерами решенияпропорциональна этому расстоянию (для допустимых значений Интеграл и его применение с примерами решенияКоэффициент Интеграл и его применение с примерами решения различен для разных пружин. Например, если для растяжения пружины на 1 м надо приложить силу 50 Н, то Интеграл и его применение с примерами решения Какую выполняют работу, растягивая такую пружину на расстояние Интеграл и его применение с примерами решения

Поделим отрезок Интеграл и его применение с примерами решения на который растягивается пружина, точками Интеграл и его применение с примерами решения на Интеграл и его применение с примерами решения равных частей (рис. 130). Пусть Интеграл и его применение с примерами решения — длина каждой части. Чтобы растянуть пружину на

Интеграл и его применение с примерами решения

расстояние Интеграл и его применение с примерами решения т. е. переместить её конец из точки Интеграл и его применение с примерами решения надо приложить силу Интеграл и его применение с примерами решения При этом выполненная работа приближённо равна Интеграл и его применение с примерами решения Чтобы растянуть пружину на расстояние Интеграл и его применение с примерами решения надо приложить силу Интеграл и его применение с примерами решения и выполнить работу, которая приближённо равна Интеграл и его применение с примерами решения и т. д. Следовательно, чтобы растянуть пружину на расстояние Интеграл и его применение с примерами решения надо выполнить работу, приближенное значение которой равно интегральной сумме

Интеграл и его применение с примерами решения

Значение Интеграл и его применение с примерами решения с увеличением Интеграл и его применение с примерами решения (и соответствующим уменьшением Интеграл и его применение с примерами решения всё меньше отличается от точного значения искомой работы Интеграл и его применение с примерами решения т. е. если  Интеграл и его применение с примерами решения Следовательно,

Интеграл и его применение с примерами решения

Если Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

Сила давления жидкости

Пусть разница уровней воды по обе стороны от ворот шлюза равна 8 м. Ворота имеют прямоугольную форму, их ширина Интеграл и его применение с примерами решения (рис. 131). Чему равна сила давления воды на ворота?

Известно, что с увеличением глубины давление воды увеличивается. Оно выражается формулой Интеграл и его применение с примерами решения — глубина в метрах, Интеграл и его применение с примерами решения — давление воды в килопаскалях. Пусть Интеграл и его применение с примерами решения — разница уровней воды.

Разобьём этот отрезок точками Интеграл и его применение с примерами решения на Интеграл и его применение с примерами решения равных частей и через них мысленно проведём горизонтальные прямые, которые разделят ворота шлюза на Интеграл и его применение с примерами решения равных полос. Если Интеграл и его применение с примерами решения, то площадь каждой полосы равна Интеграл и его применение с примерами решения  Давление на первую, вторую, третью и т. д. полосы приближённо равно соответственно Интеграл и его применение с примерами решения Поэтому общая сила давления воды на ворота шлюза приближённо равна сумме

Интеграл и его применение с примерами решения

Полученное произведение ширины ворот Интеграл и его применение с примерами решения на интегральную сумму — приближённое значение силы давления воды на ворота. Точное её значение    

Интеграл и его применение с примерами решения

Экономическое содержание интеграла

Пусть функция Интеграл и его применение с примерами решения описывает изменение производительности некоторого производства в течение определённого времени. Найдём объём продукции Интеграл и его применение с примерами решения произведённой за промежуток времени Интеграл и его применение с примерами решения

Отметим, что когда производительность не изменяется в течение времени Интеграл и его применение с примерами решения — постоянная функция), то объём продукции Интеграл и его применение с примерами решения произведённой за некоторый промежуток времени Интеграл и его применение с примерами решения задаётся формулой Интеграл и его применение с примерами решения В общем случае справедливо приближённое равенство Интеграл и его применение с примерами решения Оно тем точнее, чем меньше Интеграл и его применение с примерами решения

Разобьём отрезок Интеграл и его применение с примерами решения равных частей точками Интеграл и его применение с примерами решения Для объёма продукции Интеграл и его применение с примерами решения произведённой за промежуток времени Интеграл и его применение с примерами решения имеем Интеграл и его применение с примерами решения 

Следовательно,

Интеграл и его применение с примерами решения

Если Интеграл и его применение с примерами решения то каждое из использованных приближённых paвенств становится более точным, следовательно Интеграл и его применение с примерами решения

Если Интеграл и его применение с примерами решения — производительность труда в момент времени Интеграл и его применение с примерами решения то объём произведённой продукции за промежуток Интеграл и его применение с примерами решения можно вычислить по формуле Интеграл и его применение с примерами решения

Известный вам определённый интеграл учёные называют интегралом Римана, он применяется к ограниченным функциям и конечным интервалам интегрирования. Но решение многих важных задач нуждалось в нахождении границ бесконечных сумм, определённых широким классом функций и на бесконечных промежутках. Впоследствии были введены такие интегралы: интегралы Лебега, Стилтьеса, интегралы кратные, криволинейные и т. д. Их рассматривают в высших учебных заведениях.

Пример №595

Керосин содержится в цилиндрическом резервуаре (рис. 132), осевое сечение которого — квадрат со стороной 2 м. Какую работу нужно выполнить, чтобы откачать весь керосин из резервуара через отверстие в его верхнем основании, если плотность керосина равна Интеграл и его применение с примерами решения

Решение:

Решим сначала задачу в общем виде. Разобьём высоту цилиндра Интеграл и его применение с примерами решения равных частей точками Интеграл и его применение с примерами решенияИнтеграл и его применение с примерами решения Через каждую точку деления параллельно основанию цилиндра проведём плоскость. Объём каждого из образовавшихся маленьких цилиндров равен Интеграл и его применение с примерами решения а масса — Интеграл и его применение с примерами решения где Интеграл и его применение с примерами решения — плотность жидкости в резервуаре, Интеграл и его применение с примерами решения— радиус основания цилиндра, а Интеграл и его применение с примерами решения

Чтобы тело массой Интеграл и его применение с примерами решения поднять на высоту Интеграл и его применение с примерами решения нужно выполнить работу Интеграл и его применение с примерами решения В этих условиях работа по откачке жидкости, содержащейся в Интеграл и его применение с примерами решения цилиндре, выражается формулой Интеграл и его применение с примерами решения а общая работа (по откачке жидкости из всего резервуара) —

Интеграл и его применение с примерами решения

Интеграл и его применение с примерами решения

По условию задачи Интеграл и его применение с примерами решения поэтому

Интеграл и его применение с примерами решения
Ответ. Интеграл и его применение с примерами решения

Пример №596

Производительность труда бригады рабочих в течение смены приближённо определяется формулой Интеграл и его применение с примерами решения Интеграл и его применение с примерами решения — рабочее время в часах. Определите объём продукции, выпущенной за 5 рабочих часов.

Решение:

Объём выпуска продукции в течение смены является первообразной от функции, выражающей производительность труда. Поэтому

Интеграл и его применение с примерами решения

Ответ. Интеграл и его применение с примерами решения единиц.

  • Первообразная и интегра
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля
  • Уравнение
  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Геометрические задачи и методы их решения
  • Прямые и плоскости в пространстве

Содержание:

  1. Определённый интеграл
  2. Геометрическое содержание определённого интеграла
  3. Основные свойства определённого интеграла
  4. Непосредственное вычисление определённого интеграла
  5. Вычисление определённого интеграла методом подстановки
  6. Вычисления определённого интеграла частями
  7. Приближённые методы вычисления определённых интегралов
  8. Практическое применение определённого интеграла
  9. Вычисление площадей плоских фигур
  10. Объём тела вращения
  11. Путь, пройденный точкой
  12. Сила давления жидкости
  13. Несобственные интегралы
  14. История определенного интеграла
  15. Определенный интеграл в математике
  16. Геометрический смысл интеграла
  17. Понятие определенного интеграла
  18. Задачи, приводящие к понятию определенного интеграла
  19. Задача о нахождении площади криволинейной трапеции
  20. Задача об определении пройденного пути материальной точки
  21. Задача о нахождении объема продукции
  22. Основные свойства определенного интеграла
  23. Связь между определенным и неопределенным интегралами
  24. Формула Ньютона-Лейбница
  25. Методы вычисления определенного интеграла
  26. Непосредственное определенное интегрирование
  27. Вычисление интеграла методом подстановки
  28. Интегрирования по частям в определенном интеграле
  29. Длина дуги плоской кривой
  30. Вычисление площади геометрической фигуры
  31. Вычисление объемов тел по известным площадям поперечных сечений
  32. Вычисление объема тела вращения
  33. Приближенное вычисление определенных интегралов
  34. Формула прямоугольников
  35. Формула трапеций
  36. Формула Симпсона

Определённый интеграл

Определенный интеграл – это число, а именно величина площади криволинейной трапеции. Неопределенный интеграл – это функция (точнее, семейство функций), которая является первообразной для интегрируемой функции.

Понятие определённого интеграла:

Пусть функция f(х) определена на промежутке Определенный интеграл Считаем для удобства, что функция f(х) на указанном промежутке неотъемлемая и Определенный интеграл Разобьём этот отрезок на n частей точками Определенный интеграл На каждом из отрезков Определенный интеграл возьмём произвольную точку Определенный интеграл и вычислим сумму:

Определенный интеграл

где Определенный интеграл Эта сумма называется интегральной суммой функции f(х) на отрезке Определенный интеграл

Определенный интеграл

Геометрически (рис. 1) каждое слагаемое интегральной суммы равно площади прямоугольника с основанием Определенный интеграл и высотой Определенный интеграл, а вся сумма равна площади фигуры, которую получили соединением всех указанных выше прямоугольников.

Очевидно, при всех возможных разбиениях отрезка Определенный интеграл на части получим разные интегральные суммы, а значит и разные ступенчатые фигуры.

Будем увеличивать число точек разбиения так, чтобы длина наибольшего отрезка  Определенный интеграл стремилась к нулю. Во многих случаях при таком разбиении интегральная сумма будет стремиться к некоторому конечному пределу, независимым ни от способа, которым выбираются точки деления Определенный интеграл ни от того, как выбираются промежуточные точкиОпределенный интеграл

Это предел и называют определённым интегралом для функции f(х) на отрезке Определенный интеграл

Определённым интегралом для функции f(х) на отрезке Определенный интеграл называется предел, к которому стремится интегральная сумма при стремлении к нулю длины большего частичного промежутка. Он обозначается Определенный интеграл и читается «интеграл от Определенный интеграл до b от функции f(х) по dx», или сокращённо «интеграл от Определенный интеграл до b от f(х)dx».

По определению Определенный интеграл

Число Определенный интеграл называется нижней границей интегрирования; число b — верхней границей; отрезок Определенный интеграл — отрезком интегрирования.

Отметим, что любая непрерывная на промежутке Определенный интеграл функция f(х) имеет определённый интеграл на этом отрезке.

Геометрическое содержание определённого интеграла

Если интегрированная на отрезке Определенный интеграл функция f(х) неотъемлемая, то определённый интеграл Определенный интеграл численно равен площади S криволинейной трапеции Определенный интегралABb (рис. 1).

Уточним, что криволинейную трапецией называют фигуру, ограниченную графиком непрерывной функции у=f(х), где Определенный интеграл, прямыми х=Определенный интеграл, х=b и осью ОХ.

Следовательно, геометрическое содержание определённого интеграла — это площадь криволинейной трапеции.

Рассмотрим криволинейную трапецию CHKD (см. рис. 2), в которой абсцисса точки С равна х, а точки Определенный интеграл. График функции у=f(х) пересекает ось OY в точке А. Тогда площадь криволинейной трапеции CHKD равна разности площади криволинейных трапеций OAKD и OAHC.

Определенный интеграл

Поскольку площадь криволинейной трапеции ОАНС зависит от х, то её можно изобразить символом S(х). Аналогично, площадь криволинейной трапеции CHKD является функцией от Определенный интеграл и её можно обозначить Определенный интеграл. Поэтому площадь криволинейной трапеции CHKD равна разности Определенный интеграл и S(х) и обозначается символом Определенный интеграл

Построим два прямоугольника CHED и CMKD. Площадь первого равна Определенный интегралПоскольку площадь криволинейной трапеции CHKD не меньшая площадь прямоугольника  CHED и не большая площади прямоугольника CMKD, то можно записать неравенство:

Определенный интеграл

Разделим обе части этого неравенства на Определенный интеграл и найдём пределы выражений при Определенный интеграл

Определенный интеграл

Вспомним, что Определенный интеграл и учитывая непрерывность функции f(х), 

Определенный интеграл

получим:

Определенный интеграл

отсюда

Определенный интеграл,

то есть производная площади криволинейной трапеции равна функции, которая задаёт верхнюю границу трапеции.

Таким образом, площадь криволинейной трапеции является одной из первичных функций, которая задаёт верхнюю границу трапеции, и может быть вычислена с помощью интегрирования.

Определенный интеграл

Последнее равенство верно для всех х с промежутка Определенный интеграл. Подставим вместо х число Определенный интеграл. Получим Определенный интеграл. Но S(Определенный интеграл)=0, ведь криволинейная трапеция преобразуется в отрезок, поэтому Определенный интеграл Таким образом,

Определенный интеграл

При х=b получим выражение для вычисления площади криволинейной трапеции

Определенный интеграл

Полученное выражение для вычисления S является приростом первичной F(х) на Определенный интеграл. Поскольку первичные отличаются только на постоянную, то очевидно, что все они будут иметь одинаковый прирост на промежутке Определенный интеграл. Отсюда выходит ещё одно определение определённого интеграла:

определённым интегралом называют прирост произвольной первичной при изменении аргумента от Определенный интеграл до b.

Данное определение записывают в виде формулы Ньютона-Лейбница:

 Определенный интеграл

где F(х) — первичная для функции f(х).

Основные свойства определённого интеграла

Все ниже приведённые свойства сформулированы в предположении, что данные функции интегрированы на определённых промежутках.

1. Определённый интеграл с одинаковыми границами интегрирования равен нулю:

Определенный интеграл

2. При перестановке границ интегрирования определённый интеграл меняет знак на противоположный:

Определенный интеграл

3. Отрезок интегрирования можно разбивать на части:

Определенный интегралгде Определенный интеграл

4. Постоянный множитель можно вынести за знак определённого интеграла:

Определенный интеграл

5. Определённый интеграл от алгебраической суммы конечного числа функции равен алгебраической сумме определённых интегралов от функции, сто доказываются:

Определенный интеграл

Доказательство свойств базируется на формуле ньютона-Лейбница. Как пример, докажем свойство 3:

Определенный интегралОпределенный интеграл

что и требовалось доказать.

Данное свойство легко иллюстрировать графически (рис. 3).

Определенный интеграл

Определенный интеграл

илиОпределенный интеграл

На рис. 3 легко увидеть справедливость утверждения теоремы о среднем.

Теорема. Если функция f(х) непрерывна на промежутке Определенный интеграл, то существует точка с которая принадлежит данному промежутку, такая, что

Определенный интеграл

То есть, площадь криволинейной трапеции Определенный интеграл равна площади прямоугольника со сторонами f(с) и (b — Определенный интеграл).

Непосредственное вычисление определённого интеграла

Для вычисления определённого интеграла при условии существования первичной пользоваться формулой Ньютона-Лейбница:

Определенный интеграл

По этой формуле виден порядок вычисления определённого интеграла:

1) найти неопределённый интеграл от данной функции;

2) в полученную первичную подставить на место аргумента сначала в верхнюю, а потом нижнюю границу интеграла;

3) найти прирост первично, то есть вычислить интеграл.

Пример 1: Вычислить интеграл:

Определенный интеграл

Решение: Использовав указанные правила, вычислим данный определённый интеграл:

Определенный интеграл

Ответ: Определенный интеграл

Пример: Вычислить интеграл:

Определенный интеграл

Решение: Используем определение степени с дробным отрицательным показателем и вычислить определённый интеграл:

Определенный интеграл

Ответ: Определенный интеграл

Пример 3: Вычислить интеграл:

Определенный интеграл

Решение: Интеграл от разности функций заменим разностью интегралов от каждой функции.

Определенный интеграл

Ответ: Определенный интеграл

Пример 4: Вычислить интеграл:

Определенный интеграл

Решение: Используем определения степени с дробным показателем, правило деления суммы на число и вычислить определённый интеграл от суммы:

Определенный интеграл

Ответ: Определенный интеграл

Вычисление определённого интеграла методом подстановки

Вычисление определённого интеграла методом подстановки выполняется в такой последовательности:

1) ввести новую переменную;

2) найти дифференциал новой переменной;

3) найти новые границы определённого интеграла;

4) всё подынтегральное выражение выразить через новую переменную;

5) вычислить полученный интеграл.

Пример 5. Вычислить интеграл: Определенный интеграл

Решение: Сделаем замену Определенный интеграл тогда Определенный интеграл

Вычислим границы интегрирования для переменной t.

При х=0 получаем tн=8-0=8, при х=7 получим tb=8-7=1.

Выразим подынтегральное выражение через t и dt и перейдём к новым границам, получим:

Определенный интеграл

Пример 6. Вычислить интеграл: Определенный интеграл

Решение: Будем считать, что х3+2=t, тогда Определенный интеграл. Определим границу интегрирования для переменной t. При х=1, получим Определенный интеграл при х=2 получим Определенный интеграл

Выразим подынтегральное выражение через t и dt, затем перейдём к новым пределам, получим:

Определенный интеграл

Ответ: Определенный интеграл

Пример 7. Вычислить интеграл: Определенный интеграл

Решение: Пусть Определенный интеграл тогда Определенный интеграл

Вычислим границы интегрирования для переменной t:

Определенный интеграл

Выразим подынтегральное выражение через t и dt, и перейдём к новым пределам, получим:

Определенный интеграл

Ответ: Определенный интеграл

Пример 8. Вычислить интеграл: Определенный интеграл

Решение: Сначала преобразуем подынтегральное выражение:

Определенный интеграл

Вычислим интеграл от разности функций, заменив его разностью определённых интегралов от каждой функции:

Определенный интеграл

Ответ: Определенный интеграл

Вычисления определённого интеграла частями

Если функции Определенный интеграл и их производные Определенный интеграл непрерывны на промежутке Определенный интеграл, то формула интегрирования для определённого интеграла имеет вид:

Определенный интеграл.

Пример 9. Вычислить интеграл: Определенный интеграл

Решение:

Определенный интеграл

Ответ:Определенный интеграл

Пример 10. Вычислить интеграл: Определенный интеграл

Решение:

Определенный интеграл

Определенный интеграл

Ответ:Определенный интеграл

Приближённые методы вычисления определённых интегралов

В тех случаях, когда вычислить определённый интеграл по формуле Ньютона-Лейбница невозможно или сложно, используют методы приближённого интегрирования. Все они основываются на простых геометрических построениях. Очевидно, что при достаточно малом отрезке Определенный интеграл площадь S криволинейной трапеции приближённо равна площади прямоугольника («левого» прямоугольника рис. 4а, и «правого» прямоугольника рис. 4б), трапеции (рис. 5) или параболы (рис. 6).

Определенный интеграл

Запишем следующие приближённые равенства:

Определенный интеграл

Определенный интеграл

Чтобы добиться большей точности при нахождении площади S, промежуток от Определенный интеграл разбивают на n равных частей (рис. 7) (при приближении параболами промежуток разбивают на 2n частей).

Определенный интеграл

Если для каждой из маленьких дуг использовать предыдущие приближения, то для всей площади S получим приближённое значение представленное в виде суммы площадей криволинейных трапеций:

Определенный интеграл

Первые две формулы носят названия формул «левых» и «правых» прямоугольников соответственно, третья — формулы трапеции, а последняя — формулы Симпсона.

Пример 11. Вычислить по формулам прямоугольников и трапеций Определенный интеграл при n=10.

Решение: Разделим отрезок [0; 1] на (n=10) заданное количество частей. Тогда составим таблицу значений подынтегральной функции в точках разбиения.

Определенный интеграл

По формуле «левых» прямоугольников имеем:

Определенный интеграл

По формуле «правых» прямоугольников имеем:

Определенный интеграл

По формуле трапеции получим:

Определенный интеграл

Для достижения большей точности число разбиений отрезка необходимо увеличить, например взять n=20.

Практическое применение определённого интеграла

С помощью определённого интеграла можно решать задачи физики, механики и т. д., которые тяжело или невозможно решить методами элементарной математики. Так, понятия определённого интервала используют при решении задач на вычисление площади фигур, работы переменной силы, давления на вертикальную поверхность, пути, пройденного телом и ряда других. Рассмотрим некоторые из них.

Вычисление площадей плоских фигур

Если фигура Ф является криволинейной трапецией, то её площадь Sф согласно геометрическому содержанию определённого интеграла равна:

Определенный интеграл

Если фигура Ф  не является криволинейной трапецией, то вычисления её площади сводится к одному из следующих случаев:

а) кривая у=f(х)<0 на Определенный интеграл,

Определенный интеграл

в этом случаи площадь можно вычислить по формуле:

Определенный интеграл

б) если f(х)= Определенный интеграл

Определенный интеграл

в этом случаи для нахождения площади фигуры находят точку с, как абсциссу точки перегиба графиков функций Определенный интеграл а площадь вычисляют по формуле:

 Определенный интеграл

в) если фигура ограничена двумя кривыми у=f1(х) и у=f2(х), (Определенный интегралОпределенный интеграл),

Определенный интеграл

в этом случаи площадь Sф находят по формуле:

Определенный интеграл

Пример 12. Вычислить площадь фигуры, ограниченную гиперболой ху=1, осью ОХ и прямыми х=1; х=е (рис. 11).

Определенный интеграл

Решение: Использовав формулу вычисления площади криволинейной трапеции, получаем:

Определенный интеграл

Ответ: S=1 кв. ед.

Пример 13. Вычислить площадь фигуры ограниченной линиями у=х2 и у2=х (рис. 12).

Определенный интеграл

Решение: найдём пределы интегрирования, то есть абсциссы точек перегиба графиков функций у=х2 и у2=х. Для этого решим систему:

Определенный интеграл

Вычисление площади фигуры сводится к случаю в) Определенный интеграл поэтому

Определенный интеграл

Ответ: Sф = 1/3 кв. ед.

Пример 14. Вычислить площадь фигуры ограниченной параболами у=4-х2; у=х2-2х (рис. 13).

Определенный интеграл

Решение: Найдём границы интегрирования, то есть абсциссы точек перегиба графиков функций у=4-хи у=х2-2х. Для этого решим систему:

Определенный интеграл

Искомую площадь вычисляем по формуле

Определенный интеграл

Ответ: S=9 кв. ед.

Объём тела вращения

Объём тела, образованного вращением вокруг оси ОХ криволинейной трапеции Определенный интеграл, ограниченной непрерывной кривой у=f(х), (где Определенный интеграл),  отрезком Определенный интеграл оси ОХ и отрезками прямых Определенный интеграл и Определенный интеграл (рис. 14), вычисляется по формуле:

Определенный интеграл

Пример 15. Вычислить объём шара радиусом R (рис. 15).

Решение: Шар образован вращением вокруг оси ОХ круга, ограниченного кругом х22=R2 с центром в начале координат и радиусом R.

Определенный интеграл

Учитывая симметрию круга относительно оси ординат, сначала найдём половину искомого объёма:

Определенный интеграл

Ответ: Определенный интеграл (куб. ед.).

Путь, пройденный точкой

Если точка движется прямолинейно и её скорость Определенный интеграл является известной функцией времени, то путь, который прошла точка за промежуток времени Определенный интеграл, вычисляется по формуле:

Определенный интеграл

Пример 16. Тело движется прямолинейно со скоростью Определенный интеграл Найти путь, пройденный телом за 10 с.

Решение: Используя формулу находим:

Определенный интеграл.

Ответ: S = 250 (м).

Пример 17. Скорость тела, которое движется прямолинейно равна Определенный интеграл Определенный интеграл Вычислить путь, который прошло тело от начала движения до остановки.

Решение: В момент остановки скорость тела равна нулю, то есть

Определенный интеграл

Следовательно, тело остановится через 4 с.

Путь, который прошло тело за это время, вычисляем по формуле:

Определенный интеграл

Ответ: Определенный интеграл

Работа силы.

Если переменная силы F=F(x) действует в направлении оси ОХ, то работа силы на отрезке Определенный интеграл вычисляется по формуле:

Определенный интеграл

Пример 18. Вычислить работу силы, которая необходима при сжимании пружины на 0,08 м., если для сжимания её на 1 см., необходима сила 10Н.

Решение: Согласно закона Гука, сила F, которая растягивает или сжимает пружину на х метров, равна F=kх, где k — коэффициент пропорциональности.

Следовательно, 10=k*0.01, то есть k=1000, отсюда F=kx=1000x.

Искомую работу находим по формуле:

Определенный интеграл

Ответ: А= 3,2 (Дж).

Пример 19. Сила 196,2Н растягивает пружины на 18 см. Какую работу она выполняет?

Решение: Согласно закона Гука F=kx, отсюда Определенный интеграл F = 1090х. Находим искомую работу:

Определенный интеграл

Ответ: А=17,7 (Дж).

Пример 20. Для сжатия пружины на 3 см. необходимо выполнить работу в 16 Дж. На какую длину можно сжать пружину, выполнив работу в 144 Дж.?

Решение: Согласно закона Гука, F=kx; тогда

Определенный интеграл

Определенный интеграл

Ответ: Пружину можно сжать на 9 см.

Сила давления жидкости

Сила давления Р жидкости плотностью р на вертикальную пластину, погружённую в жидкость, вычисляется по формуле:

Определенный интеграл

Где Определенный интеграл ускорение свободного падения, S — площадь пластинки, а глубина погружения пластинки меняется от a до b.

Пример 21. Вычислить силу давления воды на одну из стенок аквариума, длиною 30 см. и высотою 20 см.

Решение: Стенка аквариума имеет форму прямоугольника, поэтому S=0,3х, где Определенный интеграл. Плотность воды равна 1000 кг/м3. Тогда сила давления воды на стенку аквариума, вычисляется по формуле:

Определенный интеграл

Ответ: Р=58,86 (Н).

Пример 22. Вычислить силу давления бензина на стенки цилиндрического бака высотой 3 м. и радиусом 1 м. 

Решение: Площадь поверхности стенки цилиндрического бака Определенный интеграл, где Определенный интеграл. Плотность бензина — 800 кг/м3. Тогда сила давления бензина на стенки бака будет:

Определенный интеграл

Ответ: Р= 2,2*105 (Н).

Пример 23. Вычислить давление воды на погружённую в неё вертикальную треугольную пластину, с основанием 6 м. и высотой 2 м., считая, что вершина треугольника лежит на поверхности воды, а основание параллельно ей (рис. 16).

Определенный интеграл

Решение: Пусть NM — ширина пластины на уровне BE=х. Из схожих треугольников ABC и MBN, находим

Определенный интеграл

Использовав формулу получаем:

Определенный интеграл

Ответ: Р = 78480 (Н).

Несобственные интегралы

Интегралы с бесконечными границами интегрирования или от функций, которые имеют бесконечный разрыв называют несобственными.

Несобственные интегралы с бесконечными границами интегрирования определяют следующим образом:

Определенный интеграл

где с — произвольное действительное число.

Несобственные интегралы от функций с бесконечными разрывами также вычисляют через предельный переход.

Если функция разрывная на одном конце отрезка интегрирования, например, в точке х=b, то

Определенный интеграл

если же функция f(х) имеет безграничный разрыв в точке х=с, где Определенный интеграл и непрерывна во всех других точках этого промежутка, то

Определенный интеграл

Если приведённые выше пределы существуют для конкретного интеграла, то его называют сходящимся, если же предела не существует — расходящимся.

Поскольку вычисление пределов — трудоёмкая работа, то иногда для вычисления схожести несобственного интеграла можно воспользоваться признаком схожести:

Признак схожести: Пусть Определенный интеграл Тогда, если Определенный интеграл сходящийся, то и Определенный интеграл будет сходящимся.

Геометрически, в прямоугольной системе координат, несобственный интеграл — это площадь криволинейной трапеции с бесконечной основой либо «незакрытой» сверху.

Определенный интеграл

Пример 1: Вычислить интеграл Определенный интеграл

Решение: Это несобственный интеграл с верхней границей равной Определенный интеграл. Согласно определения

Определенный интеграл

Следовательно, интеграл сходящийся.

Пример 2: Вычислить интеграл Определенный интеграл

Решение: Это несобственный интеграл, так как функция Определенный интеграл неопределённая в точке х=0 и Определенный интеграл. Согласно определениям

Определенный интеграл

Вычислим Определенный интеграл частями:

Определенный интеграл

Ответ:Определенный интеграл

История определенного интеграла

Интегральный расчет получен в результате определения площади и объема. Эмпирически обнаруженные правила измерения площади и объема некоторых простейших фигур были известны древним восточным ученым. Уже в 2000 году до нашей эры. Египтяне и вавилоняне, в частности, знали правила расчета площади круга и расчета объема усеченной пирамиды на основе квадрата. Древнегреческая наука значительно продвинула расчет площади и объема различных фигур. Особенно значительный вклад внес Архимед. Архимед обнаружил множество человеческих территорий и значительное количество объемов тела, основываясь на идее, что плоская фигура состоит из бесчисленных прямых линий, а геометрическое тело состоит из бесчисленных параллельных плоских частей.

Архимед (287-212 до н.э.) — древнегреческий математик, физик, астроном и изобретатель. Родился в Сиракуз (Сицилия) и жил во времена Первой и Второй Поенских войн. Архимед является автором многих технических изобретений. Ирригационные машины с нулевой точкой, подъемные механизмы (винты Архимеда), рычажные системы, блоки для подъема тяжелых предметов, военные метательные машины. Его метательная машина заставила римлян отказаться от попыток совершить набег на город и заставить их пойти на осаду.

Математические исследования Архимеда намного опередили свое время и были правильно оценены только в эпоху исчисления. Архимед вычислил площадь эллипса, параболы и осколков из сегментов и нашел площадь поверхности и шара, сегмент шара и сферы, а также объем различных вращающихся тел и их сегментов. Он также относится к понятию центра тяжести тела, находит положение центра тяжести различных людей и тел и дает математический вывод закона биений. Архимед, как сообщается, находит решение проблемы определения количества золота и серебра в короне жертвоприношения короля Сиракузы Иерона во время омовения и крика «Эврика!» Его величайшим достижением в астрономии было создание планетария — полой вращающейся сферы, которая могла наблюдать Солнце и пять планет, фазы Луны, а также движение Солнца и лунное затмение.

Архимед был убит римским солдатом во время захвата Сиракузы. Согласно легенде, он сталкивался со словами «Не трогай мою фотографию». На могиле Архимеда был установлен памятник с изображением шара и цилиндра вокруг него. Надпись показала, что эти объемы тела i, i называются двумя.

Систематическое развитие подобные представления получили значительно позже — лишь в Определенный интеграл веке.

Теорема Архимеда о том, что площадь круга равна площади треугольника с основанием, равным окружности, и высотой, равной радиусу, I. Площадь круга состоит из бесконечного числа треугольников, которые в совокупности равны одинаковой высоте, радиусу и треугольнику, основание которого равно сумме всех оснований, окружности.

Кеплер (Kepler) Йохан (1571-1630) — немецкий астроном и математик. Родился в Вайль-дер-Штадт (Вюртемберг, Германия). Обрабатывая наблюдения датского астронома Г. Врага, он установил три закона движения планет. Он изложил теорию солнечных и лунных затмений, их причины и методы прогнозирования. Изобрел самый легкий телескоп. Это до сих пор называют его именем. Он нашел 92 вращающихся тела как оригинальный метод интеграции.

Используя такие рассуждения, Кеплер нашел объем многих новых революционных тел. Закон Кеплера, известный в астрономии, также был фактически получен с использованием приближенного интегрирования.

Удивительно остроумный трюк Архимеда. Но Кеплер и другие ученые не были строгими, и, самое главное, в принципе, они обладали свойством геометрического преобразования.

Кавальер и, Торричелли, Ферма, Паскаль и другие ученые Определенный интеграл века еще больше приблизились к современным представлениям об интеграле. Барроу установил связь между задачей о разыскании площади и задачей о разыскании касательной. А И. Ньютон и Г. Лейбниц независимо друг от друга в 70-х годах Определенный интеграл века отделили эту связь от упомянутых частных геометрических задач и создали алгоритмы дифференциального и интегрального исчислений.

И. Ньютон открыл взаимность операций дифференциации и интеграции. Он отметил, что все задачи нового анализа сводятся к двум взаимно противоположным задачам, которые можно сформулировать с точки зрения механики: 1) Использование известного пути к скорости в определенный момент 2) определите путь, пройденный в конкретное время по известной скорости движения. В данном случае «время» понималось просто как общее обсуждение всех переменных. Он также вводит понятие дифференциации. И. Ньютон намечает программу построения анализа на основе учения о пределе, не давая впрочем формального определения этого понятия, получившего глубокое развитие в математике Определенный интегралвека.

Г. Лейбниц использует нотацию для выражения определенных различных способов вычисления площадей и получения касательных в единую систему взаимосвязанных аналитических концепций и для бесконечного отслеживания действий определенных алгоритмов. Это может быть выполнено. Кроме того, различие в основном понималось как небольшая разница между двумя смежными значениями величины (поэтому символ Определенный интеграл-первая буква латинского слова Определенный интеграл (дифференция) — разница и отношение производной к производной) кривой считалась многоугольником с бесконечно большой бесконечно малой стороной, касательной в виде прямой линии, следующей за одной из таких сторон. Г. Лейбниц ввел понятие интегрирования как сумму бесконечного числа производных. Следовательно, Г. Основной концепцией анализа Лейбница была дифференциация как дифференциал и интеграция как сумма.

Дальнейшее развитие методы интегрирования получили в Определенный интеграл и Определенный интегралвеках. В Определенный интеграл веке в работах Л. Эйлера были найдены практически все известные в настоящее время приемы интегрирования в элементарных функциях. В Определенный интегралвеке О. Коши он аналитически доказал существование интегралов от непрерывных функций, реконструированных производных и интегральных вычислений и построил концепцию пределов функций в качестве основы для них.

Дальнейшее обобщение концепции интеграции связано с немецким ученым Б. Риманом и французским ученым А. Лебегом.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Определенный интеграл в математике

Пусть на отрезке Определенный интеграл задана функция Определенный интеграл Проделаем следующие 5 операций над отрезком Определенный интеграл и функцией Определенный интеграл

1. Раздробим отрезок Определенный интеграл на Определенный интеграл частей при помощи точек Определенный интеграл где

Определенный интеграл

Для единообразия обозначений положим еще Определенный интеграл Наибольшую из разностей Определенный интеграл где Определенный интеграл мы обозначим через Определенный интеграл. Эта величина, характеризующая, насколько мелко раздроблен отрезок Определенный интеграл

называется рангом произведенного дробления.

2. На каждом отрезке Определенный интеграл выберем по точке Определенный интеграл и вычислим значение Определенный интеграл нашей функции Определенный интеграл в этой точке.

3. Умножим Определенный интеграл на длину Определенный интеграл отрезка Определенный интеграл

4. Сложим все полученные произведения, т. е. составим сумму

Определенный интеграл

Эта сумма носит название интегральной суммы или суммы Римана (по имени немецкого математика 19-го века, изучавшего такие суммы).

5. Будем измельчать произведенное дробление, заставляя Определенный интеграл стремиться к нулю. Во многих случаях при этом измельчении сумма Римана будет стремиться к некоторому конечному пределу Определенный интеграл не зависящему ни от способа, каким выбираются точки деления Определенный интеграл ни от того, как выбираются промежуточные точки Определенный интеграл

Этот предел

Определенный интеграл

и называется определенным интегралом от функции Определенный интеграл по промежутку Определенный интеграл Он обозначается символом

Определенный интеграл

Числа Определенный интеграл называются соответственно нижним и верхним пределами интегрирования, а отрезок Определенный интеграл — промежутком интегрирования. Таким образом Определенный интеграл есть конечный предел суммы Римана при стремлении к нулю ранга дробления, порождающего эту сумму

Определенный интеграл

Так как определенный интеграл есть предел некоторой переменной величины, а вовсе не всякая переменная имеет предел, то не у всякой функции существует определенный интеграл. Однако справедлива важная

Теорема. Если функция Определенный интеграл непрерывна на отрезке Определенный интеграл то интеграл

Определенный интеграл

существует.

Эту теорему мы примем без доказательства. В дальнейшем будут рассматриваться, главным образом, функции непрерывные, хотя справедлива и более общая

Теорема. Интеграл Определенный интеграл существует, если Определенный интеграл кусочно непрерывна.

Понятие .кусочно непрерывной* функции легко разъяснить на простом примере. Пусть Определенный интеграл функция Определенный интеграл задана и непрерывна на Определенный интеграл а функция Определенный интеграл на Определенный интеграл Тогда функция Определенный интеграл совпадающая с Определенный интеграл при Определенный интеграл и Определенный интеграл при Определенный интеграл (чему равно Определенный интеграл безразлично), как бы состоит из двух непрерывных кусков (рис. 199). Такая функция и называется .кусочно непрерывной*. Она может состоять и из нескольких непрерывных кусков. Все же, если не будет оговорено противное, подынтегральные функции будут предполагаться непрерывными.

Определенный интеграл

Возможно вам будут полезны данные страницы:

Геометрический смысл интеграла

Пусть Определенный интеграл — положительная непрерывная функция, заданная на отрезке Определенный интеграл

Заметим, что дробление, т. е. набор точек деленияОпределенный интеграл не полностью определяет сумму Определенный интеграл Для задания Определенный интеграл нужно указать еще промежуточные

точки Определенный интеграл

Рассмотрим (рис. 200) фигуру, ограниченную снизу осью Определенный интеграл сверху линией Определенный интеграл (т. е. графиком нашей функции), а с боков прямыми Определенный интеграл Определенный интеграл Если бы линия Определенный интеграл

была прямой, то наша фигура представила бы собой обыкновенную трапецию. В общем же случае эта фигура называется криволинейной трапецией.

Найдем площадь Определенный интеграл этой криволинейной трапеции. Для этого разложим отрезок Определенный интеграл на Определенный интеграл малых отрезков точками

Определенный интеграл

Если через точки деления провести прямые Определенный интеграл то они разрежут нашу криволинейную трапецию (рис. 201) на Определенный интеграл узких полосок. Каждую из этих полосок можно приближенно принять за прямоугольник. В самом деле, если бы функция Определенный интеграл в пределах отрезка Определенный интеграл была постоянной, то полоска, имеющая своим основанием этот отрезок, и в самом деле была бы прямоугольником. В действительности Определенный интеграл не будет постоянной на Определенный интеграл но благодаря своей

Определенный интеграл

непрерывности эта функция не успевает заметно измениться на Определенный интеграл если только этот отрезок весьма мал. Иными словами, Определенный интеграл почти постоянна на отрезках Определенный интеграл когда эти отрезки малы, а это и значит, что упомянутые полоски почти являются прямоугольниками (один такой прямоугольник заштрихован на рис. 201). Принимая за значение Определенный интеграл на всем Определенный интеграл ее значение в какой-нибудь точке Определенный интеграл этого отрезка (выбор этой точки безразличен, поскольку речь все равно идет о приближенном подсчете, а все точки отрезка Определенный интеграл равноправны), получаем, что высотой прямоугольника, за который мы принимаем нашу полоску, будет Определенный интеграл

Поскольку длина основания этого прямоугольника, очевидно, равна Определенный интеграл то площадь одной полоски приближенно равна произведению Определенный интеграл Отсюда для интересующей нас площади Определенный интеграл всей криволинейной трапеции получается приближенное равенство

Определенный интеграл

Из самого вывода ясно, что точность этого равенства тем выше, чем меньше отрезки Определенный интеграл т. е. чем меньше ранг дробления Определенный интеграл Но тогда точное значение площади Определенный интеграл будет пределом написанной суммы при Определенный интеграл

Определенный интеграл

Поскольку, однако, сумма (8) является суммой Римана, то по самому

Определенный интеграл

определению ее пределом при Определенный интеграл

служит интеграл

Определенный интеграл

Таким образом мы приходим к формуле

Определенный интеграл

Читая ее справа налево, выясняем

Геометрический смысл интеграла.

Если Определенный интеграл

непрерывна и положительна на Определенный интеграл то интеграл Определенный интеграл равен площади криволинейной трапеции, ограниченной линиями

Определенный интеграл

Интеграция может быть использована для поиска областей, объемов, центральных точек и многих полезных вещей. Но это часто используется, чтобы найти область под графиком функции

Определенный интеграл

Примеры с решением

Пример 1:

Найти Определенный интеграл

Решение:

Фигура, ограниченная линиями Определенный интеграл Определенный интеграл (рис. 202), есть обыкновенная трапеция. Ее площадь равна полусумме оснований, умноженной на высоту:

Определенный интеграл

откуда

Определенный интеграл

Пример 2:

Найти Определенный интеграл

Решение:

Линия Определенный интеграл есть расположенная выше Определенный интеграл половина окружности Определенный интегралТа часть линии, которая получается при изменении Определенный интеграл лежит в 1-м координатном угле. Отсюда ясно, что фигура, ограниченная линиями Определенный интеграл является (рис. 203) четвертью круга с центром в начале координат и радиусом Определенный интеграл Площадь этой фигуры равна Определенный интеграл откуда

Определенный интеграл

Сейчас мы еще не научились вычислять определенные интегралы, я в этих примерах нам пришлось прибегнуть к помощи геометрии. В дальнейшем, наоборот, с помощью интегрального исчисления мы сможем вычислять площади различных криволинейных фигур *).

Два простейших свойства интеграла. Когда мы занимались неопределенными интегралами, то отмечали, что

Определенный интеграл

Таким образом, в записи подынтегральной функции и в записи результата интегрирования независимая переменная обозначалась одной и той же буквой. Стало быть, обозначение этой независимой переменной, которую называют переменной интегрирования, оказывалось существенным .

Это становится ясным, если мы вспомним хотя бы, как вычисляетсяинтеграл Определенный интеграл Ведь его надо записать сначала в виде Определенный интеграл а затем в виде Определенный интеграл Значит, Определенный интегралОпределенный интеграл Таким образом, нам совсем не безразлично, написать ли Определенный интеграл (что верно) или Определенный интеграл (что уже неверно!).

I. Обозначение переменной интегрирования в определенном интеграле никакой роли не играет

Определенный интеграл

Читатель сразу поймет это, если задаст себе вопрос: который из двух интегралов Определенный интеграл

Больше? Ясно, что они одинаковы! Более отчетливо мы разберемся в этом, если заметим, что для вычисления любого из интегралов мы должны разбить отрезок [3, 5] на мелкие части, в каждой части выбрать по точке и вычислить в ней значение подынтегральной функции (а она в обоих интегралах одна и та же: удвоенный куб аргумента, сложенный с самим аргументом) и т. д. Иными словами все вычисления в обоих случаях будут тождественными. Также обстоит дело и в более общем случае интегралов чем и доказано формулированное свойство Определенный интеграл чем и доказано формулированное свойство I определенного интеграла.

Переходя к другому важному его свойству, заметим, что в выражении

Определенный интеграл

мы предполагали Определенный интеграл Что же следует понимать под символом

Определенный интеграл

На этот вопрос легко ответить, если вспомнить геометрический смысл интеграла. В нашем случае боковые стороны криволинейной трапеции Определенный интеграл сливаются в одну прямую Определенный интеграли трапеция вырождается в прямолинейный отрезок (рис. 204). Площадь этого отрезка равна нулю, а потому и

Определенный интеграл

т.е.

Определенный интеграл с совпадающими пределами интегрирования равен нулю.

Например,

Определенный интеграл

Понятие определенного интеграла

Рассмотрим непрерывную функцию Определенный интеграл не принимающую отрицательных значений, так что график ее целиком лежит выше оси Определенный интеграл в некоторых точках. Пусть Определенный интеграл такие числа, что функция определена при Определенный интеграл Кривая Определенный интеграл и прямые Определенный интегралограничивают некоторую область плоскости, называемую областью под кривой Определенный интеграл от Определенный интеграл

или криволинейной трапецией.

Если требуется вычислить площадь Определенный интеграл криволинейной трапеции, то можно, например, покрыть плоскость сетью мелких квадратов и сосчитать число квадратов, лежащих внутри нашей области (рис. 12.1). Это не дает еще всей площади, поскольку некоторые из квадратов лежат частично внутри, а частично вне рассматриваемой области. Но если сделать сеть достаточно густой. то можно вычислить Определенный интеграл с любой степенью точности.

Можно вычислить площадь криволинейной трапеции и с помощью тонких прямоугольников. Лейбниц считал, что криволинейная трапеция составлена из бесконечно тонких прямоугольников (рис. 12.2). Каждый такой прямоугольник поднимается над точкой Определенный интегралинтервала Определенный интеграл он имеет высоту Определенный интеграл и бесконечно

Определенный интеграл

Определенный интеграл

Малую ширину Определенный интеграл площадь ого равна, следовательно, Определенный интеграл Общая же площадь Определенный интеграл есть сумма всех таких площадей.

Напомним, Лейбниц писал Определенный интеграл Символ Определенный интеграл означал у него сумму. Этот символ происходит от удлинения буквы Определенный интеграл

(первой буква слова Summa). Погаже ученик Лейбница Иоган Вернул-ли предложил отличат!» «целостную сумму бесконечно малых» от обычной суммы и предложил знак именовать интегралом от латинского слова integrals (целостный). Фурье усовершенствовал обозначение Лейбница, предложив явно указывать начальное и конечное значения Определенный интеграл

Определенный интеграл

Рассуждения математиков XIX века носили нестрогий характер. Термин бесконечно малая величина не был достаточно строго определен, что приводило к противоречиям. Строгое определение основано на понятии предела и интегральной суммы. Оно вобрало в себя качественный смысл определения Лейбница и устранило нечеткость формулировок.

Пусть функция Определенный интеграл неотрицательна на Определенный интеграл Разобьем отрезок Определенный интеграл на Определенный интеграл промежутков точками Определенный интеграл

Определенный интеграл

На каждом отрезке разбиения выберем точку Определенный интеграл и положим

Определенный интеграл

Тогда произведение Определенный интеграл равно площади прямоугольника Определенный интеграл ,-со сторонами Определенный интеграл

Сумма площадей всех таких прямоугольников равна сумме вида

Определенный интеграл

Эта сумма представляет площадь ступенчатой фигуры. Чем уже ступеньки, тем ближе площадь ступенчатой фигуры к площади криволинейной трапеции (рис. 12.2). Естественно ожидать, что при неограниченном возрастании числа промежутков, так что наибольшая из их длин стремится к нулю, сумма Определенный интеграл стремится к площади криволинейной трапеции Определенный интеграл

Введем теперь точное определение. Пусть на отрезке Определенный интеграл задана функция Определенный интеграл (теперь уже не обязательно неотрицательная). Разобьем отрезок Определенный интеграл на Определенный интеграл промежутков точками Определенный интеграл

Определенный интеграл

На каждом отрезке разбиения Определенный интеграл выберем точку Определенный интеграл и положим

Определенный интеграл

Сумму вида

Определенный интеграл

назовем интегральной суммой для функции Определенный интегралОчевидно, что интегральная сумма зависит от способа разбиения отрезка Определенный интеграл точками Определенный интеграл так и от выбора точек Определенный интегралОпределенный интеграл на каждом из промежутков разбиения Определенный интегралОпределенный интеграл Обозначим через Определенный интеграл максимальную из длин отрезков Определенный интеграл где Определенный интеграл

Определение. Пусть предел интегральной суммы

Определенный интеграл

при стремлении Определенный интеграл к нулю существует, конечен и не зависит от способа выбора точек Определенный интеграл Тогда этот предел называется определенным интегралом от функции Определенный интеграл на Определенный интеграл и обозначается

Определенный интеграл

а сама функция Определенный интеграл называется интегрируемой на отрезке Определенный интеграл т.е.

Определенный интеграл

Эта запись читается: «интеграл от а до бэ эф от икс дэ икс». При этом число Определенный интеграл называется нижним пределом, число Определенный интегралего верхним пределом («пределы интегрирования» не имеют ничего общего с термином «предел функции»); функция Определенный интеграл подынтегральной функцией, выражение Определенный интеграл подынтегральным выражением, а задача о нахождение Определенный интеграл интегрированием функции Определенный интеграл на отрезке Определенный интеграл

Несмотря на сходство в обозначениях и терминологии, определенный и неопределенный интегралы существенно различные понятия. Неопределенный интеграл представляет функцию (а точнее семейство функций), а определенный интеграл — это число.

Из определения следует, что величина определенного интеграла не зависит от обозначения переменной интегрирования, т. е. Определенный интеграл

Верхний предел Определенный интеграл может быть больше или меньше нижнего Определенный интеграл

В первом случае Определенный интеграл

Определенный интеграл Во втором случае

Определенный интеграл

Определенный интеграл

Поэтому по определению полагают

Определенный интеграл

Понятие определенного интеграла распространяют и на случай Определенный интеграл интеграл с равными пределами считается равным нулю:

Определенный интеграл

Это соглашение оправдано тем, что интегральная сумма стремится к нулю при сближении Определенный интеграл

Очевидно, если функция Определенный интеграл интегрируема на отрезке Определенный интеграл то она и ограничена на этом отрезке. В самом деле, если Определенный интеграл не ограничена на отрезке Определенный интеграл то она не ограничена на некотором отрезке Определенный интеграл За счет выбора точки Определенный интеграл

интегральную сумму можно сделать сколь угодно большой, а такая интегральная сумма не имеет конечного предела, что противоречит определению, согласно которому предел интегральной суммы Определенный интеграл существует и конечен.

Покажем на примере функции Дирихле, что обратное утверждение неверно: существует ограниченная функция, не являющаяся интегрируемой. Напомним, что функция Дирихле равна единице в рациональных точках и нулю — в иррациональных. На любом отрезке Определенный интегралэта функция ограничена, но не является интегрируемой на нем. Действительно, если в каждом отрезке Определенный интеграл выбрать рациональную точку Определенный интеграл то интегральная сумма

Определенный интеграл

Если выбрать иррациональную точку Определенный интеграл то Определенный интеграл и

Определенный интеграл

Таким образом, с одной стороны Определенный интеграл а, с другой стороны Определенный интеграл

Поэтому предел интегральных сумм не существует и функция Дирихле не является интегрируемой.

Отметим без доказательств, что справедливы следующие утверждения:

1. Если функцияОпределенный интеграл интегрируема на отрезке Определенный интеграл то она интегрируема на любом отрезке Определенный интеграл содержащимся в Определенный интеграл

2. Если функция Определенный интеграл непрерывна на отрезке Определенный интеграл то она интегрируема на этом отрезке.

3. Если функция Определенный интеграл имеет на отрезке Определенный интеграл конечное число точек разрыва первого рода, то она интегрируема на Определенный интеграл

Пример 3:

Вычислить Определенный интеграл

Решение. Запишем выражение для интегральной суммы, предполагая, что все отрезки Определенный интеграл разбиения имеют одинаковую длину Определенный интеграл равную Определенный интеграл где Определенный интеграл число отрезков разбиения, причем для каждого из отрезков , Определенный интеграл разбиения точка совпадает с правым концом этого отрезка, т.е Определенный интеграл где Определенный интеграл (В силу интегрируемости функции Определенный интеграл выбор такого «специального» способа разбиения отрезка интегрирования на части и точек , Определенный интеграл на отрезках разбиения не повлияет на искомый предел интегральной суммы.) Тогда

Определенный интеграл

Известно, что сумма квадратов чисел натурального ряда равна

Определенный интеграл

Следовательно,

Определенный интеграл

Анализ приведенного примера показывает, что успешное решение поставленной задачи оказалось возможным благодаря тому, что интегральную сумму удалось привести к виду, удобному для нахождения предела. Однако такая возможность существует далеко не всегда, поэтому долгое время задача интегрирования конкретных функций оставалась задачей чрезвычайно сложной.

Пример 4:

Вычислить: Определенный интеграл

Решение:

а) Произвольная первообразная для функции Определенный интеграл имеет вид Определенный интеграл Для нахождения интеграла 3 по формуле Ньютона—Лейбница возьмем такую первообразную, у которой Определенный интеграл (см. замечание выше). Тогда

Определенный интеграл

что совпадает, конечно, с результатом, полученным в примере 11.1.

б) Первообразную подынтегральной функции найдем, используя формулу (10.9). Применяя формулу Ньютона—Лейбница, получаем При нахождении интеграла из примера 11.26 было использовано свойство приращения первообразной

Определенный интеграл

где-Определенный интеграл некоторое число.

Заметим,что введеное ранее определение (11.2) и его следствие (11.3) согласованы с формулой Ньютона-Лейбница. Действительно,

Определенный интеграл

и

Определенный интеграл

Таким образом, и при применении формулы Ньютона-Лейбница несущественно, какой из пределов интегрирования больше: верхний или нижний.

Пример 5:

Вычислить Определенный интеграл

Решение:

Положим Определенный интеграл Тогда

Определенный интеграл Если Определенный интеграл то

Определенный интеграл Следовательно

Определенный интеграл

Рассмотрим теперь, как выполняется интегрирование по частям в определенном интеграле.

Задачи, приводящие к понятию определенного интеграла

Пусть неотъемлемая функция Определенный интеграл определена и непрерывна на отрезке Определенный интеграл где Определенный интеграл и Определенный интеграл — конечные числа.            

Задача о нахождении площади криволинейной трапеции

Пусть плоская фигура ограничена графиком функции Определенный интеграл осью Определенный интеграл вертикальными прямыми Определенный интеграл Определенный интеграл (рис. 23.1). Эта геометрическая фигура называется криволинейной трапецией для функции Определенный интеграл на отрезке Определенный интеграл    

Определенный интеграл

Рис. 23.1

Необходимо определить ее площадь.
Для решения задачи выполним следующее:

1) разобьем отрезок Определенный интеграл произвольно образом на Определенный интеграл частей точками:

Определенный интеграл

2) выберем на каждом из частичных отрезков Определенный интеграл произвольную точку Определенный интеграл

Длину частичного отрезка Определенный интеграл обозначим через Определенный интегралОпределенный интеграл

3) вычислим значение функции Определенный интеграл в точках Определенный интеграл и составим сумму произведений этих значений с длинами частичных отрезков:

Определенный интеграл

Сумма Определенный интеграл называется интегральной суммой для функции Определенный интеграл на отрезке Определенный интеграл Геометрический смысл этой суммы очевиден — это сумма площадей прямоугольников с основами Определенный интеграл и высотами Определенный интеграл

4) найдем границу Определенный интеграл при условии, что Определенный интеграл и наибольшая (максимальная) длина частных отрезков Определенный интеграл стремится к нулю.

Если существует конечный предел интегральной суммы при условии, что Определенный интеграл при Определенный интеграл то ее принимают за числовое значение площади Определенный интеграл криволинейной трапеции для Определенный интеграл на Определенный интеграл

Определенный интеграл

Задача об определении пройденного пути материальной точки

Задача об определении пройденного пути материальной точки за промежуток времени от Определенный интеграл до Определенный интеграл Пусть скорость прямолинейного движения материальной точки задана как функция времени Определенный интеграл Необходимо найти путь, который пройдет точка за промежуток времени от Определенный интеграл до Определенный интеграл

Если скорость не изменяется в течение времени, то есть Определенный интеграл — постоянная величина, то путь Определенный интеграл пройденный точкой за промежуток времени Определенный интеграл вычисляется по формуле Определенный интеграл

При переменной скорости совершаем те же действия, что и в предыдущей задаче:

1) разобьем отрезок Определенный интеграл в Определенный интеграл частичных промежутков времени Определенный интеграл Определенный интеграл точками:

Определенный интеграл

2) выберем на каждом из частичных отрезков времени Определенный интеграл произвольную точку Определенный интеграл

3) вычислим значения скорости Определенный интеграл в точке Определенный интеграл то есть Определенный интеграл на каждом отрезке времени Определенный интеграл и определим путь Определенный интеграл пройденный точкой за промежуток времени Определенный интеграл как произведение Определенный интеграл тогда весь путь, пройденный за время Определенный интеграл приближенно определяется интегральной суммой Определенный интеграл для функции Определенный интеграл на отрезке Определенный интеграл

Определенный интеграл

4) найдем границу интегральной суммы Определенный интеграл при Определенный интеграл и при Определенный интеграл

Если существует конечный предел интегральной суммы (при условии — Определенный интеграл при Определенный интеграл), то ее и принимают за числовое значение пути Определенный интеграл пройденного материальной точкой за промежуток времени Определенный интеграл

Определенный интеграл

Задача о нахождении объема продукции

Пусть функция Определенный интеграл описывает зависимость производительности труда Определенный интеграл некоторого производства от времени Определенный интеграл Необходимо найти объем продукции Определенный интеграл произведенной за промежуток времени Определенный интеграл

Если производительность не меняется в течение времени, то есть Определенный интеграл — постоянная величина, то объем продукции Определенный интеграл произведенной за промежуток времени Определенный интеграл вычисляется по формуле Определенный интеграл При переменной производительности труда, используя приближенную равенство Определенный интеграл где Определенный интеграл которая будет тем более точной, чем меньше будет Определенный интеграл выполним следующие действия:

1) разобьем отрезок Определенный интеграл на промежутки времени Определенный интеграл точками:

Определенный интеграл

2) выберем на каждом из отрезков Определенный интеграл произвольную точку Определенный интеграл

3) вычислим производительность труда в каждой точке Определенный интеграл то есть Определенный интеграл для каждого промежутка времени; определим объем продукции Определенный интеграл произведенной за время Определенный интеграл как произведение Определенный интеграл если на каждом промежутке времени Определенный интеграл считать производительность труда постоянной величиной; тогда полный объем продукции Определенный интеграл приближенно определяется как интегральная сумма для функции Определенный интеграл на отрезке Определенный интеграл

Определенный интеграл

4) найдем границу Определенный интеграл если Определенный интеграл стремится к нулю и Определенный интеграл и получим объем продукции, произведенной за промежуток времени Определенный интеграл

Определенный интеграл

Следует отметить, что при решении этих трех различных задач, были выполнены одни и те же действия, и мы пришли к одному и тому же итоге — возникает необходимость определить границу интегральной суммы.

Если существует конечный предел интегральной суммы Определенный интеграл для функции Определенный интеграл на отрезке Определенный интеграл найденная при условии, что Определенный интеграл при неограниченном возрастании числа точек разбиения Определенный интеграл которая не зависит ни от способа разбиения отрезка на части, ни от выбора точек Определенный интеграл то эта граница называется определенным интегралом функции Определенный интеграл на отрезкеОпределенный интеграл и обозначается Определенный интеграл Следовательно,

Определенный интеграл

где Определенный интеграл — пределы интегрирования (Определенный интеграл — нижняя, Определенный интеграл — верхняя)

Определенный интеграл — подынтегральная функция;

Определенный интеграл — дифференциал переменной интегрирования;

Определенный интеграл — подынтегральное выражение.

Теорема 23.1 (о существовании определенного интеграла). Если функция Определенный интеграл непрерывна на отрезке Определенный интеграл или ограничена на нем и имеет конечное число точек разрыва первого рода, то существует конечное предел интегральной суммы, и она не зависит ни от способа разбиения отрезка на части, ни от выбора точек внутри них для составления интегральной суммы, то есть существует определенный интеграл от функции Определенный интеграл

Теорема существования определенного интеграла примем без доказательства.
Соответственно, функция Определенный интеграл для которой на отрезке Определенный интеграл существует определенный интеграл, называется интегрируемой на этом отрезке.

Вернемся к первой из рассмотренных задач и приведем геометрический смысл определенного интеграла: если функция Определенный интеграл неотъемлемая на конечном отрезке Определенный интеграл где Определенный интеграл то определенный интеграл

Определенный интеграл

численно равна площади криволинейной трапеции, ограниченной кривой Определенный интеграл отрезком Определенный интеграл и прямыми Определенный интеграл и Определенный интеграл

Основные свойства определенного интеграла

Поскольку по определению определенный интеграл является границей интегральной суммы, то доказательства его свойств базируется на свойствах границ с привлечением, для наглядности и лучшего понимания, геометрического содержания определенного интеграла.

1 (о интеграл с равными пределами интегрирования). Для любой интегрируемой функции Определенный интеграл определенный интеграл с равными пределами интегрирования равен нулю:

Определенный интеграл

ведь криволинейная трапеция вырождается в вертикальный отрезок.

2 (об изменении знака). Если функция Определенный интеграл интегрируема наОпределенный интеграл то имеет место формула

Определенный интеграл

то есть, если поменять местами пределы интегрирования, то определенный интеграл изменит свой знак на противоположный.

Действительно, в интегральной сумме приросты Определенный интеграл меняют знак на противоположный.

3 (о стабильном множителе). Если функция Определенный интеграл интегрируема на Определенный интеграл то постоянный множитель можно выносить за знак определенного интеграла:

Определенный интеграл

поскольку Определенный интеграл как общий множитель слагаемых интегральной суммы можно вынести за знак суммы и, соответственно, за знак границы.

4 (о определенном интеграле от суммы функций). Если функции Определенный интеграл и Определенный интеграл интегрируемые на Определенный интеграл то интеграл от их суммы или разности равна соответственно сумме или разности интегралов от этих функций:

Определенный интеграл

Справедливость (23.11) следует из того, что интегральную сумму левой части равенства можно представить в виде алгебраической суммы двух интегральных сумм:

Определенный интеграл

а по свойству границы суммы функций и получаем (23.11).

Свойство распространяется на любое конечное число слагаемых.

5 (о аддитивности). Если отрезок интегрирования разбит на две части, то определенный интеграл на Определенный интеграл равна сумме интегралов на этих частях:

Определенный интеграл

так как по геометрическим содержанием таком разбивке соответствуют две криволинейные трапеции, сумма площадей которых равна площади выходной трапеции.
Свойство распространяется на любое конечное число частей разбиения.

6 (о переходе к определенному интегралу в неровностях). Если на отрезке интегрирования Определенный интеграл значения функций Определенный интеграл и Определенный интеграл связанные неравенством Определенный интеграл то такой же, по знаку, неравенством связаны определенные интегралы от этих функций :

Определенный интеграл

Действительно, при одном и том же разбиении отрезка Определенный интеграл на части слагаемые интегральной суммы для Определенный интеграл и Определенный интеграл будут связаны тем же знаком неравенства, и те же функции, а предельный переход не изменит знака неравенства.

7 (о границах значений определенного интеграла). Если Определенный интеграл и Определенный интеграл — наибольшее и наименьшее значения функции Определенный интеграл то есть Определенный интеграл и Определенный интеграл то

Определенный интеграл

Если функция Определенный интеграл определена и непрерывна на отрезке Определенный интеграл то среди ее значений на этом отрезке существуют меньше Определенный интеграл и больше Определенный интеграл то есть Определенный интеграл (рис. 23.2). Тогда (23.14) можно рассматривать как следствие свойства (23.13), а именно:

Определенный интеграл

при этом

Определенный интеграл

тогда

Определенный интеграл

и свойство доказано.

Если доводить это свойство по геометрическим содержанием определенного интеграла (рис. 23.2), то площадь криволинейной трапеции, которая соответствует определенному интегралу, не может быть меньше (больше) за площадь прямоугольника с основанием Определенный интеграл высота которого, соответственно, наименьшим Определенный интеграл (крупнейшим Определенный интеграл) значением функции на Определенный интеграл

Определенный интеграл

Рис. 23.2

8 (теорема о среднем). Если функция Определенный интеграл непрерывна на отрезке Определенный интеграл то на нем найдется такая точка Определенный интеграл что:

Определенный интеграл

Таких точек на промежутке Определенный интеграл может быть несколько.
Отношение определенного интеграла от функции Определенный интеграл на отрезке Определенный интеграл к длине отрезка интегрирования называется средним значением функции:

Определенный интеграл

С геометрической точки зрения теорема о среднем (рис. 23.3) означает, что площадь под кривой Определенный интеграл на отрезке интегрирования Определенный интеграл равна площади прямоугольника с высотой Определенный интеграл и основой Определенный интеграл

Определенный интеграл

Рис. 23.3

Связь между определенным и неопределенным интегралами

Если функция Определенный интеграл интегрируема на отрезке Определенный интеграл то она интегрируема и на отрезке Определенный интеграл где Определенный интеграл Интеграл от такой функции также является функцией от Определенный интеграл и называется интегралом с переменным верхним пределом интегрирования. Обозначим его через Определенный интеграл

Определенный интеграл

В этом выражении переменная интегрирования обозначена буквой Определенный интеграл чтобы отличить ее от верхней границы интегрирования. Численно функция Определенный интеграл равна площади криволинейной трапеции, основой которой является промежуток Определенный интеграл

Теорема 23.2. Если функция Определенный интеграл непрерывна на отрезке Определенный интеграл то в каждой точке Определенный интеграл  производная от функции Определенный интеграл по переменным верхним пределом равна подынтегральной функции от верхней границы интегрирования, то есть:

Определенный интеграл

Доказательство. Для доказательства этой теоремы применим определение производной.
По условию функция Определенный интеграл непрерывна на отрезке Определенный интеграл поэтому она непрерывна и на любом отрезке Определенный интеграл Предоставим аргумента Определенный интеграл прирост Определенный интеграл тогда и функция Определенный интеграл также получит некоторый прирост Определенный интеграл

Определенный интеграл

Последний интеграл было получено с помощью свойства 5 определенного интеграла. Поскольку

Определенный интеграл

то применяя на отрезке Определенный интеграл теорему о среднем (23.15), получим:

Определенный интеграл

где Определенный интеграл

Переходя к пределу при Определенный интеграл а также ввиду того, что при этом Определенный интеграл и Определенный интеграл получим:

Определенный интеграл

Равенство Определенный интеграл значит, что функция Определенный интеграл является первоначальной для функции Определенный интеграл на отрезке Определенный интеграл Следовательно, с теоремы 23.2 следует важное следствие: для всякой непрерывной на отрезке Определенный интеграл функции Определенный интеграл существуют первобытные на этом отрезке, одной из которых является определенный интеграл с переменным верхним пределом. Поэтому согласно определению неопределенного интеграла в семье первичных имеем:

Определенный интеграл

Формула (23.19) описывает связь между определенным и неопределенным интегралами: неопределенный интеграл является суммой определенного интеграла с переменным верхним пределом и произвольной действительной постоянной.

Формула Ньютона-Лейбница

Теорема 23.3 (основная формула интегрального исчисления). Если функция Определенный интеграл интегрируема на отрезке Определенный интеграл то определенный интеграл от Определенный интеграл Определенный интеграл является разницей значений любой из ее первоначальных функций Определенный интеграл в точках Определенный интеграл и Определенный интеграл

Определенный интеграл

Формула (23.20) для вычисления определенного интеграла называется формулой Ньютона-Лейбница

Доказательство основывается на соотношении (23.19), которое позволяет любую первоначальную функции Определенный интеграл на отрезке Определенный интеграл записать так: Определенный интегралОпределенный интеграл. Последнее равенство будет справедливой при соответствующем выборе постоянной Определенный интеграл для всех значений Определенный интеграл

Подставляя вместо Определенный интеграл поочередно Определенный интеграл и Определенный интеграл получаем (23.20):

Определенный интеграл

Отметим, что поскольку все первоначальные отличаются друг от друга только константой, то разница Определенный интеграл не зависит от выбора Определенный интеграл

Для обозначения прироста первоначальной на отрезке Определенный интеграл вводят символ двойной подстановки Определенный интеграл который удобно использовать при решении примеров:

Определенный интеграл

Заметим, что именно формула Ньютона-Лейбница отображает тесная связь между неопределенным и определенным интегралами. По этой формуле вычисления определенного интеграла сводится к двум шагов:

1) нахождение одной из первоначальных Определенный интеграл для Определенный интеграл на Определенный интеграл (по сути это нахождение неопределенного интеграла)
2) вычисление значений первоначальной в точках, соответствующих границам интегрирования и определение разницы между ее значениями на верхней и нижней границах.

Вычислим определенный интеграл: Определенный интеграл

Обычно шаги 1), 2) осуществляют одной цепочкой:

Определенный интеграл

Методы вычисления определенного интеграла

При вычислении определённых интегралов используются методы непосредственного интегрирования, замены переменной (подста-. новки) и интегрирования по частям. Непосредственное интегрирование предполагает сведение данного интеграла с помощью алгебраических и арифметических преобразований к формулам таблицы основных интегралов и использование формулы Ньютона-Лейбница.

Непосредственное определенное интегрирование

Поскольку вычисления определенного интеграла по формуле Ньютона-Лейбница предполагает сначала взятия неопределенного интеграла, а затем выполнение арифметических действий, то это означает, что принципиальных различий в методах нахождения неопределенного и вычисления определенного интегралов нет, следовательно, непосредственное вычисление определенного интеграла предусматривает непосредственное неопределенное интегрирование (нахождение одной из первоначальных).

Вычислим интеграл Определенный интеграл

Определенный интеграл

Вычисление интеграла методом подстановки

Напомним, что существует два типа подстановок, которые используются при интегрировании с применением новой переменной: Определенный интеграл и Определенный интеграл

Пусть для определенности при вычислении интеграла Определенный интеграл проведения подстановкуОпределенный интеграл

Теорема 23.4 (о замене переменной в определенном интеграле). если:
1) функция Определенный интеграл и ее производная Определенный интеграл непрерывные на отрезке [, α β];
2) значение Определенный интеграл в точках Определенный интеграл и Определенный интеграл такие, что Определенный интеграл и Определенный интеграл
3) составлена функция Определенный интеграл непрерывна на Определенный интеграл то

то сравнивая результаты интегрирования по переменным Определенный интеграл и Определенный интеграл получаем справедливость (23.22).

Подстановка Определенный интеграл в случае существования обратной к Определенный интеграл функции сводится к рассматриваемой: Определенный интеграл

Отметим, что при вычислении определенного интеграла методом подстановки нет необходимости возвращаться к исходной переменной, вместо этого нужно находить пределы интегрирования по новой переменной.

Вычислим определенные интегралы:

Определенный интеграл

Интегрирования по частям в определенном интеграле

Рассмотрим случай, когда при вычислении определенного интеграла нахождения первоначальной требует применения интегрирования по частям.

Теорема 23.5 (формула интегрирования по частям для определенного интеграла). Если в определенном интеграле Определенный интеграл подынтегральное выражение представлен в виде произведения Определенный интеграл где Определенный интеграл и Определенный интеграл — дифференцируемы на отрезке Определенный интеграл функции, то выполняется соотношение:

Определенный интеграл

Доказательство. Поскольку

Определенный интеграл

то

Определенный интеграл

Применяя к левой части последнего равенства формулу Ньютона-Лейбница, а также учитывая, что Определенный интеграл а vОпределенный интеграл d ¢ x d = v, получим

Определенный интеграл

отсюда окончательно имеем:

Определенный интеграл

Теорема доказана.

Соотношение (23.23) называется формулой интегрирования по частям в определенном интеграле.

Если пределы интегрирования симметричны относительно нуля, то для упрощения вычислений целесообразно учитывать четности и нечетности подынтегральной функции.

Так, если Определенный интеграл — четная функция, то

Определенный интеграл

а если Определенный интеграл — нечетная функция, то

Это легко обосновать, опираясь на формулу Ньютона-Лейбница.
Вычислим определенные интегралы:

Определенный интеграл

Подынтегральная функция является четной, то есть Определенный интеграл поэтому

Определенный интеграл

Определенный интеграл

Применение определенного интеграла в некоторых геометрических и экономических задачах

Длина дуги плоской кривой

Пусть функция Определенный интеграл является непрерывной и дифференцируемой на отрезке Определенный интеграл Найдем на этом отрезке длину линии, соответствующей графику данной функции.

Разобьем отрезок Определенный интеграл произвольным образом на Определенный интеграл частей точками разделения Определенный интеграл и впишем в дугу кривой ломаную линию (рис. 24.1) . Длиной дуги называется предел длины вписанной ломаной линии при неограниченном уменьшении длин ее звеньев.

Определенный интеграл

Рис. 24.1

Пусть абсциссами вершин ломаной линии имеет значение Определенный интеграл Тогда длина одного звена ломаной согласно теореме Пифагора определяется формулой:

Определенный интегралгде Определенный интеграл

Отсюда

Определенный интеграл

На каждом частичном отрезке Определенный интеграл функция Определенный интеграл удовлетворяет условиям теоремы Лагранжа, поэтому существует точка Определенный интеграл такая, что

Определенный интеграл

Тогда

Определенный интеграл

Длина Определенный интеграл всей ломаной линии определяется как сумма длин ее звеньев: Определенный интегралОпределенный интеграл и представляет собой интегральную сумму для сложной функцииОпределенный интеграл

Следовательно, длина дуги кривой, соответствующей графику функции Определенный интеграл на отрезке Определенный интеграл составляет:

Определенный интеграл

Если кривая задана уравнениями в параметрической форме

Определенный интеграл

то длина дуги такой кривой определяется формулой:

Определенный интеграл

где Определенный интеграл и Определенный интеграл — значение параметра Определенный интеграл соответствующие концам дуги.

Наряду с хорошо известной декартовой системой координат Определенный интеграл в которой каждой точке плоскости соответствует пара чисел Определенный интеграл — проекций точки на координатные оси, пользуются также полярной системой координат.
Зафиксируем на плоскости некоторую точку Определенный интегралполюс — и луч Определенный интегралполярную ось. Выберем произвольным образом отличную от полюса точку Определенный интеграл (рис. 24.2).

Расстояние Определенный интеграл от полюса Определенный интеграл до точки Определенный интеграл называется полярным радиусом точки Определенный интеграл

Угол наклона Определенный интеграл полярного радиуса к полярной оси называется полярным углом точки Определенный интеграл В точке Определенный интеграл полярный угол определен.

Числа Определенный интеграл и Определенный интеграл называются полярными координатами точки Определенный интеграл, и пишут: Определенный интеграл илиОпределенный интеграл
Полюс Определенный интеграл полярная ось Определенный интеграл и масштабный (единичный) отрезок Определенный интеграл определяют полярную систему координат Определенный интеграл

Полярный угол определяется неоднозначно: при заданном Определенный интеграл точки с координатами Определенный интеграл где Определенный интеграл совпадают. Обычно значение Определенный интеграл берут из промежутка Определенный интеграл или Определенный интеграл и называют их главными значениями полярного угла.

Уравнения Определенный интеграл является уравнением линии Определенный интеграл в полярных координатах, если координаты любой точки Определенный интеграл на линии удовлетворяют его, и наоборот, если пара чисел Определенный интеграл удовлетворяет уравнению, то Определенный интеграл и Определенный интеграл являются координатами точки, принадлежащей линии:

Определенный интеграл

где Определенный интеграл — закон, который отображает свойство точек линии, Определенный интеграл и Определенный интегралтекущие координаты точек линии.

Связь между координатами точки в полярной Определенный интеграл и декартовой Определенный интеграл (рис. 24.3) системах координат легко устанавливается, если полюс совпадает с началом декартовой системы координат, а полярная ось лежит на оси абсцисс, и масштаб систем одинаков.

Определенный интеграл

Рис. 24.3

С Определенный интеграл получаем формулы перехода от декартовых к полярным координатам:

Определенный интеграл

где Определенный интеграл или Определенный интеграл

Если дуга задается уравнением в полярных координатах:

Определенный интеграл

то по формулам (24.2) и (24.4) определяем:

Определенный интеграл

Следовательно, длину дуги в полярных координатах находим по формуле:

Определенный интеграл

где Определенный интеграл и Определенный интеграл — значение полярного угла, соответствующие концам дуги.

Вычислить длину дуги кривой Определенный интеграл

Сначала надо установить пределы интегрирования. для этого найдем область определения данной функции, решив систему неравенств:

Определенный интеграл

Далее находим производную функции Определенный интеграл

Определенный интеграл

следовательно,

Определенный интеграл

По формуле (24.1) имеем:

Определенный интеграл

Рассмотрим пример нахождения длины дуги, если кривая заданная параметрически. Система уравнений

Определенный интеграл

определяет линию, которая называется астроидом (рис. 24.4). Найдем ее длину.

Определенный интеграл

Рис. 24.4

Кривая симметрична относительно осей Определенный интеграл и Определенный интеграл Следовательно, определим длину Определенный интеграл всей дуги, а именно той части, расположенной в первой четверти. Тогда параметр Определенный интеграл изменяется от Определенный интеграл до Определенный интеграл

Находим производные от Определенный интеграли сумму их квадратов:

Определенный интеграл

Определенный интеграл

По формуле (24.2) получаем:

Определенный интеграл

Соответственно, длина всей астроиды равна: Определенный интеграл

Найдем длину дуги, заданной в полярных координатах уравнением Определенный интеграл Эта кривая называется кардиоидой (рис. 24.5).

Определенный интеграл

Рис. 24.5

Кардиоида симметрична относительно полярной оси, поэтому найдем половину ее длины. Итак, полярный угол Определенный интеграл будет изменяться от Определенный интеграл до Определенный интеграл
Имеем: Определенный интеграл

Определенный интеграл

По формуле (24.5) получаем:

Определенный интеграл

Тогда длина всей линии равна: Определенный интеграл

Вычисление площади геометрической фигуры

Вычисление площади плоской фигуры в декартовых координатах опирается на геометрический смысл определенного интеграла.

Рассмотрим несколько случаев вычисления площадей геометрических фигур.

1. По геометрическому содержанию определенный интеграл от непрерывной функции Определенный интеграл x на отрезке Определенный интеграл численно равна площади Определенный интеграл криволинейной трапеции, ограниченной графиком функции Определенный интеграл осью Определенный интеграл и прямыми Определенный интеграл и Определенный интеграл при условии , что функция Определенный интеграл на отрезке Определенный интеграл является неотъемлемой.
То есть для Определенный интеграл имеем:

Определенный интеграл

2. Если функция Определенный интеграл на отрезке Определенный интеграл неположительные (рис. 24.6), т.е. Определенный интеграл то определенный интеграл от нее также будет числом неположительные, потому что он является границей интегральной суммы, а значит сохраняет знак подынтегральной функции. Тогда для Определенный интеграл площадь криволинейной трапеции равна:

Определенный интеграл

Определенный интеграл

Рис. 24.6

3. Если функция Определенный интеграл на отрезке Определенный интеграл меняет знак (рис. 24.7), проходя через точки Определенный интеграл то для нахождения площади фигуры, ограниченной графиком такой функции и осью Определенный интеграл отрезок Определенный интеграл надо разбить на три промежутки Определенный интегралОпределенный интеграл на которых знак функции остается постоянным, и применить формулы (24.7) и (24.8).
Следовательно, если функция Определенный интеграл несколько раз меняет знак на промежутке Определенный интеграл то формулы (24.7) и (24.8) можно объединить в одну:

Определенный интеграл

Определенный интеграл

Рис. 24.7

4. Если надо определить площадь фигуры, ограниченной кривыми Определенный интеграл по данным на отрезке Определенный интеграл причем Определенный интеграл то эта площадь (рис. 24.8) вычисляется по формуле:

Определенный интеграл

Определенный интеграл

Рис. 24.8

5. Если плоская фигура ограничена графиком непрерывной на промежутке Определенный интеграл функции Определенный интеграл прямыми Определенный интеграл и осью ординат (рис. 24.9), то площадь Определенный интеграл такой фигуры вычисляется по формуле:

Определенный интеграл

Определенный интеграл

Рис. 24.9

Найдем площадь фигуры, ограниченной графиком функции Определенный интеграл прямой Определенный интеграл и осью Определенный интеграл (рис. 24.10).

Определенный интеграл

Рис. 24.10

Устанавливаем пределы интегрирования: Определенный интеграл
Поскольку функция Определенный интеграл на отрезке Определенный интеграл неотъемлемая, то по формуле (24.7) имеем:

Определенный интеграл

Вычислим площадь фигуры, ограниченной линиями: Определенный интеграл Определенный интеграл и Определенный интеграл (рис. 24.11).

Определенный интеграл

Рис. 24.11

Промежутком интегрирования является отрезок Определенный интеграл
Поскольку подынтегральная функция Определенный интеграл на отрезке Определенный интеграл неположительная, то по формуле (24.8) имеем:

Определенный интеграл

Найдем площадь фигуры, ограниченной линиями: Определенный интегралОпределенный интеграл(рис. 24.12).

Определенный интеграл

Рис. 24.12

Функция Определенный интеграл на промежутке интегрирования Определенный интеграл меняет знак в точке Определенный интеграл Поэтому по формуле (24.9) имеем:

Определенный интеграл

Найдем площадь фигуры, ограниченной линиями: Определенный интеграл Определенный интеграл (рис. 24.13).

Определенный интеграл

Рис. 24.13

Для определения границ интегрирования находим точки пересечения линий:

Определенный интеграл

Откуда получаем:

Определенный интеграл

Согласно формуле (24.10) имеем:

Определенный интеграл

Подчеркнем, что в формуле (24.10) в роли Определенный интеграл всегда выступает функция, график которой ограничивает фигуру сверху.

6. Пусть фигура ограничена кривой, уравнение которой задано в параметрической форме, то есть зависимость Определенный интеграл задается параметрически системой уравнений

Определенный интеграл

где Определенный интеграл которая определяет некоторую кривую на отрезке Определенный интеграл

Площадь фигуры, как и раньше, вычисляем по формуле (24.7), но в ней сделаем замену переменной: Определенный интеграл тогда Определенный интеграл
Следовательно,

Определенный интеграл

Найдем площадь фигуры, ограниченной эллипсом (рис. 24.14), заданным параметрическими уравнениями

Определенный интеграл

Определенный интеграл

Рис. 24.14

Поскольку эллипс симметричен относительно осей координат, то найдем площадь Определенный интеграл-ой части площади, расположенной в первой четверти.

Определим границы интегрирования. Если Определенный интеграл изменяется от Определенный интеграл то по системе уравнений

Определенный интеграл

получаем, что параметр Определенный интеграл изменяется от Определенный интеграл

Осуществляем по формуле (24.12) определено интегрирование:

Определенный интеграл

Отсюда площадь всей фигуры равна:

Определенный интеграл

7. Площадь криволинейного сектора

Рассмотрим в полярных координатах геометрическую фигуру, которая ограничена линией Определенный интеграл и двумя лучами Определенный интеграл где функция Определенный интеграл непрерывна при Определенный интеграл (рис. 24.15). Такую фигуру называют криволинейным сектором для Определенный интеграл на Определенный интеграл Вычислим площадь этого сектора.

Определенный интеграл

Рис. 24.15

Выполняем те же шаги, которые осуществлялись при решении задачи нахождения площади криволинейной трапеции:

1) разобьем криволинейный сектор для Определенный интеграл на Определенный интеграл произвольным образом на Определенный интеграл частей с центральными углами Определенный интеграл Определенный интеграл

2) выберем на каждом из частичных секторов произвольный луч под углом Определенный интеграл к полярной оси;

3) вычислим площадь кругового сектора радиуса Определенный интеграл с центральным углом Определенный интеграл по известной формуле: Определенный интеграл площадь криволинейного сектора на Определенный интеграл приближенно равен сумме всех Определенный интеграл

Определенный интеграл

которая является интегральной суммой для сложной функции от Определенный интеграл

4) найдем границу интегральной суммы Определенный интеграл при условии, что Определенный интеграл при Определенный интеграл которая, в случае ее существования, определяет площадь криволинейного сектора:

Определенный интеграл

Вычислим площадь фигуры, ограниченной полярной осью и первым витком спирали Архимеда Определенный интеграл где Определенный интеграл — положительное число (рис. 24.16).

Определенный интеграл

Рис. 24.16

При чередовании Определенный интеграл от Определенный интеграл полярный радиус описывает кривую, ограничивает криволинейный сектор Определенный интеграл По формуле (24.14) имеем:

Определенный интеграл

Вычисление объемов тел по известным площадям поперечных сечений

Пусть имеем некоторое геометрическое тело, для которого известна площадь любого сечения этого тела плоскостью Определенный интеграл перпендикулярной к оси Определенный интеграл (рис. 24.17). Выведем формулу для вычисления объема тела Определенный интеграл для чего составим соответствующую интегральную сумму Определенный интеграл как это делалось при определении понятия определенного интеграла:

Определенный интеграл

Рис. 24.17

1) разобьем тело произвольным образом на Определенный интеграл частей (слоев) плоскостями: Определенный интеграл Определенный интеграл (на рисунке показано слой на Определенный интеграл);

2) выберем на каждом частичном промежутке Определенный интеграл произвольную точку Определенный интеграл и для каждой такой точки построим цилиндрическое тело, образующая которого параллельна оси Определенный интеграл а направляющая является контуром сечения тела Определенный интеграл плоскостью Определенный интеграл (на рисунке он не изображен)

3) вычислим объем цилиндра с площадью основания Определенный интеграл и высотой Определенный интегралОпределенный интеграл тогда объем тела на промежутке Определенный интеграл приближенно равен сумме всех частных объемов Определенный интеграл

Определенный интеграл

которая является интегральной суммой для функции Определенный интеграл на промежутке Определенный интеграл

4) найдем границу интегральной суммы Определенный интеграл при условии, что Определенный интеграл при Определенный интеграл которую, в случае ее существования, принимают за объем тела по площадям поперечных сечений:

Определенный интеграл

Найдем объем тела, ограниченного плоскостями Определенный интеграл и Определенный интеграл и однополостным гиперболоидом, который задан уравнением: Определенный интеграл

Проведем плоскость Определенный интеграл (рис. 24.18). В сечении получим эллипс:

Определенный интеграл

Перейдем к каноническому уравнению эллипса:

Определенный интеграл

где Определенный интеграл

Площадь сечения находим по известной формуле площади фигуры, ограниченной эллипсом (24.13): Определенный интеграл

Следовательно, вычислим объем тела по формуле (24.15) с переменной интегрирования Определенный интеграл

Определенный интеграл

Вычисление объема тела вращения

Пусть на промежутке Определенный интеграл задана непрерывная функция Определенный интеграл Надо определить объем тела, которое образовалось при вращении криволинейной трапеции для Определенный интеграл на Определенный интеграл вокруг оси Определенный интеграл (рис. 24.19). Такое тело называется тело вращения.

Определенный интеграл

Рис. 24.19

При вращении каждая точка дуги кривой описывает круг, а поперечным сечением тела вращения является круг радиуса Определенный интеграл с центром на оси Определенный интеграл площадь которого Определенный интеграл определяется по известной формуле: Определенный интеграл где Определенный интеграл

На этом основании расчетную формулу для вычисления объема тела Определенный интеграл образованного вращением криволинейной трапеции для функции Определенный интеграл на промежутке Определенный интеграл вокруг оси Определенный интеграл получим как частный случай формулы (24.15) при условии, что Определенный интеграл

Определенный интеграл

Найдем объем шара радиуса Определенный интеграл Его можно рассматривать как результат вращения вокруг оси Определенный интеграл криволинейной трапеции, ограниченной полукругом Определенный интеграл на отрезке Определенный интеграл

Объем этого шара можно найти по формуле (24.16):

Определенный интеграл

Если в соотношении для Определенный интеграл формально заменить Определенный интеграл на Определенный интеграл то получим формулу объема тела, образованного вращением вокруг оси Определенный интеграл криволинейной трапеции, ограниченной линиями Определенный интеграл — функция, обратная к Определенный интеграл

Определенный интеграл

Приближенное вычисление определенных интегралов

Формула Ньютона-Лейбница как основная формула интегрального исчисления является главным средством вычисления определенного интеграла, если при нахождении первоначальной не возникает трудностей. В случае, если неопределенный интеграл «не берется», то есть первоначальную нельзя представить в виде конечного числа элементарных функции, или подынтегральная функция задана графиком или таблицей, то используют приближенные формулы. Эти формулы основаны на геометрическом смысле определенного интеграла как площади криволинейной трапеции.

Формула прямоугольников

Пусть надо вычислить определенный интеграл от непрерывной на отрезке Определенный интеграл функции Определенный интеграл Согласно определению определенного интеграла построим интегральную сумму для функции Определенный интеграл

Поделим отрезок Определенный интеграл равных частей длины Определенный интеграл — точками Определенный интегралОпределенный интеграл

Вычислим значение функции Определенный интеграл в точках Определенный интеграл а именно Определенный интегралОпределенный интеграл

Тогда площадь криволинейной трапеции, изображенной на рис. 24.23, а вместе с тем и определенный интеграл для функции Определенный интеграл на отрезке Определенный интеграл приближенно равна сумме площадей прямоугольников с высотами Определенный интегралОпределенный интеграл и основами Определенный интеграл

Определенный интеграл

Определенный интеграл

Рис. 24.23

Полученное выражение (24.24) называется формулой прямоугольников с высотами Определенный интеграл вычисленным на левой грани частичных интервалов.

Если высоты прямоугольников взять равными значениям функции Определенный интеграл на правой грани частичных интервалов, то формула прямоугольников иметь вид:

Определенный интеграл

Поскольку для функции Определенный интеграл непрерывной на Определенный интеграл существует конечное предел интегральной суммы при Определенный интеграл и Определенный интеграл то можно утверждать, что ошибка при вычислении интеграла будет тем меньше, чем больше Определенный интеграл Абсолютная погрешность Определенный интеграл при этом вычисляется по формуле:

Определенный интеграл

где

Определенный интеграл

Относительная погрешность определяется как отношение абсолютной погрешности к точному значению интеграла и подается в процентах.

Формула трапеций

Рассмотрим еще один способ приближенного вычисления определенного интеграла.

Как и в предыдущем случае, отрезок Определенный интеграл делится на Определенный интеграл равных частей точками Определенный интеграл и в этих точках вычисляются значения функции Определенный интеграл (рис. 24.24). Построим прямоугольные трапеции с высотами Определенный интеграл и основами длиной Определенный интеграл иОпределенный интеграл

Определенный интеграл

Рис. 24.24

Каждая часть площади под кривой Определенный интеграл будет приближенно равняться площади прямоугольной трапеции со средней линией Определенный интеграл и высотой Определенный интеграл а площадь всей криволинейной трапеции для функции Определенный интеграл на отрезке Определенный интеграл приближенно равна площади под ломаной, то есть сумме площадей всех
трапеций, ограниченных сверху отрезками этой ломаной.

Соответственно, получаем:

Определенный интеграл

Это и есть формула трапеций. Формула (24.26), как и в предыдущем случае, будет тем точнее, чем больше число Определенный интеграл

Можно доказать, что если функция fОпределенный интеграл имеет непрерывную ограниченную производную Определенный интеграл которая удовлетворяет неравенство Определенный интеграл (где Определенный интеграл — постоянная), то для формул прямоугольников и трапеций абсолютная погрешность определяется неравенством:

Определенный интеграл

Для функций, которые имеют ограниченную вторую производную Определенный интеграл (где Определенный интеграл — постоянная), для абсолютной погрешности имеет место такая оценка:

Определенный интеграл

Формула Симпсона

Поделим отрезок Определенный интеграл на четное число Определенный интеграл одинаковых частей (рис. 24.25). Функцию Определенный интеграл на отрезке Определенный интеграл заменим параболой Определенный интеграл которая проходит через точки Определенный интеграл Определенный интеграл и Определенный интеграл с осью симметрии, параллельной оси Определенный интеграл

Определенный интеграл

Рис. 24.25

Аналогичные параболы строим и для всех остальных пар частичных отрезков.
Сумма площадей криволинейных трапеций, ограниченных параболами, и даст приближенное значение интеграла.

Покажем, что площадь криволинейной трапеции, ограниченной сверху параболой, проходящей через три точки Определенный интеграл равна:

Определенный интеграл

где Определенный интеграл — длина отрезка Определенный интеграл — промежуток интегрирования (рис. 24.26).

Определенный интеграл

Рис. 24.26

Коэффициенты параболы Определенный интеграл и значение функции Определенный интеграл в точках с абсциссами Определенный интеграл связанные такими соотношениями:

Определенный интеграл

Найдем площадь криволинейной трапеции для Определенный интеграл на отрезке Определенный интеграл

Определенный интеграл

С учетом значений функции в точках с абсциссами Определенный интеграл и Определенный интеграл следует, чтоОпределенный интегралОпределенный интеграл Определенный интеграл

Итак, Определенный интеграл то есть получили равенство (24.28). Применяя на каждом отрезке Определенный интеграл формулу (24.28), при Определенный интеграл получим:

Определенный интеграл

Если сложить левые и правые части записанных равенств, то получим:

Определенный интеграл

или

Определенный интеграл

формула Симпсона, или формула парабол.

Если функция Определенный интеграл имеет Определенный интеграл непрерывную четвертую производную и Определенный интеграл где Определенный интеграл — наибольшее значение y Определенный интеграл в интервале Определенный интеграл то абсолютная погрешность формулы парабол определяется неравенством:

Определенный интеграл

Таким образом, формула Симпсона (при одинаковом количестве частичных отрезков разбиения промежутка интегрирования) дает наилучшее приближение к искомому интеграла по сравнению с формулами прямоугольников или трапеций.

Вычислим интеграл Определенный интеграл применив непосредственное интегрирование.

Определенный интеграл

Сравним этот результат с результатами приближенного вычисления по формулам прямоугольников, трапеций, парабол при Определенный интеграл и найдем абсолютные и относительные погрешности этих вычислений.

Для применения выведенных формул приближенного вычисления определенных интегралов разобьем отрезок Определенный интеграл на 10 равных частей. Тогда длина каждого отрезка равна Определенный интеграл а значение функции в точках разбиения:

Определенный интеграл

Составим таблицу значений функции для каждой границы интервала разбиения.

                                                                                                                                                           Таблица 24.1

Определенный интеграл

По формуле прямоугольников (24.24), если принимать высоты прямоугольника значение Определенный интеграл вычисленное на левой грани частичного интервала, находим:

Определенный интеграл

По формуле прямоугольников (24.25), если принимать высоты прямоугольника значение Определенный интеграл на правой грани частичного интервала, получаем несколько иное значение:

Определенный интеграл

По формуле трапеций (24.26) имеем промежуточное значение по сравнению с обеими формулами прямоугольников:

Определенный интеграл

По формуле парабол (24.30):

Определенный интеграл

При вычислении интеграла по формуле прямоугольников (24.24) абсолютная погрешность составляет:

Определенный интеграл

а относительная погрешность равна:

Определенный интеграл

При вычислении интеграла по формуле прямоугольников (24.25) абсолютная и относительная погрешности составляют: 

Определенный интеграл или Определенный интеграл

При вычислении интеграла по формуле трапеций имеем:

Определенный интеграл и Определенный интеграл

При вычислении интеграла по формуле парабол получаем:

Определенный интеграл и Определенный интеграл

Итоговая таблица (табл. 24.2) убедительно подтверждает, что формула парабол действительно дает наибольшую точность при приближенном вычислении определенных интегралов. Конечно, если подынтегральная функция отлична от многочлена второго или третьей степени, то погрешность не будут нулевыми.

                                                                                                                                                       Таблица 24.2

Определенный интеграл

По объему вычислительной работы формула Симпсона не имеет преимуществ перед другими формулами.

Определенный интеграл

Определенный интеграл

Лекции:

  • Замена переменной в определенном интеграле
  • Формулы тригонометрии и их использование для преобразования тригонометрических выражений
  • Интегральный признак Коши
  • Правила дифференцирования
  • Построение графика функции
  • Связь между непрерывностью и дифференцируемостью функции
  • Функции комплексного переменного
  • Преобразование подобия
  • Формулы производных
  • Изометрия
  1. Теоретический минимум

    Часто встречаются случаи, когда вычисление определённых интегралов методами комплексного анализа предпочтительнее, чем методами
    вещественного анализа. Причины могут быть самыми разными. Методы ТФКП могут позволять в отдельных случаях сильно сократить вычисления.
    Иногда формулу Ньютона-Лейбница нельзя использовать, так как неопределённый интеграл не выражается в элементарных функциях.
    Методы дифференцирования и интегрирования по параметру требуют очень аккуратного обоснования своей применимости, да и параметр иногда
    приходится вводить искусственно.

    Обычно методами комплексного анализа вычисляются несобственные интегралы — по бесконечному промежутку или от неограниченных на отрезке
    интегрирования функций. Общая идея заключается в следующем. Составляется контурный интеграл. Интеграл по некоторым участкам контура должен
    совпадать с искомым определённым интегралом — по крайней мере, с точностью до постоянного множителя. Интегралы по остальным участкам контура
    должны вычисляться. Затем применяется основная теорема о вычетах, согласно которой
    [​IMG],
    где [​IMG] — это особые точки функции [​IMG], находящиеся внутри контура интегрирования [​IMG]. Таким образом, контурный интеграл с одной
    стороны оказывается выраженным через искомый определённый интеграл, а с другой стороны вычисляется с помощью вычетов (что обычно
    серьёзных сложностей не представляет).

    Основная сложность — выбор контура интегрирования. Его подсказывает, в принципе говоря, подынтегральная функция. Однако без достаточной
    практики овладеть данным методом сложно, а потому примеров будет приведено довольно много. Наиболее часто используются контуры, составленные из
    элементов, по которым удобно проводить интегрирование (прямые, дуги окружностей).

    Примеры вычисления определённых интегралов с помощью контурного
    интегрирования в комплексной плоскости

    Пример 1. Интегралы Френеля.
    Вычислим интегралы [​IMG], [​IMG].
    Несложно догадаться, что первым шагом является переход к экспоненциальной форме, предполагающий рассмотрение интеграла [​IMG].
    Нужно только подобрать контур интегрирования. Понятно, что в контур должна войти полуось [​IMG]. Вещественная и
    мнимая части интеграла по этой части контура представляют собой интегралы Френеля. Далее, вычисляемый контурный интеграл по структуре
    подынтегрального выражения напоминает интеграл Эйлера-Пуассона, значение которого известно. Но чтобы получить этот интеграл, нужно положить
    [​IMG], тогда [​IMG]. А такое представление переменной [​IMG] — это интегрирование по прямой, проходящей через точку [​IMG]
    под углом [​IMG] к вещественной оси.
    Итак, два элемента контура есть. Чтобы контур замкнулся, будем считать, что выбранные два участка контура имеют конечную длину [​IMG], и замкнём
    контур дугой окружности радиуса [​IMG]. Позже мы устремим этот радиус к бесконечности. В результате получается изображённый на рис. 1 контур.
    [​IMG]
    [​IMG] (1)
    Внутри контура интегрирования подынтегральная функция особых точек не имеет, поэтому интеграл по всему контуру [​IMG] равен нулю.
    На участке [​IMG] можно записать [​IMG], тогда
    [​IMG].
    В пределе [​IMG] этот интеграл равен нулю.
    На участке [​IMG] можно записать [​IMG], тогда
    [​IMG].
    Подставляем полученные результаты в (1) и переходим к пределу [​IMG]:
    [​IMG]
    Отделяя вещественную и мнимую части, находим, учитывая значение интеграла Эйлера-Пуассона
    [​IMG],
    [​IMG].

    Пример 2. Выбор контура интегрирования, содержащего внутри особую точку подынтегральной функции.
    Вычислим интеграл, похожий на рассмотренный в первом примере: [​IMG], где [​IMG].
    Вычислять будем интеграл [​IMG]. Контур выберем аналогичный тому, который использовался в первом примере. Только теперь нет цели
    свести вычисление к интегралу Эйлера-Пуассона. Здесь заметим, что при замене [​IMG] подынтегральная функция не изменится.
    Это соображение подсказывает выбрать наклонную прямую контура интегрирования так, чтобы она составляла с вещественной осью угол [​IMG].
    [​IMG]
    При записи контурного интеграла
    [​IMG] (2)
    интеграл по дуге окружности в пределе [​IMG] стремится к нулю. На участке [​IMG] можно записать [​IMG]:
    [​IMG].
    Таким образом, из (2) при переходе к пределу [​IMG] находим
    [​IMG].
    Здесь учтено, что внутри контура интегрирования [​IMG] подынтегральная функция имеет простой полюс [​IMG].
    [​IMG]
    Отсюда находим искомый интеграл:
    [​IMG].

    Пример 3. Через верхнюю или нижнюю полуплоскость замкнуть контур интегрирования?
    На следующем достаточно простом интеграле продемонстрируем характерную деталь выбора контура интегрирования. Вычислим
    интеграл [​IMG].
    Фактически искомый интеграл функции вычисляется вдоль вещественной оси, на которой подынтегральная функция не имеет
    особенностей. Остаётся только замкнуть контур интегрирования. Так как у функции под интегралом всего две конечные особые точки, то
    замкнуть контур можно полуокружностью, радиус которой следует устремить к бесконечности. И здесь возникает вопрос о том, как должна
    быть выбрана полуокружность: в верхней или нижней полуплоскости (см. рис. 3 а, б). Чтобы понять это, запишем интеграл по полуокружности
    в обоих случаях:
    [​IMG]
    а) [​IMG]
    б) [​IMG]
    Как видно, поведение интеграла в пределе [​IMG] определяется множителем [​IMG].
    В случае «а» [​IMG], а потому предел будет конечен при условии [​IMG].
    В случае «б» — напротив — [​IMG], а потому предел будет конечен при условии [​IMG].
    Это наводит на мысль, что способ замыкания контура определяется знаком параметра [​IMG]. Если он положителен, то
    контур замыкается через верхнюю полуплоскость, в противном случае — через нижнюю. Рассмотрим эти случаи отдельно.
    а) [​IMG]
    Интеграл по полуокружности в пределе [​IMG], как мы видели, обратится в нуль. Внутри контура (см. рис. 3а) находится
    особая точка [​IMG], поэтому
    [​IMG]
    б) [​IMG]
    Аналогично находим с помощью интегрирования по контуру, изображённому на рис. 3б,
    [​IMG]
    Замечание. Может показаться странным, что интеграл от комплексной функции получился вещественным. Однако это легко понять, если в исходном
    интеграле выделить вещественную и мнимую часть. В мнимой части под интегралом окажется нечётная функция, а интеграл вычисляется в симметричных
    пределах. Т.е. мнимая часть обратится в нуль, что и получилось в нашем расчёте.

    Пример 4. Обход особых точек подынтегральной функции при построении контура интегрирования.
    В рассмотренных примерах подынтегральная функция либо не имела особых точек, либо они были внутри контура интегрирования. Однако
    бывает удобно выбрать контур так, что на него попадают особые точки функции. Такие точки приходится обходить. Обход осуществляется
    по окружности малого радиуса, который в дальнейшем просто устремляется к нулю. В качестве примера вычислим интеграл [​IMG].
    Может показаться, что подынтегральная функция не имеет конечных особых точек, так как точка [​IMG] является устранимой особенностью.
    Но для вычисления интеграла приходится составлять контурный интеграл от другой функции (чтобы обеспечить обращение интеграла в нуль на
    замыкающей полуокружности в пределе бесконечного радиуса): [​IMG]. Здесь подынтегральная функция имеет полюсную особенность
    в точке [​IMG].
    [​IMG]
    Таким образом, требуется другой контур интегрирования (см. рис. 4). Он отличается от рис. 3а только тем, что особая точка обходится по полуокружности,
    радиус которой предполагается в дальнейшем устремить к нулю.
    [​IMG]. (3)
    Сразу заметим, что интеграл по большой полуокружности в пределе её бесконечно большого радиуса стремится к нулю, а внутри контура
    особых точек нет, так что весь интеграл по контуру [​IMG] равен нулю. Далее рассмотрим первое и третье слагаемые в (3):
    [​IMG]
    [​IMG].
    Теперь запишем интеграл по малой полуокружности, учитывая, что на ней [​IMG]. Также сразу будем учитывать малость радиуса полуокружности:
    [​IMG]
    [​IMG]
    Не выписаны слагаемые, стремящиеся к нулю в пределе [​IMG].
    Собираем слагаемые в (3) — кроме относящегося к большой полуокружности слагаемого.
    [​IMG]
    Как видно, обращающиеся в бесконечность при [​IMG] слагаемые взаимно уничтожились. Устремляя [​IMG] и [​IMG], имеем
    [​IMG].
    Замечание. Совершенно аналогично вычисляется, например, интеграл Дирихле (напомним, он отличается от только что рассмотренного отсутствием
    квадратов в числителе и знаменателе).

    Примеры вычисления определённых интегралов с помощью контурного
    интегрирования в комплексной плоскости (продолжение)

    Пример 5. Подынтегральная функция имеет бесчисленное множество особых точек.
    Во многих случаях выбор контура осложнён тем, что у подынтегральной функции бесчисленное множество особых точек. В этом случае может
    оказаться так, что сумма вычетов в действительности будет рядом, сходимость которого ещё придётся доказывать, если суммировать его
    не получается (а суммирование рядов — вообще отдельная довольно сложная задача). В качестве примера вычислим интеграл [​IMG].
    Понятно, что часть контура — вещественная ось. На ней у функции особенностей нет. Обсудим, как замкнуть контур. Выбирать полуокружность не следует.
    Дело в том, что гиперболический косинус имеет семейство простых нулей [​IMG]. Поэтому внутрь контура, замкнутого полуокружностью
    в пределе бесконечно большого радиуса, попадёт бесконечно много особых точек. Как ещё можно замкнуть контур? Заметим, что [​IMG].
    Отсюда следует, что можно попробовать включить в контур интегрирования отрезок, параллельный вещественной оси. Контур замкнётся двумя
    вертикальными отрезками, в пределе находящимися бесконечно далеко от мнимой оси (см. рис. 5).
    [​IMG]
    [​IMG]
    На вертикальных участках контура [​IMG]. Гиперболический косинус с ростом аргумента (по модулю) растёт экспоненциально, поэтому
    в пределе [​IMG] интегралы по вертикальным участкам стремятся к нулю.
    [​IMG]
    Итак, в пределе [​IMG]
    [​IMG].
    С другой стороны, внутри контура интегрирования находятся две особые точки подынтегральной функции. Вычеты в них
    [​IMG],
    [​IMG].
    Следовательно,
    [​IMG].
    [​IMG]

    Пример 6. Подынтегральная функция определённого и контурного интегралов различны.
    Существует очень важный случай вычисления определённых интегралов методом контурного интегрирования. До сих пор подынтегральная
    функция контурного интеграла либо просто совпадала с подынтегральной функцией определённого интеграла, либо переходила в неё отделением
    вещественной или мнимой части. Но не всегда всё оказывается так просто. Вычислим интеграл [​IMG].
    В смысле выбора контура особой проблемы нет. Хотя у функции под интегралом бесконечно много простых полюсов [​IMG], мы уже знаем
    по опыту предыдущего примера, что нужен прямоугольный контур, так как [​IMG]. Единственное отличие от примера 5 заключается в том,
    что на прямую [​IMG] попадает полюс подынтегральной функции [​IMG], который нужно обойти. Поэтому выбираем изображённый
    на рис. 6 контур.
    [​IMG]
    Рассмотрим контурный интеграл [​IMG]. Мы не станем расписывать его на каждом участке контура, ограничившись горизонтальными
    участками. Интеграл по вещественной оси в пределе [​IMG] стремится к искомому. Запишем интегралы по остальным участкам:
    [​IMG].
    В пределе [​IMG] и [​IMG] первые два интеграла дадут [​IMG], потом они войдут в контурный интеграл в сумме
    с искомым, который отличается знаком. В результате из контурного интеграла искомый определённый интеграл выпадет. Это означает, что
    подынтегральная функция была выбрана неверно. Рассмотрим другой интеграл: [​IMG]. Контур оставляем прежним.
    [​IMG]
    Для начала снова рассмотрим интегралы по горизонтальным участкам. Интеграл вдоль вещественной оси перейдёт в [​IMG].
    Этот интеграл равен нулю как интеграл нечётной функции в симметричных пределах.
    [​IMG]
    В пределе [​IMG] и [​IMG] первые две скобки обратятся в нуль, снова образовав интегралы от нечётных функций
    в симметричных пределах. А вот последняя скобка с точностью до множителя даст искомый интеграл. Имеет смысл продолжать вычисление.
    Аналогично примеру 5 к нулю стремятся интегралы по вертикальным участкам контура при [​IMG]. Остаётся найти интеграл
    по полуокружности, где [​IMG]. Как в примере 4, вычисляем интеграл, учитывая малость [​IMG]:
    [​IMG].
    Итак, у нас есть всё, чтобы записать в пределе [​IMG] и [​IMG] контурный интеграл:
    [​IMG]
    А с другой стороны, внутри контура интегрирования оказался полюс подынтегральной функции [​IMG], причём
    [​IMG].
    Таким образом,
    [​IMG].

    Пример 7. Интеграл от функции с логарифмической особенностью.
    Обратимся к многозначным функциям и начнём с логарифма под интегралом. Вычислим интеграл [​IMG].
    У логарифма имеется точка ветвления, которую нужно обязательно обойти. В контур обязательно войдёт полуось [​IMG]. Как замкнуть контур?
    Заметим, что на половине вещественной оси [​IMG] знаменатель имеет тот же вид, что и на полуоси [​IMG].
    Поэтому контур выберем так, как показано на рис. 7.
    [​IMG]
    [​IMG]
    Начнём с интегралов по прямолинейным участкам контура:
    [​IMG]
    Следует обратить внимание, что на участке от [​IMG] до [​IMG] переменная интегрирования записана как [​IMG].
    Нужно понимать, что записать [​IMG] было бы ошибкой. При обходе контура по большой полуокружности аргумент именно увеличивается
    на величину [​IMG].
    На участке контура [​IMG] подынтегральная функция ведёт себя как [​IMG] при [​IMG]. Следовательно,
    интеграл по большой полуокружности в пределе её бесконечного радиуса стремится к нулю.
    Аналогично на малой полуокружности подынтегральная функция ведёт себя как [​IMG] при [​IMG]. Итак, в пределе [​IMG] и [​IMG]
    [​IMG]
    С другой стороны, внутри контура интегрирования находится особая точка [​IMG], причём
    [​IMG].
    Итак,
    [​IMG].
    Отделяем вещественную часть:
    [​IMG].
    Замечание. Отделяя мнимую часть, мы получили бы значение ещё одного интеграла.

    Пример 8. Интеграл от функции с логарифмической особенностью: снова изменение подынтегральной функции.
    Ещё один пример, когда подынтегральные функции определённого и контурного интегралов различны. Вычислим интеграл [​IMG].
    Контур можно использовать всё тот же, что и в примере 7: структура интеграла это допускает. Однако на этот раз логарифм умножается на нечётную
    функцию. В результате при вычислении интеграла [​IMG] вклады горизонтальных участков контура компенсируют друг друга.
    Искомый интеграл сокращается — так же, как это произошло в примере 6.
    Мы не будем убеждаться в сокращении искомого интеграла в рассмотренной схеме вычислений, а сразу предложим ведущий к ответу путь.
    Вычислять следует контурный интеграл [​IMG] по тому же контуру (см. рис. 8).
    [​IMG]
    Аналогично примеру 7 легко показать, что интегралы по полуокружностям в пределе [​IMG] и [​IMG] стремятся к нулю.
    Рассмотрим интегралы по горизонтальным участкам:
    [​IMG]
    [​IMG]
    Как видно, ненужный интеграл в контурный интеграл не войдёт. В пределе [​IMG] и [​IMG]
    [​IMG].
    С другой стороны, внутри контура находится особая точка [​IMG], причём
    [​IMG].
    Следовательно,
    [​IMG].
    Отделяя мнимую часть, находим:
    [​IMG].

  2. Примеры вычисления определённых интегралов с помощью контурного
    интегрирования в комплексной плоскости (окончание)

    Пример 9. Интеграл от функции со степенной особенностью. Разрезы на комплексной плоскости.
    Иногда подынтегральная функция такова, что выбор контура осложняется сильной ограниченностью вариантов элементов контура, по которым
    интеграл удастся вычислить. На примере интеграла [​IMG] поясним суть проблемы и укажем, как поступать в этом случае.
    Вычислять будем контурный интеграл [​IMG]. Выберем контур интегрирования. Естественно, в него войдёт полуось [​IMG].
    Только точку [​IMG] нужно обойти: степенная функция многозначна, а точка [​IMG] является точкой ветвления.
    Как можно замкнуть контур? Оказывается, оптимальный вариант — контур, изображённый на рис. 9.
    [​IMG]
    Поясним рис. 9. Подынтегральная функция многозначна, так как в ней присутствует степенная функция.
    Вообще говоря, логарифмическая функция в предыдущих примерах тоже была многозначна, но к каким-то специфическим следствиям это
    не приводило. Отличие в выбранном контуре. В данном примере при обходе контура мы обходим точку ветвления, вследствие чего может
    произойти переход к другой ветви многозначной функции. Чтобы этого избежать, вводится разрез (отмечен красной прямой).
    В результате когда мы проходим отрезок [​IMG] слева направо, мы двигаемся по верхнему берегу разреза. Когда мы обошли точку
    ветвления по участку [​IMG] и двигаемся по тому же отрезку, но в обратном направлении, то мы уже двигаемся по нижнему берегу разреза.
    Формально это означает, что необходимо учитывать увеличение аргумента на [​IMG] при обходе точки ветвления.
    Переходим к вычислению. Сразу заметим, что интегралы по дугам окружностей в пределе [​IMG] и [​IMG] стремятся к нулю — это легко показать.
    Аккуратно проведём интегрирование по берегам разреза:
    [​IMG].
    В пределе [​IMG] и [​IMG] получим с точностью до множителя искомый интеграл.
    С другой стороны внутри контура интегрирования попал простой полюс подынтегральной функции [​IMG], причём
    [​IMG].
    Таким образом,
    [​IMG],
    [​IMG].

    Пример 10. Отслеживание изменения аргумента при обходе точек ветвления.
    При вычислении несобственных интегралов второго рода обычно требуется обходить в комплексной плоскости точки ветвления подынтегральной
    функции. При этом важно отследить, как меняется аргумент при обходе точки ветвления. Мы продемонстрируем это на простом примере, чтобы
    технические детали не заслонили основной идеи. Вычислим интеграл [​IMG]. Очевидно, этот интеграл равен [​IMG].
    Вычисление почти устное: применима формула Ньютона-Лейбница.
    Теперь вычислим этот интеграл, рассматривая контурный интеграл [​IMG]. Подынтегральная функция имеет две точки ветвления [​IMG].
    Для выделения ветвей проводим разрез по отрезку [​IMG], сами точки ветвления обходим — в результате получается изображённый
    на рис. 10 контур интегрирования.
    [​IMG][​IMG]
    Интегралы по малым окружностям в пределе их бесконечно малого радиуса стремятся к нулю. Дальше нужно проводить интегрирование по берегам
    разреза. Здесь следует сделать замечание. Конечно, мы обошли особые точки, но при обходе точек ветвления нужно отслеживать, с какой именно
    ветвью многозначной функции мы имеем дело. Принципиальную роль здесь играет аргумент участвующих в расчёте величин. В частности, важно знать,
    как меняется аргумент всей подынтегральной функции при обходе контура. Прежде всего следует зафиксировать ветвь многозначной функции. Потребуем,
    чтобы на верхнем берегу разреза подынтегральная функция была равна [​IMG]. Перепишем рассматриваемую комплексную функцию
    в виде [​IMG]. Посмотрим, что происходит с [​IMG] при обходе точки [​IMG] по участку [​IMG]. Заметим, что при этом приращение
    аргумента [​IMG] (точка [​IMG] не обходилась) и [​IMG] (произошёл обход точки [​IMG] в отрицательном направлении).
    Таким образом, [​IMG]. Следовательно, при переходе по участку контура [​IMG] с верхнего берега
    разреза на нижний функция приобретёт множитель [​IMG], т.е. в пределе бесконечно малого радиуса участков [​IMG] и [​IMG]
    [​IMG].
    С другой стороны этот контурный интеграл равен [​IMG]. Чтобы найти вычет, разложим функцию в ряд Лорана в окрестности
    бесконечно удалённой точки:
    [​IMG].
    Вычет — взятый с противоположным знаком коэффициент при минус первой степени, т.е. [​IMG]. Чему равен корень [​IMG]?
    Это зависит от выбранной ветви функции [​IMG]. Может быть [​IMG] или [​IMG]. Чтобы сделать выбор, рассмотрим обход точки [​IMG],
    но не до нижнего берега разреза, а до вещественной оси (см. рис. 11). Тогда [​IMG].
    При этом [​IMG]. До обхода точки [​IMG] [​IMG], а при обходе приращение
    аргумента составило [​IMG]. Поэтому [​IMG], т.е. [​IMG]. Таким образом, [​IMG], а потому
    [​IMG].

    Пример 11. Интеграл от функции с точками ветвления.
    Покажем, как вычисляются более сложные интегралы от функций, имеющих точки ветвления. Расчёт по сути аналогичен показанному в примере 10,
    поэтому комментарии будут менее подробные. Вычислим интеграл [​IMG].
    Контур интегрирования мало отличается от использованного в предыдущем примере. Теперь точки ветвления [​IMG].
    Они по-прежнему обходятся по малым окружностям, между точками ветвления проведён разрез.
    [​IMG]
    При обходе точки ветвления [​IMG]
    [​IMG].
    Снова интегралы по малым окружностям в пределе их бесконечно малого радиуса стремятся к нулю, поэтому в этом пределе
    [​IMG].
    С другой стороны этот контурный интеграл равен [​IMG]. Как и в примере 10, разложим функцию в ряд Лорана в окрестности
    бесконечно удалённой точки:
    [​IMG]
    [​IMG].
    Выделяя минус первую степень и находим [​IMG]. Значение корня из минус единицы снова
    определим, рассматривая обход точки [​IMG] по дуге окружности до вещественной оси. При этом приращение аргумента функции
    под интегралом составит [​IMG], но
    [​IMG],
    а значит [​IMG].
    Таким образом,
    [​IMG].
    [​IMG]

  3. с точками ветвления классно.
    а как считать приращение аргумента ?
    это для меня всегда было загадкой

  4. panicdoctor, по поводу аргумента. Для начала напомню, что это вообще такое. Если есть комплексное число
    [​IMG], то его аргументом (а точнее, главным значением аргумента) называется число
    [​IMG]
    В геометрической интерпретации комплексное число изображается точкой на плоскости, абсцисса которой — вещественная
    часть числа, ордината — мнимая часть числа. С другой стороны комплексное число характеризуется модулем и аргументом.
    Модуль в геометрической интерпретации — расстояние от точки, изображающей число, до начала координат, а аргумент — угол,
    который составляет радиус-вектор точки, изображающей число, с осью абсцисс. Угол отсчитывается от оси абсцисс против часовой
    стрелки (см. рис. 13).
    [​IMG]

    Теперь к вопросу о том, как определяется изменение аргумента. Рассмотрим точку [​IMG]. Предположим, что мы переходим
    в точку [​IMG] по дуге окружности [​IMG] в комплексной плоскости (см. рис. 14). При этом радиус-вектор точки
    совершает поворот на угол [​IMG]. Это и есть изменение аргумента. Если переход совершается по дуге окружности [​IMG],
    то радиус-вектор точки поворачивается тоже на угол [​IMG], но в направлении, противоположному тому, в котором угол
    отсчитывается. Поэтому изменение аргумента составит [​IMG].
    Если же мы переходим, например, в точку [​IMG] (см. рис. 15), то при переходе по пути [​IMG] изменение аргумента будет нулевым,
    так как в результате радиус-вектор точки вернётся в прежнее положение, но угол, который он образует с осью абсцисс, в процессе
    перехода сначала возрастает, а потом убывает.
    Если же переход осуществляется по пути [​IMG], то аргумент получает приращение [​IMG].
    [​IMG][​IMG]

    В примерах 10, 11 требовалось находить изменение аргумента величин [​IMG], [​IMG] и т.п.
    В этих случаях радиус-вектор следует проводить из точек [​IMG], [​IMG] соответственно, так как имеет
    значение обход именно вокруг этих точек. Это следует и из формального определения аргумента: вычисление аргумента
    существенно зависит от знака вещественной части. При нахождении аргумента некоторой функции от [​IMG] следует смотреть,
    где происходит обращение в нуль вещественной части этой функции.

  5. Schufter, большое спасибо за истолкование )

Поделиться этой страницей


Форум НИЯУ МИФИ

Понравилась статья? Поделить с друзьями:
  • Как составить возражение на акт камеральной налоговой проверки
  • Как найти песню по припев слов
  • Как составить свой бизнес план по обществу 7 класс
  • Как найти потенциал концентрических сфер
  • Как найти портал в энд по координатам