Как найти точки пересечения функций без построения

Общие сведения

Общие сведения

Классификация уравнений

Функция — некоторое выражение, описывающее зависимость между двумя величинами. Следует отметить, что последних может быть несколько. Параметр, который не зависит от других элементов, называется аргументом, а зависимое тождество — значением функции.

Точка пересечения графиков означает, что у системы уравнений существует общее решение. Следует отметить, что для их нахождения можно воспользоваться графическим и аналитическим методом. Первый подразумевает построение графического представления выражения с переменной.

Чтобы найти пересечение графиков функций аналитическим способом, необходимо решить уравнение, корни которого являются искомыми точками. Для их нахождения специалисты рекомендуют получить базовые понятия о равенствах с переменными, а также о методах их решения.

Классификация уравнений

Уравнение — тождество, содержащее неизвестные величины (переменные), которые следует найти при помощи определенного алгоритма. Последний зависит от типа выражений. Тождества классифицируются на несколько типов:

  1. Линейные.
  2. Квадратные.
  3. Кубические.
  4. Биквадратные.

Линейными являются уравнения, содержащие единичную степень, т. е. 2t=4. Квадратные — тождества, у которых переменная возведена в квадрат. Они имеют следующий вид: Pt^2+St+U=0, где Р и S — коэффициенты при неизвестных, а U — свободный член.

Кубическое — уравнение вида Ot^3+Pt^2+St+U=0, где O, Р и S — коэффициенты при переменных, а U — константа. Последний вид — равенства, в которых при переменной присутствует четвертая степень (Nt^4+Ot^3+Pt^2+St+U=0).

Равносильные тождества

Равносильные тождества

При выполнении математических операций каждое выражение может быть заменено на эквивалентное, т. е. равносильное. Иными словами, равносильными называются уравнения, различные по составляющим их элементам, но имеющие одинаковые корни. Следует отметить, что ими являются также выражения, не имеющие решений. Математики выделяют три свойства: симметричность, транзитивность и разложение на множители.

Формулировка первого: когда I уравнение равносильно II, то значит, и II равносильно I. Суть транзитивности состоит в том, что если I равносильно II, а II — III, то значит I эквивалентно III. Второе свойство имеет такую формулировку: произведение двух элементов, содержащих переменные, равное нулевому значению, эквивалентно двум выражениям, которые можно приравнять к 0. Математическая запись утверждения имеет такой вид: R(t)*S(t)=0 {R(t)=0 и S(t)=0}.

Математические преобразования

Для решения уравнения необходимо выполнить некоторые математические преобразования. Они должны выполняться грамотно, поскольку любая ошибка приводит к образованию ложных корней. Допустимыми операциями являются следующие:

Математические преобразования

  1. Правильное раскрытие скобок с учетом алгебраической операции и знаков.
  2. Упрощение выражения (приведение подобных величин).
  3. Перенос элементов в любые части равенства с противоположным знаком.
  4. Возможность прибавлять или вычитать эквивалентные величины.
  5. Деление и умножение на любые эквивалентные значения, не превращающие тождества в пустое множество.

Специалисты рекомендуют избегать операций, при которых сокращаются неизвестные величины. Следствием этого могут стать ложные корни. Кроме того, делитель не должен иметь значения, при которых его значение равно 0. Последнее условие следует всегда проверять, а при решении ни один корень уравнения не должен соответствовать значению переменной при нахождении окончательных корней.

Иными словами, в выражении (t+2)^2=0 для упрощения можно разделить обе части на (t+2) при условии, что t не равно -2, т. к. [(t+2)^2]/(t+2)=0/(t+2).

Однако при решении (t+2)=0 получается, что t=-2, а это недопустимо. Следовательно, вышеописанный метод не всегда подходит.

Разложение на множители

Для решения уравнений при выполнении математических преобразований могут потребоваться специальные формулы разложения на множители. Их еще называют тождествами сокращенного умножения. К ним относятся следующие:

  1. Квадрат суммы и разности: (p+r)^2=p^2+2pr+r^2 и (p-r)^2=p^2-2pr+r^2 соответственно.
  2. Разность квадратов: p^2-r^2=(p-r)(p+r).

В некоторых случаях можно воспользоваться сразу двумя соотношениями, т. е. выделить квадрат суммы, а затем из первого — разность квадратов. Выделение первого осуществляется группировкой посредством скобок в выражении, а затем введение положительного и отрицательного элементов, т. е. s^2+4s-5=s^2+4s+4-4-5=(s^2+4s+4)-4-5=(s+2)^2 -9. Для получения всех элементов формулы «p+r)^2=p^2+2pr+r^2» нужно прибавить, а затем отнять 4. При этом значение равенства не изменится, поскольку 4-4=0.

Следует отметить, что математические преобразования выражения (s+2)^2 -9 не заканчиваются, поскольку его можно представить в виде разности квадратов, т. е. (s+2-9)(s+2+9)=(s-7)(s+11). Кроме того, формулы сокращенного умножения рекомендуется применять при понижении степени.

Методики нахождения точек

Чтобы узнать, пересекаются ли графики функций, нужно приравнять соответствующие тождества, а затем решать уравнение. Однако при такой операции могут получиться различные равенства с неизвестными. В этом случае требуется обратить внимание на нижеописанные методики решения для каждого вида.

Первой и второй степени

Уравнение первой степени, или линейное, решается очень просто. Для этого необходимо перенести переменные величины в одну, а известные — в другую сторону. Методика решения имеет следующий вид:

  1. Раскрыть скобки и привести подобные коэффициенты.
  2. Выполнить перенос известных в одну, а неизвестных — в другую часть равенства.
  3. Произвести необходимые математические преобразования.
  4. Найти корень.

Сложнее решается квадратное уравнение. Существует несколько способов нахождения его корней:

Разложение на множители

  1. Разложить на множители.
  2. Выделить полный квадрат.
  3. Найти дискриминант.
  4. По теореме Виета.

Первый способ применяется довольно часто, поскольку с его помощью можно понижать степень при неизвестной величине. Второй подразумевает выделение квадрата по одной из формул сокращенного умножения. Чтобы воспользоваться одним из двух методов, необходимо знать соответствующие тождества (правила разложения на множители).

Однако не всегда можно быстро решить квадратное уравнение при помощи первых двух методов. Еще один вариант — нахождение корней через дискриминант (Д), т. е. дополнительный параметр, позволяющий сразу находить решения. Он находится по следующей формуле: Д=(-S)^2 -4PU.

Методики нахождения точек

Следует отметить, что при Д>0 переменная принимает два значения, которые превращают равенство в истину. Если Д=0, то корень только один. Когда Д<0, искомое тождество с неизвестными вообще не имеет решений. Определить значение корней возможно по таким соотношениям: t1=[-S-(Д)^(1/2)]/2P и t2=[-S+(Д)^(1/2)]/2P, где t1 и t2 — точки пересечения с осью абсцисс.

Если коэффициент при второй степени (P) эквивалентен 1, то дискриминант можно не высчитывать, а воспользоваться сокращенным вариантом решения — теоремой Виета. Суть ее заключается в подборе корней по таким формулам: t1+t2=-S и t1*t2=U. Иногда для реализации этой методики нужно сократить обе части на коэффициент Р. Алгоритм решения квадратных уравнений имеет следующий вид:

  1. Выполнить при необходимости различные алгебраические преобразования (раскрыть скобки и привести подобные слагаемые).
  2. Выбрать один из способов решения и реализовать его.
  3. Проверить корни, подставив их в исходное выражение.

Следует отметить, что распространенная ошибка новичков — отсутствие проверки. В результате неправильных действий образуются ложные корни, а оценка на контрольной, зачете или экзамене существенно снижается.

Кубические и биквадратные

Решение тождеств кубического и биквадратного типов с неизвестными осуществляется двумя способами. К ним относятся:

  1. Понижение степени (разложение на множители).
  2. Замена переменной.

В первом случае необходимо выполнить преобразования, которые позволят применить одну из формул сокращенного умножения. Однако этот метод применяется довольно редко, поскольку математики отдают предпочтение второму способу. Для его реализации вводится дополнительная переменная, обладающая более низкой степенью и существенно упрощающая выражение. Алгоритм имеет такой вид:

Первой и второй степени

  1. Выполняются необходимые математические преобразования.
  2. Выражается переменная через другую.
  3. Решается квадратное или линейное уравнение.
  4. Промежуточные корни, полученные в третьем пункте алгоритма, подставляются во второй.
  5. Вычисляются искомые корни.
  6. Осуществляется проверка.
  7. Отсеиваются ложные решения, и записывается ответ.

Для проверки рекомендуется воспользоваться онлайн-приложениями, позволяющими вычислить корни, а также построить графики функций. Кроме того, для кубического многочлена Pt 3 +St 2 +Ut+V=0 существует еще одна методика нахождения корней. Она имеет следующий вид:

  1. Уравнение требуется разделить на P.
  2. Осуществить замену: t=m-(S/(3P)). При этом получается тождество вида m^3 +km+l=0.
  3. Найти значение коэффициентов по формулам: k=[2S 3 -9PSU+27(P 2 )V] / (27P 3 ) и l=[(3PU-S 2 )/(3P 2 )]. Подставить их во второй пункт и найти промежуточные корни, при помощи которых найти основные значения переменных.

Следует отметить, что важным пунктом методики является правильный выбор выражения замены, а затем верное выполнение математических преобразований.

Пример решения

Для закрепления знаний необходимо перейти к практическому решению заданий.Одной из простых задач является следующая: найдите координаты точки пересечения графиков линейных функций z=2t+7 и z=t-1. Решается задача по такому алгоритму:

Кубические и биквадратные

  1. Приравнять уравнения: 2t+7=t-1.
  2. Перенести переменные влево, а константы — вправо: 2t-t=-1-7.
  3. Привести подобные коэффициенты: t=-8.
  4. Найти координаты второй составляющей: z=-8-1=-9.
  5. Искомая точка пересечения: (-8;-9).

В четвертом пункте нужно подставить координату по оси абсцисс в любое из уравнений для получения второй составляющей, необходимой для точки. Следует отметить, что в этой задаче нет необходимости проводить математические преобразования. Однако существуют и более сложные задания, в которых необходимо решать квадратные уравнения, а также раскрывать скобки.

Таким образом, для определения точки пересечения графиков необходимо уметь находить корни уравнения, а также выполнять алгебраические преобразования.

Координаты точки пересечения графиков функций

Как найти?

  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие $ x $, а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ — это коэффициент угла наклона. Если $ k_1 neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

$$ 2x-5 = x+3 $$

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

$$ 2x — x = 3+5 $$

$$ x = 8 $$

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2cdot 8 — 5 = 16 — 5 = 11 $$

Итак, $ M (8;11) $ — является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M (8;11) $$
Пример 2
Дано $ f(x)=2x-1 $ и $ g(x) = 2x-4 $. Найти точки пересечения графиков функций.
Решение
Как найти? Опять же обращаем внимание на то, что угловые коэффициенты равны $ k_1 = k_2 = 2 $. Это означает, что линейные функции параллельны между собой, поэтому у них нет точек пересечения!
Ответы
Графики функций параллельны, нет точек пересечения.

 Случай двух нелинейных функций 

Пример 3
Найти координаты точки пересечения графиков функций: $ f(x)=x^2-2x+1 $ и $ g(x)=x^2+1 $
Решение

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

$$ x^2-2x+1=x^2+1 $$

Разносим по разным сторонам уравнения члены с $ x $ и без него:

$$ x^2-2x-x^2=1-1 $$

$$ -2x=0 $$

$$ x=0 $$

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты $ y $. Подставляем $ x = 0 $ в любое из двух уравнений условия задачи. Например:

$$ f(0)=0^2-2cdot 0 + 1 = 1 $$

$ M (0;1) $ — точка пересечения графиков функций

Ответ
$$ M (0;1) $$

Как определить точку пересечения функций без построения графика?

На этой странице находится вопрос Как определить точку пересечения функций без построения графика?. Здесь же – ответы на него,
и похожие вопросы в категории Алгебра, которые можно найти с помощью
простой в использовании поисковой системы. Уровень сложности вопроса
соответствует уровню подготовки учащихся 5 — 9 классов. В комментариях,
оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С
ними можно обсудить тему вопроса в режиме on-line. Если ни один из
предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой
строке, расположенной вверху, и нажмите кнопку.

Как найти точки пересечения графиков

Два графика на координатной плоскости, если они не параллельны, обязательно пересекаются в какой-либо точке. И нередко в алгебраических задачах такого типа требуется найти координаты данной точки. Поэтому знание инструкций по ее нахождению принесет большую пользу как школьникам, так и студентам.

Как найти точки пересечения графиков

Инструкция

Любой график можно задать определенной функцией. Для того чтобы найти те точки, в которых графики пересекаются, нужно решить уравнение, которое имеет вид: f₁(x)=f₂(x). Результат решения и будет той точкой (или точками), которые вы ищете. Рассмотрите следующий пример. Пусть значение y₁=k₁x+b₁, а значение y₂=k₂x+b₂. Для нахождения точек пересечения на оси абсцисс необходимо решить уравнение y₁=y₂, то есть k₁x+b₁=k₂x+b₂.

Преобразуйте данное неравенство, получив k₁x-k₂x=b₂-b₁. Теперь выразите x: x=(b₂-b₁)/(k₁-k₂). Таким образом вы найдете точку пересечения графиков, которая находится по оси OX. Найдите точку пересечения на оси ординат. Просто подставьте в какую-либо из функций значение x, которое вы нашли ранее.

Предыдущий вариант подходит для линейной функции графиков. Если же функция квадратичная, воспользуйтесь следующими инструкциями. Таким же способом, как и с линейной функцией, найдите значение x. Для этого решите квадратное уравнение. В уравнении 2x² + 2x — 4=0 найдите дискриминант (уравнение дано для примера). Для этого используйте формулу: D= b² – 4ac, где b – значение перед X, а c – это числовое значение.

Подставив числовые значения, получите выражение вида D= 4 + 4*4= 4+16= 20. От значения дискриминанта зависят корни уравнения. Теперь к значению переменной b со знаком «-» прибавьте или отнимите (по очереди) корень из полученного дискриминанта, и поделите на удвоенное произведение коэффициента a. Так вы найдете корни уравнения, то есть координаты точек пересечения.

Графики квадратичной функции имеют особенность: ось OX будет пересекаться два раза, то есть вы найдете две координаты оси абсцисс. Если вы получите периодическое значение зависимости X от Y, тогда знайте, что график пересекается в бесконечном количестве точек с осью абсцисс. Проверьте, правильно ли вы нашли точки пересечения. Для этого подставьте значения X в уравнение f(x)=0.

Источники:

  • Нахождение точек пересечения прямых

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Нахождение точки пересечения в осью координат является типовым заданием. Чтобы его решить, нам нужна какая-то функция, пусть её уравнение будет y = ax + b.

Пусть нам нужно найти точку пересечения с осью Ox, тогда решим уравнение ax + b = 0 (то есть мы подставили y = 0).

тогда x = (-b/a), y = 0 => точка пересечения M = (-b/a, 0)

Пусть теперь нам нужно найти точку пересечения с осью Oy, тогда решим уравнение y = a*0 + b (то есть мы подставили x = 0).

тогда y = b, x = 0 => точка пересечения M = (0, b)

Понравилась статья? Поделить с друзьями:
  • Заговор как чтоб найти работу
  • Как составить диалог по немецкому языку 5 класс учебник
  • Чек почта россии как найти трек номер
  • Как составить жалобу в министерства здравоохранения
  • Как найти смысл производной функции