Как найти точки подозрительные на экстремум

Классический метод решения задачи одномерной оптимизации

Под классическим
методом подразумевается подход к поиску
точек экстремума функции, который
основан на дифференциальном исчислении.
Из математического анализа известны
необходимые и достаточные условия
экстремума функции одной переменной.

Пусть функция

кусочно-непрерывна и кусочно-гладка на
отрезке
.
Это значит, что на отрезке

может существовать лишь конечное число
точек, в которых

либо терпит разрыв первого рода, либо
непрерывна, но не имеет производную.
Тогда как известно точками экстремума
функции

на

могут быть лишь те точки, в которых
выполняется одно из следующих условий:
1) либо

терпит разрыв: 2) либо

непрерывна, но производная

не существует; 3) либо производная
существует и равна нулю; 4) либо граничные
точки отрезка
.
Все такие точки принято называть точками,
подозрительными на экстремум
.

Поиск точек
экстремума функции

начинают с нахождения всех «подозрительных»
точек. После того как все эти точки
найдены, проводят дополнительное
исследование и отбирают среди них те,
которые являются точками локального
минимума или максимума. Для этого обычно
исследуют знак первой производной

в окрестности подозрительной точки.
Для того, чтобы подозрительная точка

была точкой локального минимума,
достаточно,
чтобы существовала такая окрестность
,
что

при

и

при
.
Если же

при

и

при
,
то точка

— точка максимума функции
.

Если найдется
такое положительное
,
что

сохраняет неизменный знак при
,
то точка

не является точкой экстремума функции
.

В тех случаях,
когда удается вычислить в подозрительной
точке производные второго и более
высокого порядков, то применяют
достаточное условие более общего вида.
А именно, пусть известны производные
,
,…,
,
причем

при
,
а
,
.
Если

— четное число, то в случае

в точке

реализуется локальный минимум, а в
случае

— локальный максимум. Если же

нечетно, то при

в точке

не может быть локального экстремума,
при

(или
)
в случае

в точке

имеем локальный минимум (максимум), а в
случае

— локальный максимум (минимум).

Чтобы найти
глобальный минимум (максимум) функции

на
,
нужно перебрать все точки локального
минимума (максимума) на

и среди них выбрать точку с наименьшим
(наибольшим) значением функции, если
таковое существует.

Поскольку применение
достаточных условий требует вычисления
высших производных функции
,
то в вычислительном плане проще сравнить
значения

во всех стационарных точках, не интересуясь
их характером. С учетом этого можно
предложить следующий алгоритм
классического метода для решения задачи
одномерной оптимизации (2.1).

Шаг 1. Найти все
точки, подозрительные на экстремум, в
том числе и стационарные
точки, т.е. корни уравнения

.
(2.6)

Пусть это будут
точки
.
Положить
,
.

Шаг 2. Вычислить
значения

функции

в точках
,
.

Шаг 3. Найти
.
Положить
.

Пример 2.5.
Решить задачу

классическим методом.

Шаг 1. Находим корни
уравнения

из интервала
:
,
.
Полагаем
,
.

Шаг 2. Вычисляем
значения

в точках
,
:

,
,
,
.

Шаг 3.
Находим
=-17=.
Поэтому
,
.

Классический метод
решения задачи (2.1) следует использовать
в тех случаях, когда достаточно просто
удается выявить все подозрительные
точки и реализовать достаточные условия.
Однако, этот метод имеет весьма
ограниченное применение. Дело в том,
что вычисление производной

в практических задачах зачастую является
непростым делом. Например, может
оказаться, что значение функции

определяются из наблюдений или каких-либо
физических экспериментов, и получить
информацию о ее производной крайне
затруднительно. Но даже в тех случаях,
когда производную все же удается
вычислить, решение уравнения (2.6) и
выявление других точек, подозрительных
на экстремум, может быть связано с
серьёзными трудностями. Поэтому важно
иметь также и другие методы решения
задачи (2.1) не требующие вычисления
производных, более удобные для программной
реализации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Экстремум функции двух переменных

Как найти?

Постановка задачи

Найти экстремум функции двух переменных $ z = z(x,y) $

План решения

Экстремумы функции двух переменных возможны в стационарных точках функции. Стационарными точками называются точки $ M(x_1,y_1), M(x_2,y_2)… $, в которых первые частные производные функции равны нулю: $ z(x,y) = 0 $

Для нахождения стационарных точек (подозрительных на экстремум) составляем систему:

$$ begin{cases} z’_x = 0 \ z’_y = 0 end{cases} $$

Решая систему получаем точки $ M(x_1,y_1), M(x_2,y_2)… $, каждую из которых нужно проверить на экстремум.

Проверку осуществляется с помощью подстановки точек в выражение, называемое достаточным условием существования экстремума:

$$ A = z»_{xx} cdot z»_{yy} — (z»_{xy})^2 $$

Если в точке $ M(x_1,y_1) $:

  1. $ A>0 $ и $ z»_{xx} > 0 $, то $ M(x_1,y_1) $ точка минимума
  2. $ A >0 $ и $ z»_{xx} < 0 $, то $ M(x_1,y_1) $ точка максимума
  3. $ A < 0 $, то $ M(x_1,y_1) $ не является точкой экстремума
  4. $ A = 0 $, то требуется дополнительное исследование (по определению)

Итак, необходимо выполнить действия:

  1. Найти частные производные первого порядка. Приравнять их к нулю и решить систему уравнений. Получить точки $ M(x_1,y_1), M(x_2,y_2),… $
  2. Найти частные производные второго порядка в точках $ M(x_1,y_1), M(x_2,y_2),… $
  3. Используя достаточное условие существования экстремума делаем вывод о наличии экстремума в точках $ M(x_1,y_1), M(x_2,y_2),… $

Примеры решений

Пример 1
Найти экстремумы функции двух переменных $ z = x^2 -xy +y^2 $
Решение

Находим частные производные первого порядка:

$$ z’_x = 2x — y $$ $$ z’_y = -x + 2y $$

Приравниваем полученные выражения к нулю и решаем систему двух уравнений:

$$ begin{cases} 2x-y = 0 \ -x + 2y = 0 end{cases} $$

Решив систему получаем стационарную точку (подозрительные на экстремум):

$$ M (0,0) $$

Далее вычисляем значения частных производных второго порядка в точке $ M $:

$$ z»_{xx} Big |_M = 2 $$ $$ z»_{yy} Big |_M= 2 $$ $$ z»_{xy} Big |_M = -1 $$

Подставляя найденные значения в достаточное условие экстремума функции, проводим исследование знаков:

$$ A = Big |_M = z»_{xx} Big |_M cdot z»_{yy} Big |_M — (z»_{xy} Big |_M)^2 = 2 cdot 2 — (-1)^2 = 3 $$

Так как получили $ A > 0 $ и $ z»_{xx} > 0 $, то получается $ M(0,0) $ точка минимума.

Наименьшее значение находится в минимуме и равно:

$$ z_{min} (0,0) = 0^2 — 0 cdot 0 + 0^2 = 0 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
В точке $ M(0,0) $ находится минимум функции; $ z_{min} = 0 $
Пример 2
Найти экстремумы функции двух переменных $ z = x^3 + y^3 — 15xy $
Решение

Составляем систему уравнений из частных производных первого порядка:

$$ begin{cases} z’_x = 3x^2 — 15y = 0 \ z’_y = 3y^2 — 15x =0 end{cases} $$

Получаем стационарные точки $ M_1(0,0) $ и $ M_2(5,5) $, которые необходимо проверить через достаточное условие экстремума.

Вычисляем значение частных прозводных второго порядка в точке $ M_1 $:

$$ z»_{xx} Big |_{M_1} = 6x Big |_{M_1} = 0 $$

$$ z»_{yy} Big |_{M_1} = 6y Big |_{M_2} = 6y Big |_{M_2} = 0 $$

$$ z»_{xy} Big |_{M_1} = -15 $$

Подставляем данные значения в формулу достаточного условия экстремума:

$$ A Big |_{M_1} = 0 cdot 0 — (-15)^2 = -225 $$

Так как $ A < 0 $, то в точке $ M_1(0,0) $ экстремума нет.

Получаем значения частных производных 2 порядка в $ M_2 $:

$$ z»_{xx} Big |_{M_2} = 6x Big |_{M_2} = 6 cdot 5 = 30 $$

$$ z»_{yy} Big |_{M_2} = 6y Big |_{M_2} = 6 cdot 5 = 30 $$

$$ z»_{xy} Big |_{M_2} = -15 $$

Вычисляем значение выражения достаточного условия экстремума:

$$ A = 30 cdot 30 — (-15)^2 = 900 — 225 = 675 $$

Получили $ A > 0 $ и $ z»_{xx} > 0 $, то значит, $ M_2(5,5) $ точка минимума.

Наименьшее значение функции $ z = x^3 + y^3 — 15xy $ равно:

$$ z_{min} |_{M_2} = 5^3 + 5^3 — 15 cdot 5 cdot 5 = 125 + 125 — 375 = -125 $$

Ответ
В $ M_1 (0,0) $ экстремума нет, в $ M_2(5,5) $ минимум функции $ z_{min}=-125 $ 

Пример 1:

Исследовать функцию на экстремум и вычислить значение функции в точках экстремума:

Решение от преподавателя:

Решение.

Пример 2:

Исследуйте на экстремум функцию.

y = х2 – 10х + 5

Решение от преподавателя:

Пример 3:

Найти экстремумы функций двух переменных

z = 2x3 + 6xy2 – 30x – 24y.

Решение от преподавателя:

Пример 4:

Исследовать на экстремум:

Решение от преподавателя:

Необходимое условие экстремума функции одной переменной. 

Уравнение f’0(x*) = 0 — это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает. 

Достаточное условие экстремума функции одной переменной. 
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) > 0 
то точка x* является точкой локального (глобального) минимума функции. 
Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) < 0 
то точка x* — локальный (глобальный) максимум. 
Решение. 
Находим первую производную функции: 
y’ = 6x2+6x 
или 
y’ = 6x(x+1) 
Приравниваем ее к нулю: 
6x2+6x = 0 
x1 = 0 
x2 = -1 
Вычисляем значения функции 
f(0) = -11 
f(-1) = -10 
Ответ: 
fmin = -11, fmax = -10 
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: 
y» = 12x+6 
Вычисляем: 
y»(0) = 6>0 — значит точка x = 0 точка минимума функции. 
y»(-1) = -6<0 — значит точка x = -1 точка максимума функции. 

Пример 5:

Найти стационарные точки и исследовать на экстремум функцию

z = x2 + y2 – 2x – 2y+ 8

Решение от преподавателя:

Исследовать на экстремум функцию z = x2 + y2 – 2x – 2y+ 8

1. Найдем частные производные
https://chart.googleapis.com/chart?cht=tx&chl=frac%7b%20partial%20z%7d%7b%20partial%20x%7d%20=%202cdot%20x-2
https://chart.googleapis.com/chart?cht=tx&chl=frac%7b%20partial%20z%7d%7b%20partial%20y%7d%20=%202cdot%20y-2
2. Решим систему уравнений
2x-2 = 0 
2y-2 = 0 
Получим: x = 1, y = 1 
критическая  точка   M1(1;1) 
3. Найдем частные производные второго порядка
https://chart.googleapis.com/chart?cht=tx&chl=frac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20x%20partial%20y%7d%20=%200
https://chart.googleapis.com/chart?cht=tx&chl=frac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20x%5e%7b2%7d%7d%20=%202
https://chart.googleapis.com/chart?cht=tx&chl=frac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20y%5e%7b2%7d%7d%20=%202
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0)
Вычисляем значения для точки M1(1;1) 
https://chart.googleapis.com/chart?cht=tx&chl=A%20=%20%7bfrac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20x%5e%7b2%7d%7d%7d_%7b(1;1)%7d%20=%202
https://chart.googleapis.com/chart?cht=tx&chl=C%20=%20%7bfrac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20y%5e%7b2%7d%7d%7d_%7b(1;1)%7d%20=%202
https://chart.googleapis.com/chart?cht=tx&chl=B%20=%20%7bfrac%7b%20partial%5e%7b2%7dz%7d%7b%20partial%20x%20partial%20y%7d%7d_%7b(1;1)%7d%20=%200
AC — B2 = 4 > 0 и A > 0 , то в точке M1(1;1) имеется минимум z(1;1) = 6 
Вывод: В точке M1(1;1) имеется минимум z(1;1) = 6;

Пример 6:

Исследовать на экстремум функцию:

Решение от преподавателя:

Пример 7:

Исследовать функцию z(x,y) на экстремум

Решение от преподавателя:


Пример 8:

Исследовать на экстремум функцию:

Решение от преподавателя:

Вычислим производную этой функции и найдем стационарные точки, в которых она обращается в нуль:

Решая это уравнение, находим корни x1 = 1 и x2 = 2. Они являются подозрительными на экстремум в данной задаче. При этом знаки производной нашей функции распределены следующим образом:

Согласно теореме о достаточном условии экстремума первого порядка, полученные точки являются точками локального экстремума, а именно: x1 = 1 — точка локального максимума, причем f(x1) = 11, а x2 = 2 — точка локального минимума, причем f(x2) = 10.

Глобальных экстремумов в этой задаче нет. Это видно из того, что

Итак, локальный максимум достигается в точке x = 1 и равен 11, локальный минимум достигается в точке x = 2, и равен 10.

Пример 9:

Исследуйте на экстремум функцию z = z(x;y).

Решение от преподавателя:


Пример 10:

Исследовать на экстремум:

y = (2*x-8)*(9*x+1) 

Решение от преподавателя:

Необходимое условие экстремума функции одной переменной. 

Уравнение f’0(x*) = 0 — это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает. 
Достаточное условие экстремума функции одной переменной. 

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) > 0 
то точка x* является точкой локального (глобального) минимума функции. 
Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) < 0 
то точка x* — локальный (глобальный) максимум. 
Решение. 
Находим первую производную функции: 
y’ = 36x-70 
Приравниваем ее к нулю: 
36x-70 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=x_%7b1%7d%20=%20frac%7b35%7d%7b18%7d
Вычисляем значения функции 
https://chart.googleapis.com/chart?cht=tx&chl=f(frac%7b35%7d%7b18%7d)%20=%20-frac%7b1369%7d%7b18%7d
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: 
y» = 36 
Вычисляем: 
https://chart.googleapis.com/chart?cht=tx&chl=y%5e%7bprime%20prime%7d(frac%7b35%7d%7b18%7d)%20=%2036%3E0
значит эта точка — минимума функции.

Пример 11:

Найти экстремумы функции z(x,y) при данном условии:

Решение от преподавателя:

Пример 12:

Исследовать на экстремум функцию:

Решение от преподавателя:

Найдем производную f′ (x) = ex − e−x . Чтобы найти критические точки функции f(x), приравняем эту производную к нулю:

Очевидно, что точка x = 0 является решением последнего уравнения. Функция f′(x) строго возрастает (поскольку ). Поэтому она отрицательна при x < 0 и положительна при x > 0.

Следовательно, точка x = 0 является точкой строгого локального минимума функции f(x), и f(0) = 2 — соответствующее минимальное значение.

В данной ситуации можно также применить теорему о достаточном условии экстремума второго порядка. Поскольку f′′(0) = 2 > 0, функция f(x) имеет строгий локальный минимум в точке x = 0.

Кроме того, этот минимум глобальный, потому что

Ответ: точка x = 0 является точкой глобального минимума для исследуемой функции и fmin = f(0) = 2.

Пример 13:

Найти наибольшее и наименьшее значения функции z(x,y) в области D:

Решение от преподавателя:

Пример 14:

Исследовать на экстремум функцию:

y = x3+6*x2-4, [-4;1]. 

Решение от преподавателя:

Необходимое условие экстремума функции одной переменной. 

Уравнение f’0(x*) = 0 — это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает. 
Достаточное условие экстремума функции одной переменной. 

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) > 0 
то точка x* является точкой локального (глобального) минимума функции. 
Если в точке x* выполняется условие: 
f’0(x*) = 0 
0(x*) < 0 
то точка x* — локальный (глобальный) максимум. 
Решение. 
Находим первую производную функции: 
y’ = 3x2+12x 
или 
y’ = 3x(x+4) 
Приравниваем ее к нулю: 
3x(x+4) = 0 
x1 = 0 
x2 = -4 
Вычисляем значения функции на концах отрезка 
f(0) = -4 
f(-4) = 28 
f(-4) = 28.0000000000000 
f(1) = 3.00000000000000 

Ответ: fmin = -4, fmax = 28.

Пример 15:

Исследовать на экстремум функцию

Решение от преподавателя:

Как обычно, начнем с нахождения производной исследуемой функции и точек, подозрительных на экстремум:

Легко видеть, что точка x = 0 является критической.

Найдем вторую производную:

Очевидно, f′′(0) = 0. Воспользуемся теоремой о достаточном условии экстремума n-го порядка и будем дифференцировать функцию до того момента, пока не появится отличная от нуля производная:

Значит, x = 0 — точка локального минимума функции f(x).

Из предыдущего примера следует, что при . В то же время . Поэтому f′′(x) > 0 при . Отсюда следует, что производная f′(x) обращается в нуль в единственной точке x = 0.

Так как ,  минимум в точке x = 0 является глобальным.

Ответ: есть один глобальный минимум f(0) = 4.

Пример 16:

С помощью второй производной исследуйте на экстремум функцию . Найдите наибольшее М и наименьшее m значения этой функции на отрезке [-1, 2].

Решение от преподавателя:

Определяем критические точки

Определяем вторую производную функции

Определяем знаки второй производной в критических точках

Т. к. вторая производная положительная, то в точке х=0 минимум

Т. к. вторая производная отрицательная, то в точке х=1 максимум

Наибольшее М и наименьшее m значения этой функции на отрезке [-1, 2]

Т. к. обе критические точки принадлежат указанному отрезку, то определяем значения функции в полученных точках и на концах отрезка

Т. о., М=у(-1)=6 m=у(2)=-3

Пример 17:

Исследовать на экстремум функцию:

Решение от преподавателя:

Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как

то единственная подозрительная на экстремум точка (в которой все частные производные обращаются в нуль) — это точка a = (3, −2, −1).

Определим, есть ли в этой точке экстремум. Для этого найдем все частные производные второго порядка

и составим из них матрицу полной второй производной f′′(a):

Главные миноры этой матрицы чередуют знаки:

По теореме (достаточное условие экстремума второго порядка) в точке a локальный максимум. Ответ: локальный максимум достигается в точке a = (3, −2, −1) и равен 14.

Ответ: локальный максимум достигается в точке a = (3, −2, −1) и равен 14.

Пример 18:

Найти экстремумы функции:

Решение от преподавателя:

Подозрительные на экстремум точки найдем с помощью леммы Ферма. Так как

то единственной стационарной точкой будет точка a = (0, 0).

Посмотрим, есть ли в ней экстремум. Для этого вычислим частные производные второго порядка

и составим из них матрицу второй производной в точке a:

Очевидно, ее определитель равен нулю. Значит, достаточные условия экстремума из теоремы (достаточное условие экстремума второго порядка) в данном случае не применимы.

Придется использовать определение экстремума. Рассмотрим разность . Она больше нуля при всех y > 0 и меньше нуля при y < 0. Поэтому в точке a = (0, 0) нет экстремума.

Ответ: у функции f нет экстремумов.

Пример 19:

Найти экстремумы функции

Решение от преподавателя:

Очевидно,

и единственная стационарная точка — это a = (0, 0).

Далее вычисляем частные производные второго порядка

и выписываем матрицу второй производной в точке a:

Ее определитель равен нулю. Достаточные условия экстремума опять не работают. С другой стороны, . Поэтому в точке (0, 0) глобальный минимум.

Ответ: есть один глобальный минимум f(0, 0) = 0.

Пример 20:

Исследовать на экстремумы функцию.

Решение от преподавателя:


Содержание:

Исследование функций с помощью производных

Необходимое условие возрастания и убывания функции

Из определений возрастающей и убывающей функций следует необходимое условие возрастания и убывания функции.

Теорема: Если дифференцируемая функция Исследование функций с помощью производных с примерами решения

Доказательство: Пусть дифференцируемая функция Исследование функций с помощью производных с примерами решения возрастает на сегменте Исследование функций с помощью производных с примерами решенияВозьмем произвольную точку Исследование функций с помощью производных с примерами решения и дадим ей приращение Исследование функций с помощью производных с примерами решения Тогда в силу возрастания функции ее приращение Исследование функций с помощью производных с примерами решения Отсюда следует,что величина Исследование функций с помощью производных с примерами решенияСовершая предельный переход в этом неравенстве при Исследование функций с помощью производных с примерами решения получим Исследование функций с помощью производных с примерами решения Аналогично теорема доказывается в случае, когда функция Исследование функций с помощью производных с примерами решения убывает на сегменте Исследование функций с помощью производных с примерами решения

Замечание: С геометрической точки зрения возрастающая на сегменте Исследование функций с помощью производных с примерами решения функция Исследование функций с помощью производных с примерами решения в каждой точке своего графика характеризуется касательной, которая образует с положительным направлением оси абсцисс острый угол. Если функция Исследование функций с помощью производных с примерами решения убывает на сегменте Исследование функций с помощью производных с примерами решения, то касательная образует с положительным направлением оси абсцисс тупой угол.

Пример:

Найти интервалы возрастания и убывания функции Исследование функций с помощью производных с примерами решения

Решение:

Из графика этой функции видно, что Исследование функций с помощью производных с примерами решения Согласно необходимому признаку возрастания и убывания функции Исследование функций с помощью производных с примерами решения вычислим ее первую производную: Исследование функций с помощью производных с примерами решения Эта производная будет отрицательной Исследование функций с помощью производных с примерами решения положительной Исследование функций с помощью производных с примерами решения величиной. Следовательно, в полном соответствии с графиком функции Исследование функций с помощью производных с примерами решения

Достаточное условие возрастания и убывания функции

Теорема: Пусть функция Исследование функций с помощью производных с примерами решения непрерывна на сегменте Исследование функций с помощью производных с примерами решения и дифференцируема на интервале Исследование функций с помощью производных с примерами решения. Если ее первая производная Исследование функций с помощью производных с примерами решения то функция возрастает на сегменте Исследование функций с помощью производных с примерами решения Если ее первая производная Исследование функций с помощью производных с примерами решения Исследование функций с помощью производных с примерами решения, то функция убывает на сегменте Исследование функций с помощью производных с примерами решения

Доказательство: Пусть первая производная функции Исследование функций с помощью производных с примерами решения Возьмем из этого интервала две любые точкиИсследование функций с помощью производных с примерами решения (для определенности примем, что Исследование функций с помощью производных с примерами решения). Тогда по теореме Лагранжа (см. Лекцию № 19) на интервале Исследование функций с помощью производных с примерами решения найдется хотя бы одна точка х такая, что Исследование функций с помощью производных с примерами решения Так как на интервале Исследование функций с помощью производных с примерами решения следовательно, Исследование функций с помощью производных с примерами решения

Таким образом, функция Исследование функций с помощью производных с примерами решения возрастает на сегменте Исследование функций с помощью производных с примерами решения В силу произвольности выбранных точек Исследование функций с помощью производных с примерами решения полученное утверждение справедливо для всего сегмента Исследование функций с помощью производных с примерами решения Достаточное условие убывания функции Исследование функций с помощью производных с примерами решения на сегменте Исследование функций с помощью производных с примерами решения доказать самостоятельно.

Условия постоянства функции на сегменте (a; b)

Условия постоянства функции на сегменте Исследование функций с помощью производных с примерами решения.

ТЗ. Пусть функция Исследование функций с помощью производных с примерами решения непрерывна на сегменте Исследование функций с помощью производных с примерами решения и дифференцируема на интервале Исследование функций с помощью производных с примерами решения. Если ее первая производная Исследование функций с помощью производных с примерами решения, то функция постоянна на сегменте Исследование функций с помощью производных с примерами решения.

Доказательство: Пусть первая производная функции Исследование функций с помощью производных с примерами решения Возьмем произвольную точку Исследование функций с помощью производных с примерами решения и рассмотрим сегмент Исследование функций с помощью производных с примерами решения На этом сегменте выполняются все условия теоремы Лагранжа, следовательно, Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения Так как по условию теоремы Исследование функций с помощью производных с примерами решения то и в точке с первая производная функции обращается в нуль. Отсюда получаем,что Исследование функций с помощью производных с примерами решенияВ силу произвольности точки х полученное равенство выполняется Исследование функций с помощью производных с примерами решения т.е. функция постоянна на сегменте Исследование функций с помощью производных с примерами решения

Минимум и максимум (экстремумы) функции

Пусть функция Исследование функций с помощью производных с примерами решения непрерывна в точке Исследование функций с помощью производных с примерами решения

Определение: Функция Исследование функций с помощью производных с примерами решения имеет в точке Исследование функций с помощью производных с примерами решения минимум (min), если существует такая Исследование функций с помощью производных с примерами решения-окрестность точки Исследование функций с помощью производных с примерами решения что Исследование функций с помощью производных с примерами решения значение функции в любой другой точке Исследование функций с помощью производных с примерами решения-окрестность точки Исследование функций с помощью производных с примерами решения превышает значение функции в самой точке Исследование функций с помощью производных с примерами решения, т.е. выполняется неравенство Исследование функций с помощью производных с примерами решения

Обозначение Исследование функций с помощью производных с примерами решения

Определение: Функция Исследование функций с помощью производных с примерами решения имеет в точке Исследование функций с помощью производных с примерами решения максимум (max), если существует такая Исследование функций с помощью производных с примерами решения-окрестность точки Исследование функций с помощью производных с примерами решения значение функции в любой другой точке Исследование функций с помощью производных с примерами решения из Исследование функций с помощью производных с примерами решения-окрестность точки х0 Исследование функций с помощью производных с примерами решенияменьше значения функции в самой точке Исследование функций с помощью производных с примерами решения, т.е. выполняется неравенство Исследование функций с помощью производных с примерами решения

Обозначение Исследование функций с помощью производных с примерами решения

Пример:

Найти на заданном графике точки максимума и минимума (Рис. 77). Исследование функций с помощью производных с примерами решения

Рис. 77. Максимумы и минимумы заданной функции.

Решение:

Определение: Точки минимума и максимума объединяются под общим названием точки экстремума.

Замечание: Точки экстремума всегда являются внутренними точками области определения функции.

Замечание: Не следует путать минимальное значение функции Исследование функций с помощью производных с примерами решения с наименьшим значением функции на сегменте Исследование функций с помощью производных с примерами решения а максимальное значение функции Исследование функций с помощью производных с примерами решения — с наибольшим значением функции на сегмен- те Исследование функций с помощью производных с примерами решения

Замечание: Из определения экстремума следует, что в точке минимума выполняется неравенство Исследование функций с помощью производных с примерами решения а в точке максимума — Исследование функций с помощью производных с примерами решения в некоторой малой Исследование функций с помощью производных с примерами решения-окрестности точки Исследование функций с помощью производных с примерами решения

Необходимое условие существования экстремума функции

Теорема: Если дифференцируемая функция Исследование функций с помощью производных с примерами решения имеет в точке Исследование функций с помощью производных с примерами решения экстремум, то ее первая производная в этой точке равна нулю, т.е. Исследование функций с помощью производных с примерами решения

Доказательство: Пусть в точке Исследование функций с помощью производных с примерами решения функция Исследование функций с помощью производных с примерами решения имеет максимум. Так как функция Исследование функций с помощью производных с примерами решения дифференцируема в точке Исследование функций с помощью производных с примерами решения то в этой точке существует ее первая производная Исследование функций с помощью производных с примерами решения При стремлении Исследование функций с помощью производных с примерами решения(слева) приращение аргумента Исследование функций с помощью производных с примерами решения, а приращение функции Исследование функций с помощью производных с примерами решения следовательно, Исследование функций с помощью производных с примерами решения При стремлении Исследование функций с помощью производных с примерами решения(справа) приращение аргумента Исследование функций с помощью производных с примерами решения а приращение функции Исследование функций с помощью производных с примерами решения следовательно, Исследование функций с помощью производных с примерами решения Так как производная в точке Исследование функций с помощью производных с примерами решения не может одновременно быть и отрицательной и положительной, то в этой точке она равна нулю, т.е.Исследование функций с помощью производных с примерами решения Случай, когда в точке х0 Исследование функций с помощью производных с примерами решениянаблюдается минимум, доказать самостоятельно.

Замечание: Обращение в нуль первой производной функции в точке х0 я взлетел необходимым, но не достаточным условием существования экстремума в этой точке. Непрерывная функция может иметь экстремум в точке х0 даже в том случае, когда ее первая производная в этой точке не существует. В этом случае говорят об “острых” экстремумах.

Пример:

Доказать, что функция Исследование функций с помощью производных с примерами решения имеет “острый” экстремум в точке Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

Решение:

Из Рис. 72 видно, что в точке Исследование функций с помощью производных с примерами решения функция определена и непрерывна, одна- ко ее первая производная Исследование функций с помощью производных с примерами решения т.е. в точке Исследование функций с помощью производных с примерами решения первая производная функции не существует. Однако по графику функции видно, что в точке Исследование функций с помощью производных с примерами решения заданная функция имеет “острый” экстремум.

Определение: Точки, в которых первая производная функции обращается в нуль или не существует, называются критическими (стационарными или подозрительными на экстремум).

Замечание: Всякая точка экстремума является критической точкой, однако не любая критическая точка будет экстремумом.

Пример:

Доказать, что функция Исследование функций с помощью производных с примерами решения не имеет экстремума в точке Исследование функций с помощью производных с примерами решения

Решение:

В точке Исследование функций с помощью производных с примерами решения первая производная функции Исследование функций с помощью производных с примерами решения Однако из графика кубической параболы видно (график кубической параболы см. в Лекции № 22), что в точке Исследование функций с помощью производных с примерами решения она экстремума не имеет. Следовательно, исследуемая точка является критической точкой, но не точкой экстремума.

Исследование функций с помощью производных

Первый и второй достаточные признаки существования экстремума

Первый достаточный признак существования экстремума:

Теорема: Если функция Исследование функций с помощью производных с примерами решения дифференцируема в некоторой окрестности точки

Исследование функций с помощью производных с примерами решения, кроме может быть самой точки Исследование функций с помощью производных с примерами решения, и при переходе через эту точку слева направо ее первая произвол пая меняет свой знак с “+” на то в точке Исследование функций с помощью производных с примерами решения функция Исследование функций с помощью производных с примерами решения имеет максимум, а если ее первая производная меняет свой знак с на “+”, то в точке Исследование функций с помощью производных с примерами решения функция Исследование функций с помощью производных с примерами решения имеет минимум. Если при переходе через точку Исследование функций с помощью производных с примерами решения первая производная не меняет свой знак, то в этой точке экстремума нет.

Второй достаточный признак существования экстремума:

Теорема: Если в точке Исследование функций с помощью производных с примерами решения первая производная функции Исследование функций с помощью производных с примерами решения обращается в нуль(Исследование функций с помощью производных с примерами решения), а вторая производная существует, непрерывна в некоторой окрестности этой точки и отлична от нуля в самой точке (Исследование функций с помощью производных с примерами решения), то в точке Исследование функций с помощью производных с примерами решения наблюдается экстремум. Если при этом Исследование функций с помощью производных с примерами решениято точка Исследование функций с помощью производных с примерами решения является точкой минимума, а при Исследование функций с помощью производных с примерами решения — точкой максимума.

Пример:

Найти и определить тип экстремумов функции Исследование функций с помощью производных с примерами решения

Решение:

Вычислим первую производную функции и приравняем ее к нулю с целью отыскания критических точек: Исследование функций с помощью производных с примерами решения Так как показательная функция Исследование функций с помощью производных с примерами решения Отсюда находим критические точки Исследование функций с помощью производных с примерами решения Отложим эти точки на числовой оси и на каждом интервале определим знак первой производной функции, т.е. применим первый достаточный признак существования экстремума:

Исследование функций с помощью производных с примерами решения

При переходе слева направо через точку Исследование функций с помощью производных с примерами решения первая производная функция меняет свой знак с «-» на «+,» следовательно, в этой точке наблюдается минимум. При переходе слева направо через точку Исследование функций с помощью производных с примерами решения первая производная функция меняет свой знак с “+” на «-» следовательно, в этой точке наблюдается максимум. Применим второй достаточный признак существования экстремума, для чего вычислим вторую производную функции: Исследование функций с помощью производных с примерами решенияИсследование функций с помощью производных с примерами решенияВычислим значение второй производной функции в точкеИсследование функций с помощью производных с примерами решения Исследование функций с помощью производных с примерами решения следовательно, в этой точке функция имеет минимум. Вычислим значение второй производной функции в точке Исследование функций с помощью производных с примерами решения следовательно, в этой точке функция имеет максимум.

Наименьшее и наибольшее значения функции на сегменте (a; b)

Наименьшее и наибольшее значения функции на сегменте Исследование функций с помощью производных с примерами решения

Пусть функция Исследование функций с помощью производных с примерами решения непрерывна на сегменте Исследование функций с помощью производных с примерами решения и имеет конечное число точек экстремума на этом интервале. Если наибольшее значение функция достигает внутри сегмента, то очевидно, что это будет один из максимумов (аналогично для наименьшего значения — один из минимумов). Однако возможны варианты, когда функция достигает своих наименьшего и наибольшего значений на концах заданного сегмента. Поэтому для отыскания этих значений применяют следующую схему:

  1. Находят область определения функции и убеждаются в том, что заданный сегмент входит в эту область.
  2. Находят критические точки, для чего решают уравнение Исследование функций с помощью производных с примерами решения и точки, в которых первая производная функции не существует.
  3. Вычисляют значения функции в критических точках, принадлежащих заданному сегменту, в точках, в которых первая производная функции не существует и на концах заданного сегмента.
  4. Из полученных чисел выбирают наименьшее Исследование функций с помощью производных с примерами решения и наибольшееИсследование функций с помощью производных с примерами решения.

Пример:

Найти наименьшее и наибольшее значения функции Исследование функций с помощью производных с примерами решения на сегменте Исследование функций с помощью производных с примерами решения

Решение:

Действуя согласно вышеприведенной схеме, находим:

1. Исследование функций с помощью производных с примерами решения Следовательно, функция определена и непрерывна на заданном сегменте.

2. Вычислим первую производную Исследование функций с помощью производных с примерами решения Производная существует на всей числовой оси, поэтому найдем критические точки Исследование функций с помощью производных с примерами решения Отсюда на- ходим, что Исследование функций с помощью производных с примерами решения

3. Вычислим значение функции в критических точках и на концах заданного сегмента:Исследование функций с помощью производных с примерами решения

4. Из полученных чисел выбираем наименьшее Исследование функций с помощью производных с примерами решения и наибольшее Исследование функций с помощью производных с примерами решения числа, которые определяют наименьшее и наибольшее значения функции Исследование функций с помощью производных с примерами решения на сегменте Исследование функций с помощью производных с примерами решения

Выпуклость и вогнутость графика функции. Точки перегиба

Определение: График функции Исследование функций с помощью производных с примерами решения называется выпуклым на интервале Исследование функций с помощью производных с примерами решения если он лежит ниже любой касательной, проведенной к графику этой функции на заданном интервале (Рис. 78). Исследование функций с помощью производных с примерами решения

Рис. 78. Выпуклый график функции Исследование функций с помощью производных с примерами решения

Определение: График функции Исследование функций с помощью производных с примерами решения называется вогнутым на интервале Исследование функций с помощью производных с примерами решения если он лежит выше любой касательной, проведенной к графику этой функции на заданном интервале (Рис. 79). Исследование функций с помощью производных с примерами решения

Рис. 79. Вогнутый график функции Исследование функций с помощью производных с примерами решения

Достаточные условия выпуклости и вогнутости графика функции на том или ином интервале определяются теоремой:

ТЗ. Если вторая производная функции Исследование функций с помощью производных с примерами решения на интервале Исследование функций с помощью производных с примерами решения существует и положительна, то на этом интервале график функции Исследование функций с помощью производных с примерами решения будет вогнутым. Если вторая производная функции Исследование функций с помощью производных с примерами решения на интервале Исследование функций с помощью производных с примерами решения существует и отрицательна, то на этом интервале график функции Исследование функций с помощью производных с примерами решения будет выпуклым.

Пример:

Определить интервалы вогнутости и выпуклости графика функции Исследование функций с помощью производных с примерами решения

Решение:

Найдем вторую производную от заданной функции Исследование функций с помощью производных с примерами решения В силу того, что Исследование функций с помощью производных с примерами решения то график функцииИсследование функций с помощью производных с примерами решения будет вогнутым на всей числовой оси.

Пример:

Определить интервалы вогнутости и выпуклости графика функции Исследование функций с помощью производных с примерами решения

Решение:

Найдем вторую производную от заданной функции Исследование функций с помощью производных с примерами решения В силу того, что

Исследование функций с помощью производных с примерами решения то график функции Исследование функций с помощью производных с примерами решения будет выпуклым при отрицательных значениях аргумента и вогнутым при положительных значениях аргумента.

Определение: Точка, отделяющая вогнутую часть графика функции от выпуклой (или выпуклую часть графика функции от вогнутой), называется точкой перегиба.

Необходимое и достаточное условия существования точки перегиба

Рассмотрим необходимое условие существования точки перегиба.

Теорема: Если функция Исследование функций с помощью производных с примерами решения дважды непрерывно дифференцируема на некотором интервале, содержащем точку перегиба Исследование функций с помощью производных с примерами решения, то в точке перегиба вторая производная равна нулю, т.е.Исследование функций с помощью производных с примерами решения

Замечание: Обращение в нуль второй производной функции в точке перегиба является необходимым, но не достаточным условием существования такой точки на графике функции.

Пример:

Доказать, что точка Исследование функций с помощью производных с примерами решения не является точкой перегиба графика функции Исследование функций с помощью производных с примерами решения

Решение:

Если вычислить вторую производную от заданной функции, то она будет равна Исследование функций с помощью производных с примерами решения Если приравнять это выражение к нулю, то получим, что точка Исследование функций с помощью производных с примерами решения должна быть точкой перегиба графика функции Исследование функций с помощью производных с примерами решения Однако график этой функции (см. Лекцию № 22) на всей числовой оси является вогнутым, т.е. точка Исследование функций с помощью производных с примерами решения не является точкой перегиба графика функции Исследование функций с помощью производных с примерами решения

Теорема: Пусть функция Исследование функций с помощью производных с примерами решения дважды непрерывно дифференцируема на некотором интервале, вторая производная которой в точке Исследование функций с помощью производных с примерами решения, принадлежащей этому интервалу, обращается в нуль (Исследование функций с помощью производных с примерами решения) или не существует. Если при переходе через точку Исследование функций с помощью производных с примерами решения вторая производная функции меняет свой знак, то точка Исследование функций с помощью производных с примерами решения определяет точку перегиба графика функции Исследование функций с помощью производных с примерами решения

Пример:

Найти точки перегиба и интервалы выпуклости и вогнутости графика функции Исследование функций с помощью производных с примерами решения

Решение:

Найдем вторую производную заданной функции Исследование функций с помощью производных с примерами решения (найти самостоятельно). Найдем точки подозрительные на перегиб: а)Исследование функций с помощью производных с примерами решенияб)Исследование функций с помощью производных с примерами решения — не существует Исследование функций с помощью производных с примерами решения знаменатель дроби обращается в нуль при Исследование функций с помощью производных с примерами решения и Исследование функций с помощью производных с примерами решения Отложим эти точки на числовой оси и определим знак второй производной на каждом интервале:

Исследование функций с помощью производных с примерами решения

Из рисунка видно, что точка Исследование функций с помощью производных с примерами решения является точкой перегиба, так как при переходе через нее вторая производная изменяет свой знак. Точка Исследование функций с помощью производных с примерами решения не является точкой перегиба, так как при переходе через нее вторая производная не изменяет своего знака.

Асимптоты графика функции f (x)

Асимптоты графика функции Исследование функций с помощью производных с примерами решения

В большинстве практических случаев необходимо знать поведение функции при неограниченном росте (убыли) аргумента. Одним из наиболее интересных случаев, которые возникают при таком исследовании, является случай, когда график функции неограниченно приближается к некоторой прямой.

Определение: Прямая (l): Исследование функций с помощью производных с примерами решенияназывается асимптотой графика функции Исследование функций с помощью производных с примерами решения если расстояние от переменной точки графика до этой прямой стремится к нулю при стремлении аргумента Исследование функций с помощью производных с примерами решения

Замечание: График функции может приближаться к асимптоте сверху, снизу, слева, справа или колеблясь возле этой прямой (Рис. 80). Исследование функций с помощью производных с примерами решения

Рис. 80. Различные случаи приближения графика функции к асимптотам.

Различают вертикальные, горизонтальные и наклонные асимптоты.

Определение: Вертикальная прямая Исследование функций с помощью производных с примерами решения называется вертикальной асимптотой, если Исследование функций с помощью производных с примерами решения Горизонтальная прямая Исследование функций с помощью производных с примерами решения называется горизонтальной асимптотой, если Исследование функций с помощью производных с примерами решения Прямая Исследование функций с помощью производных с примерами решенияназывается наклонной асимптотой (параметр Исследование функций с помощью производных с примерами решения и параметр Исследование функций с помощью производных с примерами решения отличаются от Исследование функций с помощью производных с примерами решения

Горизонтальная асимптота является частным случаем наклонной асимптоты: если Исследование функций с помощью производных с примерами решения то наклонная асимптота вырождается в горизонтальную Исследование функций с помощью производных с примерами решения при условии, что Исследование функций с помощью производных с примерами решения Если параметр Исследование функций с помощью производных с примерами решения то горизонтальной асимптоты нет.

Полная схема исследования функции с помощью производных

Из изложенного в Лекциях № 20 и №21 материала следует следующая схема исследования функции с помощью производных:

  1. Находят область определения функции. При наличии точек разрыва II рода изучают поведение функции в их малой окрестности, т.е. вычисляют лево- и правосторонние пределы. При задании функции словесным образом также вычисляют лево- и правосторонние пределы для граничных точек интервалов, на которых функция описывается разными формулами.
  2. Находят точки пересечения с координатными осями.
  3. Определяют четная, нечетная или общего вида заданная функция.
  4. Определяют периодическая или непериодическая заданная функция.
  5. Находят критические точки, решая уравнение Исследование функций с помощью производных с примерами решения и определяют точки, в которых первая производная функции не существует. Точки откладывают на числовой оси и определяют знак первой производной на каждом интервале, определяя тем самым интервалы возрастания (Исследование функций с помощью производных с примерами решения) и убывания( Исследование функций с помощью производных с примерами решения) функции. Используя первый достаточный признак существования экстремума, находят точки экстремума и вычисляют значение функции в этих точках.
  6. Находят точки подозрительные на перегиб, решая уравнение Исследование функций с помощью производных с примерами решения и определяют точки, в которых вторая производная функции не существует. Точки откладывают на числовой оси и определяют знак второй производной на каждом интервале, определяя тем самым интервалы вогнутости (Исследование функций с помощью производных с примерами решения) и выпуклости (Исследование функций с помощью производных с примерами решения) функции. Используя достаточный признак существования точки перегиба, находят точки перегиба и вычисляют значение функции в этих точках.
  7. Находят асимптоты графика функции.
  8. Результаты исследования заносят в сводную таблицу
  9. Поданным таблицы строят схематичный график функции.

Замечание: При нахождении области определения функции надо помнить о действиях, запрещенных в области действительного переменного:

  • нельзя делить на нуль, поэтому выражение, стоящее в знаменателе дроби, не должно равняться нулю;
  • нельзя извлекать корень четной степени из отрицательного числа, поэтому выражение, стоящее под корнем четной степени, должно быть неотрицательным (Исследование функций с помощью производных с примерами решения);
  • основание логарифмической функции должно быть строго положительным и не равным единице;
  • выражение, стоящее под логарифмом, должно быть строго положительным;
  • выражение, стоящее под знаком arcsin или arccos, по модулю не должно превышать единицу (Исследование функций с помощью производных с примерами решения).

Пример:

Исследовать и построить схематичный график функции Исследование функций с помощью производных с примерами решения

Решение:

Используя схему исследования графика функции с помощью производных, найдем:

1. Исследование функций с помощью производных с примерами решения

2. Найдем точки пересечения графика функции с координатными осями

Исследование функций с помощью производных с примерами решения — точка пересечения с осью абсцисс;

Исследование функций с помощью производных с примерами решения — точка пересечения с осью ординат.

3. Вычислим Исследование функций с помощью производных с примерами решения — функция общего вида.

4. Функция непериодическая (периодическими среди элементарных функций являются функции: sinx, cosx, tgx и ctgx).

5. Найдем первую производную функции Исследование функций с помощью производных с примерами решения которая существует на всей числовой оси, следовательно, найдем критические точки, решая уравнение Исследование функций с помощью производных с примерами решения Отложим найденную точку на числовой оси и определим знак первой производной на каждом интервале

Исследование функций с помощью производных с примерами решения Из рисунка видно, что Исследование функций с помощью производных с примерами решения Так как при переходе слева направо через точку х = -1 первая производная меняет свой знак с «-» на «+», то в точке наблюдается минимум. Вычислим значение функции в минимуме Исследование функций с помощью производных с примерами решения

6. Найдем вторую производную функцииИсследование функций с помощью производных с примерами решения которая существует на всей числовой оси, следовательно, найдем точки, подозрительные на перегиб, решая уравнение Исследование функций с помощью производных с примерами решения Отложим найденную точку на числовой оси и определим знак второй производной на каждом интервале Исследование функций с помощью производных с примерами решения Из рисунка видно, что Исследование функций с помощью производных с примерами решения Так как при переходе слева направо через точку х = -2 вторая производная меняет свой знак, то в этой точке наблюдается точка перегиба. Вычислим значение функции в точке перегиба Исследование функций с помощью производных с примерами решения

7. Найдем асимптоты графика функции, для чего вычислим угловой коэффициент прямой Исследование функций с помощью производных с примерами решенияТаким образом, при Исследование функций с помощью производных с примерами решения асимптот нет, а при Исследование функций с помощью производных с примерами решения возможна горизонтальная асимптота. Вычислим параметр Исследование функций с помощью производных с примерами решения Следовательно, график заданной функции имеет горизонтальную асимптоту у = 0.

8. Построим сводную таблицу

Исследование функций с помощью производных с примерами решения

О(0; 0) — точка пересечения с координатными осями.

у = 0 — горизонтальная асимптота.

9. Построим схематичный график функции, выбрав по координатным осям разные масштабы измерения:

Исследование функций с помощью производных с примерами решения

———

Исследование функций с помощью производных

Определение 1. Функция y=f(x) называется возрастающей (убывающей) на интервале ( a,b ), еслиИсследование функций с помощью производных с примерами решенияИсследование функций с помощью производных с примерами решения
Функция y=f(x) называется неубывающей (невозрастающей) на
интервале ( a,b ), еслиИсследование функций с помощью производных с примерами решенияИсследование функций с помощью производных с примерами решения
Возрастает:

Исследование функций с помощью производных с примерами решения

Убывает:

Исследование функций с помощью производных с примерами решения

Неубывает:

Исследование функций с помощью производных с примерами решения

Невозрастает:

Исследование функций с помощью производных с примерами решения

Функции из определения 1 называются монотонными.
Теорема 1. Для того, чтобы дифференцируемая на интервале ( a,b ) функция
y=f(x) не убывала (не возрастала) на этом интервале необходимо и достаточно,
чтобы Исследование функций с помощью производных с примерами решения
Доказательство. Необходимость. Рассмотрим случай, когда f(x) не
убывает и докажем, что производная Исследование функций с помощью производных с примерами решения необходимо ≥ 0.
Пусть Исследование функций с помощью производных с примерами решения

Пусть Исследование функций с помощью производных с примерами решения
Таким образомИсследование функций с помощью производных с примерами решениячто и требовалось доказать.
Достаточность. Рассмотрим случай, когда Исследование функций с помощью производных с примерами решения и докажем, что этого достаточно для того, чтобы функция не убывала. Пусть Исследование функций с помощью производных с примерами решения
Тогда по теореме Лагранжа (теорема 4 § 12) ∃ точка Исследование функций с помощью производных с примерами решения такая, что
Исследование функций с помощью производных с примерами решения что и требовалось доказать.
Теорема 2. Для того, чтобы дифференцируемая на интервале ( a,b ) функция
y=f(x) возрастала (убывала) на этом интервале достаточно, чтобы
Исследование функций с помощью производных с примерами решения.
Доказательство теоремы аналогично доказательству достаточности в теореме 1. Нужно заметить, что условие Исследование функций с помощью производных с примерами решения не является необходимым для возрастания (убывания) функции.

Пример 1.

Рассмотрим функцию Исследование функций с помощью производных с примерами решения Она возрастает на промежутке ( -1;1). Но условие Исследование функций с помощью производных с примерами решенияне выполнено в точке Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

Теорема 3. (необходимое условие экстремума).
Пусть функция y=f(x) определена в некоторой окрестности точки Исследование функций с помощью производных с примерами решения и имеет в этой точке локальный экстремум (см. определение 1 §12). Тогда ее производная в этой точке равна 0 или не существует.

Доказательство.

Если производная Исследование функций с помощью производных с примерами решения в точке Исследование функций с помощью производных с примерами решения не существует, то все доказано. Предположим, что Исследование функций с помощью производных с примерами решения— существует. Тогда по теореме Фермa (теорема 1 §12) Исследование функций с помощью производных с примерами решения, что и требовалось доказать.

Определение 2. Пусть функция y=f(x) непрерывна в точке Исследование функций с помощью производных с примерами решения и производная  равна 0 или не существует. Тогда точка Исследование функций с помощью производных с примерами решенияназывается критической точкой для функции y=f(x) или точкой возможного экстремума.
Замечание. Для непрерывной функции любая точка локального экстремума
будет критической. Наоборот – не верно.
 

Пример 2.

Для функции Исследование функций с помощью производных с примерами решения, точка Исследование функций с помощью производных с примерами решения — критическая, но не является точкой локального экстремума.
Для функции
Исследование функций с помощью производных с примерами решения
(см. пример 9 §5) Исследование функций с помощью производных с примерами решения — критическая и локальный максимум; Исследование функций с помощью производных с примерами решения=1 критическая и локальный минимум.
Для функции
Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения
точка Исследование функций с помощью производных с примерами решения — локального минимума, производная y′ в точке Исследование функций с помощью производных с примерами решения не существует. Точка Исследование функций с помощью производных с примерами решения не является критической( в точке Исследование функций с помощью производных с примерами решения— разрыв 1-ого рода).
Для функции

Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

точка Исследование функций с помощью производных с примерами решения= 0 — точка локального минимума. Точка Исследование функций с помощью производных с примерами решенияне является критической( в точке Исследование функций с помощью производных с примерами решения — разрыв 1-ого рода).
Теорема 4. (достаточное условие экстремума функции). Пусть функция y=f(x)
дифференцируема в некоторой окрестности Исследование функций с помощью производных с примерами решения своей критической точки
Исследование функций с помощью производных с примерами решения за исключением может быть самой точки Исследование функций с помощью производных с примерами решения.
а) Пусть при переходе через точку Исследование функций с помощью производных с примерами решенияпроизводная Исследование функций с помощью производных с примерами решения меняет знак с « − »
на «+» :

Исследование функций с помощью производных с примерами решения
Тогда Исследование функций с помощью производных с примерами решения — точка локального минимума.
Пусть при переходе через точку Исследование функций с помощью производных с примерами решения производная Исследование функций с помощью производных с примерами решения меняет знак с «+» на  « − »:

Исследование функций с помощью производных с примерами решения

Тогда Исследование функций с помощью производных с примерами решения— точка локального максимума.
б) Пусть при переходе через точку Исследование функций с помощью производных с примерами решения производная Исследование функций с помощью производных с примерами решения не меняет знака.
Тогда Исследование функций с помощью производных с примерами решенияне является точкой локального экстремума.
Доказательство следует из теоремы 2. При этом важно, чтобы функция y=f(x) была непрерывна в точке Исследование функций с помощью производных с примерами решения(см. пример 2), а также то, что Исследование функций с помощью производных с примерами решенияизолированная критическая точка.

Теорема 5. (второе достаточное условие экстремума функции).
Пусть Исследование функций с помощью производных с примерами решения — стационарная точка для функции y=f(x), то есть Исследование функций с помощью производных с примерами решения=0.
Пусть Исследование функций с помощью производных с примерами решения Тогда Исследование функций с помощью производных с примерами решения— точка локального минимума (локального
максимума).
Доказательство. Запишем формулу Тейлора 2-ого порядка для функции y=f(x) в окрестности точки Исследование функций с помощью производных с примерами решения:
Исследование функций с помощью производных с примерами решения
(см. теорему 1 §14).
 Исследование функций с помощью производных с примерами решения=0, поэтому из (1) следует:
Исследование функций с помощью производных с примерами решения
Из (2) следует, что ∃ окрестность точки Исследование функций с помощью производных с примерами решения, такая что знак Исследование функций с помощью производных с примерами решениясовпадает со знаком Исследование функций с помощью производных с примерами решения из этой окрестности, что и требовалось доказать.
Теорема 6. Пусть функция y=f(x) имеет в точке Исследование функций с помощью производных с примерами решения n производных, причем
Исследование функций с помощью производных с примерами решенияТогда:
1) если n – четное и Исследование функций с помощью производных с примерами решения— точка локального минимума;
2) если n – четное и Исследование функций с помощью производных с примерами решения— точка локального максимума;
3) если n – нечетное, то в точке Исследование функций с помощью производных с примерами решения локального экстремума нет.
Доказательство аналогично доказательству теоремы 5.
 

Пример 3.

Исследовать на экстремум функцию Исследование функций с помощью производных с примерами решения
Решение. Функция непрерывна ∀x∈R .
Исследование функций с помощью производных с примерами решения
Найдем критические точки:Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

x=-2 — точка локального максимума: y(-2) = 108 y;
x = 0 — точка локального минимума; y(0) = 0.
x = −5 — не является точкой экстремума.

При исследовании функции на экстремум точки разрыва(если они есть)
также наносят на числовую прямую. При переходе через эти точки может
изменятся направление возрастания (убывания) функции.

Замечание. При решении ряда технических и экономических задач приходится находить не локальные, а глобальные экстремумы (наибольшие и наименьшие значения функций на некотором множестве). Из теоремы Вейерштрасса (см. теорему 1 §11) следует, что для непрерывной функции y=f(x) заданной на отрезке [ a,b] глобальные min и max существуют. При этом точки с 1 и с 2 – глобального min и max лежат либо на концах отрезка [ a,b], либо являются критическими для функции f(x).
 

Пример 4.

Найти наибольшее и наименьшее значение функции Исследование функций с помощью производных с примерами решения на отрезке [ 0, 3 ].
Решение. Функция непрерывна ∀x∈R. Найдем критические точки:
Исследование функций с помощью производных с примерами решения
 

Пример 5.

Боковые стороны и меньшее основание трапеции = а . Найти
длину большего основания, при котором площадь трапеции – наибольшая.

Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

 Исследование функций с помощью производных с примерами решениякритическая точка для функции S(α).

Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения— точка локального максимума.
Исследование функций с помощью производных с примерами решения— наибольшее значение площади, при этом
Исследование функций с помощью производных с примерами решения -длина большего основания.

——-

Исследование функций с помощью производных(часть вторая)

Определение 1. Пусть функция y=f(x) дифференцируема на интервале ( a,b) . И пусть Исследование функций с помощью производных с примерами решения график функции y=f(x) расположен ниже (не выше), чем касательная y=y(x) к нему в точке Исследование функций с помощью производных с примерами решениято есть
Исследование функций с помощью производных с примерами решенияТогда f( x ) называется выпуклой(нестрого выпуклой вверх).
Пусть Исследование функций с помощью производных с примерами решения график функции y=f(x) расположен выше (не ниже), чем касательная y=y(x) к нему в точке Исследование функций с помощью производных с примерами решения то есть
Исследование функций с помощью производных с примерами решения Тогда f(x) называется вогнутой (нестрого вогнутой).

Пример 1.

а) Исследование функций с помощью производных с примерами решения− выпукла на всей оси ( −∞; +∞):

Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения нестрого выпукла вверх на всей оси (−∞; +∞) 
Исследование функций с помощью производных с примерами решения
в) Исследование функций с помощью производных с примерами решениявогнута на всей оси (−∞; +∞):

Исследование функций с помощью производных с примерами решения
г) Исследование функций с помощью производных с примерами решения нестрого вогнута на всей оси (−∞; +∞):

Исследование функций с помощью производных с примерами решения
Теорема 1. Для того, чтобы дифференцируемая функция y=f(x) была вогнутой (выпуклой) на интервале ( a,b ) необходимо и достаточно, чтобы ее производная Исследование функций с помощью производных с примерами решения возрастала(убывала) на этом интервале.
Докажем для случая, когда y=f(x) — вогнута.
Необходимость. Пусть Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения — касательные к графику y=f(x) в точках Исследование функций с помощью производных с примерами решения Так как y=f(x) — вогнута, то
Исследование функций с помощью производных с примерами решения
Сложим эти неравенства:
Исследование функций с помощью производных с примерами решения
Достаточность. Пусть Исследование функций с помощью производных с примерами решения — возрастает. Докажем, что y=f(x)  — вогнута.
Пусть Исследование функций с помощью производных с примерами решения — уравнение касательной в точке Исследование функций с помощью производных с примерами решения

ПустьИсследование функций с помощью производных с примерами решения Найдем разность Исследование функций с помощью производных с примерами решенияпо теореме Лагранжа (терема 4 параграфа 12) =Исследование функций с помощью производных с примерами решения что и требовалось доказать.
Теорема 2. Для того, чтобы дифференцируемая функция y=f(x) была нестрого вогнутой (нестрого выпуклой) на интервале ( a,b ) необходимо и достаточно, чтобы производная Исследование функций с помощью производных с примерами решения неубывала (невозрастала) на этом интервале.
Доказательство аналогично доказательству теоремы 1.
Теорема 3. Для того, чтобы дважды дифференцируемая на интервале (a,b)  функция y=f(x) была не строго вогнутой (не строго выпуклой) необходимо и
достаточно, чтобы Исследование функций с помощью производных с примерами решения
Доказательство следует из теоремы 2 и теоремы 1 §15.
Теорема 4. Для того, чтобы дважды дифференцируемая на интервале (a,b) 
функция y=f(x) была вогнутой (выпуклой) на этом интервале достаточно, чтобы Исследование функций с помощью производных с примерами решения
Доказательство следует из теоремы 1 и теоремы 2 §15. Нужно заметить, что
условие Исследование функций с помощью производных с примерами решения не является необходимым для вогнутости (выпуклости) функции.

Пример 2.

Рассмотрим функцию Исследование функций с помощью производных с примерами решения Она вогнута на интервале ( -1;1). Но условие Исследование функций с помощью производных с примерами решения не выполнено в точкеИсследование функций с помощью производных с примерами решения

Теорема 6 (достаточное условие перегиба функции). Рассмотрим функцию
y=f(x) дважды дифференцируемую в некоторой окрестности Исследование функций с помощью производных с примерами решения точки
возможного перегиба Исследование функций с помощью производных с примерами решенияза исключением может быть самой точки Исследование функций с помощью производных с примерами решения
Предположим также, что вторая производная Исследование функций с помощью производных с примерами решения меняет знак при переходе
через точку Исследование функций с помощью производных с примерами решения. Тогда Исследование функций с помощью производных с примерами решениябудет точкой перегиба для функции y=f(x).
Доказательство следует из теоремы 4.

Пример 3.

Найдем точки перегиба и интервалы выпуклости-вогнутости функции
Исследование функций с помощью производных с примерами решения из примера 3 §15.
Решение.
Исследование функций с помощью производных с примерами решения(см. пример 3 §15).
Исследование функций с помощью производных с примерами решения
Найдем точки возможного перегиба(точки, где y′′ равна 0 или не существует).
Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения точки перегиба функции.
При нахождении интервалов выпуклости-вогнутости точки, где функции
Исследование функций с помощью производных с примерами решения имеют разрывы также наносят на числовую прямую. При переходе
через эти точки может меняться направление выпуклости-вогнутости.
Определение 4. Прямая y= kx +b называется наклонной асимптотой функции y=f(x) при x →+∞ (x→−∞), если Исследование функций с помощью производных с примерами решения, где a(x)  бесконечно-малая функция при x →+∞ (x→−∞) , то естьИсследование функций с помощью производных с примерами решения
Теорема 7. Для того, чтобы прямая y =kx +b была наклонной асимптотой для функции y=f(x) при x →+∞ (x→−∞) необходимо и достаточно, чтобы существовали пределыИсследование функций с помощью производных с примерами решения
Доказательство. Рассмотрим, например, случай x → +∞ .
Необходимость. Пусть Исследование функций с помощью производных с примерами решения, где a(x) бесконечно-малая функция. Докажем, что выполняются пределы (1).
Исследование функций с помощью производных с примерами решения что и требовалось доказать.
Достаточность. Пусть выполняется (1). Докажем, что y =kx +b — асимптота для y=f(x).
Исследование функций с помощью производных с примерами решения, где a(x) бесконечно-малая функция при x → +∞ , что и требовалось доказать. Таким образом теорема доказана.
Замечание. Наличие наклонной асимптоты значит, что при x →+∞ (x→−∞) график функции очень близок к прямой линии y =kx +b.

Пример 4.

Для функции Исследование функций с помощью производных с примерами решения (см. пример 1 §5) y = x+1 — наклонная асимптота при x →±∞ .
Для функции Исследование функций с помощью производных с примерами решения (пример 8 §5) y = 0 — горизонтальная асимптота при x →±∞ (k=0).
Для функции Исследование функций с помощью производных с примерами решения (пример 10 §5) y = −1 — горизонтальная асимптота при x →±∞ .
Для функции , 1(0 1) Исследование функций с помощью производных с примерами решения (пример 2 §5) y = 0 — горизонтальная
асимптота при x →+∞ (x→−∞).
Определение 5. Прямая Исследование функций с помощью производных с примерами решения называется вертикальной асимптотой функции y=f(x), если хотя бы один из пределов Исследование функций с помощью производных с примерами решения равен ∞.
Пример 5.

Для функции Исследование функций с помощью производных с примерами решения (см. пример 1 §5) прямая x = 1 — вертикальная асимптота, для функции Исследование функций с помощью производных с примерами решения (пример 8 §5) прямая x = 3 — вертикальная асимптота, для функции Исследование функций с помощью производных с примерами решения (пример 10 §5) прямая x = 0 — вертикальная асимптота, для функции Исследование функций с помощью производных с примерами решения − из упражнения 1 §5 прямая x = 2 — вертикальная асимптота

Исследование функций с помощью производных с примерами решения
При построении графиков функции используют результаты §15, 16. Это можно проводить по следующей схеме:
1. Найти область определения D(f) функции и исследовать поведение функции в граничных точках D(f) . Определить точки разрыва, вертикальные асимптоты, нули функции, исследовать функцию на периодичность, четность, нечетность.
2. Найти наклонные асимптоты.
3. Найти интервалы монотонности, точки локального экстремума.
4. Найти интервалы выпуклости, вогнутости, точки перегиба.
5. Построить график.

Пример 6.

Провести полное исследование и построить график функции Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

Нули функции Исследование функций с помощью производных с примерами решения
Таким образом график пересекает оси координат в точке О(0; 0). Функция
ни четная, ни нечетная, не периодическая.
2. Наклонные асимптоты. По формулам (1);
Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения
x = 0 — точка локального максимума; Исследование функций с помощью производных с примерами решения — точка локального минимума;

Исследование функций с помощью производных с примерами решения
Точки где y′′ равна 0 или не существует: Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения
Исследование функций с помощью производных с примерами решения
5. График функции.

Исследование функций с помощью производных с примерами решения

———

Исследование функции с помощью производных

Монотонность функции

Теорема 9.1. Пусть функция Исследование функций с помощью производных с примерами решения определена на отрезке Исследование функций с помощью производных с примерами решения и внутри отрезка имеет конечную производную Исследование функций с помощью производных с примерами решения Для того, чтобы функция Исследование функций с помощью производных с примерами решениябыла монотонно возрастающей (убывающей), достаточно, чтобы Исследование функций с помощью производных с примерами решения для Исследование функций с помощью производных с примерами решения

Доказательство.

Возьмем отрезок Исследование функций с помощью производных с примерами решения таким образом, чтобы Исследование функций с помощью производных с примерами решения и применим к функции Исследование функций с помощью производных с примерами решения на этом промежутке формулу Лагранжа:

Исследование функций с помощью производных с примерами решения

Тогда, если Исследование функций с помощью производных с примерами решения то Исследование функций с помощью производных с примерами решения Следовательно, функция Исследование функций с помощью производных с примерами решениявозрастает. Если Исследование функций с помощью производных с примерами решения то Исследование функций с помощью производных с примерами решенияСледовательно, функция Исследование функций с помощью производных с примерами решенияубывает. 

Замечание 9.1. Утверждение теоремы сохраняет силу и в том случае, если Исследование функций с помощью производных с примерами решения при условии, что производная Исследование функций с помощью производных с примерами решения в конечном числе точек внутри отрезка Исследование функций с помощью производных с примерами решения т. е. вышесказанное условие не является необходимым.

Пример 9.1. Рассмотрим функцию Исследование функций с помощью производных с примерами решения на отрезке Исследование функций с помощью производных с примерами решения Хотя Исследование функций с помощью производных с примерами решенияфункция возрастает на отрезке Исследование функций с помощью производных с примерами решения

  • Заказать решение задач по высшей математике

Достаточные условия экстремума

Теорема 9.2 (первое достаточное условие экстремума). Пусть функция Исследование функций с помощью производных с примерами решениядифференцируема в некоторой проколотой окрестности точки Исследование функций с помощью производных с примерами решения и непрерывна в точке Исследование функций с помощью производных с примерами решения Тогда, если Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения и Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то в точке Исследование функций с помощью производных с примерами решения функция имеет локальный максимум; если Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения и Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то в точке Исследование функций с помощью производных с примерами решения функция имеет локальный минимум.

Доказательство следует из теоремы 9.1.

Теорема 9.3 (второе достаточное условие экстремума). Если в критической точке Исследование функций с помощью производных с примерами решения функции Исследование функций с помощью производных с примерами решения существует Исследование функций с помощью производных с примерами решения а Исследование функций с помощью производных с примерами решения то при Исследование функций с помощью производных с примерами решенияфункция имеет локальный максимум, при Исследование функций с помощью производных с примерами решения — локальный минимум.

Доказательство.

Если в точке Исследование функций с помощью производных с примерами решения существует вторая производная Исследование функций с помощью производных с примерами решения то первая производная Исследование функций с помощью производных с примерами решения существует в некоторой окрестности этой точки Исследование функций с помощью производных с примерами решения Тогда Исследование функций с помощью производных с примерами решения

Пусть Исследование функций с помощью производных с примерами решения Тогда Исследование функций с помощью производных с примерами решения

При Исследование функций с помощью производных с примерами решения производная Исследование функций с помощью производных с примерами решения т. е., согласно теореме 9.1, функция Исследование функций с помощью производных с примерами решениявозрастает; при Исследование функций с помощью производных с примерами решения производная Исследование функций с помощью производных с примерами решения т. е. функция Исследование функций с помощью производных с примерами решения убывает. На основании теоремы 9.2: в точке Исследование функций с помощью производных с примерами решения функция имеет локальный максимум.

Случай Исследование функций с помощью производных с примерами решения рассматривается аналогично. 

Замечание 9.2. Так как теорема формулирует только достаточное условие, то при Исследование функций с помощью производных с примерами решения функция может как иметь, так и не иметь экстремум.

Пример 9.2. Функция Исследование функций с помощью производных с примерами решения имеет в точке Исследование функций с помощью производных с примерами решения минимум, при этом Исследование функций с помощью производных с примерами решения Функция Исследование функций с помощью производных с примерами решения не имеет в точке Исследование функций с помощью производных с примерами решения экстремума, при этом также Исследование функций с помощью производных с примерами решения

Наибольшее и наименьшее значения функции на отрезке

Пусть функция Исследование функций с помощью производных с примерами решения непрерывна на отрезке Исследование функций с помощью производных с примерами решения Тогда на этом отрезке функция достигает наибольшего и наименьшего значений, теорема 4.3 Вейерштрасса (раздел 1). Будем предполагать, что на данном отрезке функция Исследование функций с помощью производных с примерами решения имеет конечное число критических точек. Если наибольшее и наименьшее значения достигаются внутри отрезка Исследование функций с помощью производных с примерами решения то очевидно, что эти значения будут наибольшим максимумом и наименьшим минимумом функции (если имеется несколько экстремумов). Однако может наблюдаться такая ситуация, что наибольшее или наименьшее значения будут достигаться на одном из концов отрезка (рис. 9.1).

Исследование функций с помощью производных с примерами решения

Таким образом, непрерывная функция Исследование функций с помощью производных с примерами решения на отрезке достигает своего наибольшего и наименьшего значений либо на концах этого отрезка, либо в таких точках этого отрезка, которые являются точками экстремума.

Исходя из вышесказанного, можно предложить следующий алгоритм поиска наибольшего и наименьшего значений непрерывной функции Исследование функций с помощью производных с примерами решения на отрезке Исследование функций с помощью производных с примерами решения

1. Найти все критические точки. Если критическая точка Исследование функций с помощью производных с примерами решения то нужно вычислить в ней значение функции Исследование функций с помощью производных с примерами решения Если критическая точка Исследование функций с помощью производных с примерами решения то в дальнейшем решении эта точка во внимание не принимается.

2. Вычислить значения функции на концах отрезка, т. е. найти Исследование функций с помощью производных с примерами решения и

3.    Из всех полученных выше значений функции выбрать наибольшее и наименьшее, они и будут представлять собой наибольшее и наименьшее значения функции Исследование функций с помощью производных с примерами решения на отрезке Исследование функций с помощью производных с примерами решения

Пример 9.3. Найти наибольшее и наименьшее значения функции Исследование функций с помощью производных с примерами решения на отрезке [—3; 3].

Решение.

Так как функция Исследование функций с помощью производных с примерами решения непрерывна на отрезке [-3; 3], то задача имеет решение.

1. Найдем критические точки функции.

Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения — критические точки.

Так как Исследование функций с помощью производных с примерами решения то вычислим Исследование функций с помощью производных с примерами решения

так как Исследование функций с помощью производных с примерами решения то вычислим Исследование функций с помощью производных с примерами решения

2. Определим значения функции на концах отрезка:

Исследование функций с помощью производных с примерами решения

3. Сравним вычисленные значения функции и выберем наибольшее и наименьшее:

Исследование функций с помощью производных с примерами решения

ОтветИсследование функций с помощью производных с примерами решения

Выпуклость и вогнутость графика функции, точки перегиба

Пусть функция Исследование функций с помощью производных с примерами решения задана на интервале Исследование функций с помощью производных с примерами решения непрерывна на этом интервале и в каждой точке графика этой функции существует единственная касательная.

Определение 9.1. График функции Исследование функций с помощью производных с примерами решения называется выпуклым или выпуклым вверх на интервале Исследование функций с помощью производных с примерами решения если он расположен ниже любой своей касательной, т. е. Исследование функций с помощью производных с примерами решения (рис. 9.2); график функции Исследование функций с помощью производных с примерами решения называется вогнутым или выпуклым вниз на интервале Исследование функций с помощью производных с примерами решения если он расположен выше любой своей касательной, т. е. Исследование функций с помощью производных с примерами решения (рис. 9.3).

Определение 9.2. Точки графика функции, в которых выпуклость сменяется вогнутостью или наоборот, называются точками перегиба графика.

Исследование функций с помощью производных с примерами решения

Теорема 9.4. Пусть функция Исследование функций с помощью производных с примерами решения определена и дважды дифференцируема на интервале Исследование функций с помощью производных с примерами решения Тогда если Исследование функций с помощью производных с примерами решения для Исследование функций с помощью производных с примерами решения то на этом интервале график функции вогнутый; если Исследование функций с помощью производных с примерами решения для Исследование функций с помощью производных с примерами решения то на этом интервале график функции выпуклый.

Доказательство.

Рассмотрим разность Исследование функций с помощью производных с примерами решения на отрезке Исследование функций с помощью производных с примерами решения если Исследование функций с помощью производных с примерами решения и на отрезке Исследование функций с помощью производных с примерами решения если Исследование функций с помощью производных с примерами решения Согласно теореме 7.4 (Лагранжа):

Исследование функций с помощью производных с примерами решения

Поэтому Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

Тогда, при Исследование функций с помощью производных с примерами решения следовательно на этом отрезке график функции будет вогнутый; при Исследование функций с помощью производных с примерами решения следовательно на этом отрезке график функции будет выпуклый. 

Теорема 9.5 (необходимое условие точки перегиба). Пусть график функции Исследование функций с помощью производных с примерами решения имеет перегиб в точке Исследование функций с помощью производных с примерами решения и пусть функция Исследование функций с помощью производных с примерами решения имеет в точке Xq непрерывную вторую производную. Тогда Исследование функций с помощью производных с примерами решения

Доказательство.

Пусть Исследование функций с помощью производных с примерами решения — абсцисса точки перегиба графика функции Исследование функций с помощью производных с примерами решения Для определенности будем считать, что выпуклость сменяется вогнутостью, т. е. при Исследование функций с помощью производных с примерами решения справедливо неравенство Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения справедливо неравенство Исследование функций с помощью производных с примерами решения Тогда Исследование функций с помощью производных с примерами решения Исследование функций с помощью производных с примерами решения Так как, по условию теоремы, вторая производная в точке Исследование функций с помощью производных с примерами решения существует, то Исследование функций с помощью производных с примерами решения

Определение 9.3. Точка Исследование функций с помощью производных с примерами решения из области определения функции Исследование функций с помощью производных с примерами решения называется критической (стационарной) точкой второго рода, если вторая производная функции в этой точке обращается в нуль Исследование функций с помощью производных с примерами решения или не существует.

Замечание 9.3. Не всякая точка Исследование функций с помощью производных с примерами решения для которой Исследование функций с помощью производных с примерами решения является точкой перегиба.

Пример 9.4. График функции Исследование функций с помощью производных с примерами решения не имеет перегиба в точке (0; 0), хотя Исследование функций с помощью производных с примерами решения обращается в 0 при Исследование функций с помощью производных с примерами решения

Теорема 9.6 (достаточное условие точки перегиба). Пусть функция Исследование функций с помощью производных с примерами решения определена и дважды дифференцируема в некоторой окрестности точки Исследование функций с помощью производных с примерами решения Тогда если в пределах указанной окрестности Исследование функций с помощью производных с примерами решения имеет разные знаки слева и справа от точки Исследование функций с помощью производных с примерами решения то график функции Исследование функций с помощью производных с примерами решения имеет перегиб в точке

Исследование функций с помощью производных с примерами решения

Доказательство.

Из того, что Исследование функций с помощью производных с примерами решения слева и справа от точки Исследование функций с помощью производных с примерами решения имеет разные знаки, на основании теоремы 9.4 можно сделать заключение, что направление выпуклости графика функции слева и справа от точки Исследование функций с помощью производных с примерами решения является различным. Это и означает наличие перегиба в точке Исследование функций с помощью производных с примерами решения

Замечание 9.4. Теорема остается верной, если функция Исследование функций с помощью производных с примерами решения имеет вторую производную в некоторой окрестности точки Исследование функций с помощью производных с примерами решения и существует касательная к графику функции в точке Исследование функций с помощью производных с примерами решения  Тогда если в пределах указанной окрестности Исследование функций с помощью производных с примерами решения имеет разные знаки справа и слева от точки Исследование функций с помощью производных с примерами решения то график функции Исследование функций с помощью производных с примерами решения имеет перегиб в точке Исследование функций с помощью производных с примерами решения

Пример 9.5. Точка (0; 0) является точкой перегиба графика функции Исследование функций с помощью производных с примерами решения хотя вторая производная функции при Исследование функций с помощью производных с примерами решения не существует. Касательная к графику функции Исследование функций с помощью производных с примерами решения в точке (0; 0) совпадает с осью Исследование функций с помощью производных с примерами решения

Асимптоты графика функции

При исследовании поведения функции на бесконечности, т. е. при Исследование функций с помощью производных с примерами решения и при Исследование функций с помощью производных с примерами решения или вблизи точек разрыва 2-го рода, часто оказывается, что график функции сколь угодно близко приближается к некоторой прямой.

Определение 9.4. Прямая Исследование функций с помощью производных с примерами решения называется асимптотой графика функции Исследование функций с помощью производных с примерами решения если расстояние Исследование функций с помощью производных с примерами решения от переменной точки графика функции Исследование функций с помощью производных с примерами решения до прямой Исследование функций с помощью производных с примерами решения стремится к нулю при удалении точки Исследование функций с помощью производных с примерами решения от начала системы координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение 9.5. Прямая Исследование функций с помощью производных с примерами решения называется вертикальной асимптотой графика функции Исследование функций с помощью производных с примерами решения если хотя бы одно из предельных значений Исследование функций с помощью производных с примерами решения или Исследование функций с помощью производных с примерами решения равно Исследование функций с помощью производных с примерами решения или Исследование функций с помощью производных с примерами решения

В этом случае расстояние от точки графика функции Исследование функций с помощью производных с примерами решения до прямой Исследование функций с помощью производных с примерами решения равно Исследование функций с помощью производных с примерами решения и, следовательно, Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения

Пример 9.6. График функции Исследование функций с помощью производных с примерами решения имеет вертикальную асимптоту Исследование функций с помощью производных с примерами решения так как Исследование функций с помощью производных с примерами решения

Определение 9.6. Прямая Исследование функций с помощью производных с примерами решения называется горизонтальной асимптотой графика функции Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения если Исследование функций с помощью производных с примерами решения

В этом случае расстояние от точки графика функции Исследование функций с помощью производных с примерами решения до прямой Исследование функций с помощью производных с примерами решенияравно Исследование функций с помощью производных с примерами решения и, следовательно, Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения так как Исследование функций с помощью производных с примерами решения

Пример 9.6 (продолжение). График функции Исследование функций с помощью производных с примерами решения имеет горизонтальную асимптоту Исследование функций с помощью производных с примерами решения и при Исследование функций с помощью производных с примерами решения и при Исследование функций с помощью производных с примерами решения так как Исследование функций с помощью производных с примерами решения

Определение 9.7. Прямая Исследование функций с помощью производных с примерами решения называется наклонной асимптотой графика функции Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения Исследование функций с помощью производных с примерами решения если функцию Исследование функций с помощью производных с примерами решения можно представить в виде

Исследование функций с помощью производных с примерами решения    (9.1)

где Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения

Теорема 9.7. Для того чтобы прямая Исследование функций с помощью производных с примерами решения являлась наклонной асимптотой графика функции Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения Исследование функций с помощью производных с примерами решения необходимо и достаточно, чтобы существовали конечные пределы:

Исследование функций с помощью производных с примерами решения    (9.2)

Доказательство. Рассмотрим случай Исследование функций с помощью производных с примерами решения

Необходимость.

Если Исследование функций с помощью производных с примерами решения — наклонная асимптота графика функции Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то, используя представление функции по формуле (9.1), получим:

Исследование функций с помощью производных с примерами решения

Достаточность.

Пусть существуют пределы (9.2). Тогда из второго равенства следует, что

Исследование функций с помощью производных с примерами решения где Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения

Полученное равенство легко преобразовать к виду (9.1), т. е. прямая Исследование функций с помощью производных с примерами решения — наклонная асимптота графика функции Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения

Схема исследования функции и построения ее графика

Рассмотрим примерный план, по которому целесообразно исследовать поведение функции и строить ее график:

1. Найти область определения функции.

2. Проверить выполнение свойств четности или нечетности, периодичности.

3. Указать промежутки непрерывности, точки разрыва и их тип, проверить наличие асимптот.

4. Найти промежутки монотонности и точки экстремума.

5. Найти промежутки выпуклости и вогнутости, точки перегиба.

6. Найти точки пересечения графика функции с осями координат.

7. Построить график функции.

Замечание 9.5. Если исследуемая функция Исследование функций с помощью производных с примерами решения четная, то достаточно исследовать функцию и построить ее график при положительных значениях аргумента, принадлежащих области определения функции. При отрицательных значениях аргумента график функции строится на том основании, что график четной функции симметричен относительно оси ординат.

Замечание 9.6. Если исследуемая функция Исследование функций с помощью производных с примерами решения нечетная, то достаточно исследовать функцию и построить ее график при положительных значениях аргумента, принадлежащих области определения функции. При отрицательных значениях аргумента график функции строится на том основании, что график нечетной функции симметричен относительно начала координат.

Пример 9.7. Исследовать функцию Исследование функций с помощью производных с примерами решения и построить ее график.

Решение.

1. Исследование функций с помощью производных с примерами решения

2. Так как область определения функции несимметрична относительно начала координат, то эта функция общего вида, т. е. функция ни четная, ни нечетная, непериодическая.

3. Функция непрерывна на области определения как элементарная. Точкой разрыва является Исследование функций с помощью производных с примерами решения Так как

Исследование функций с помощью производных с примерами решения

то Исследование функций с помощью производных с примерами решения — точка разрыва второго рода. Можно также сделать заключение, что прямая Исследование функций с помощью производных с примерами решения будет являться вертикальной асимптотой графика функции.

Проверим наличие горизонтальных асимптот. Так как

Исследование функций с помощью производных с примерами решения

то данная функция не имеет горизонтальных асимптот. Проверим наличие наклонных асимптот. Так как

Исследование функций с помощью производных с примерами решения

Исследование функций с помощью производных с примерами решения

то график функции имеет наклонную асимптоту с угловым коэффициентом Исследование функций с помощью производных с примерами решения и свободным членом Исследование функций с помощью производных с примерами решения т. е. Исследование функций с помощью производных с примерами решения

4. Определим промежутки возрастания и убывания функции, точки экстремума. Для этого найдем критические точки первого рода:

Исследование функций с помощью производных с примерами решения

Решим уравнение Исследование функций с помощью производных с примерами решения т.е. Исследование функций с помощью производных с примерами решения Получаем Исследование функций с помощью производных с примерами решения

 откуда Исследование функций с помощью производных с примерами решения и Исследование функций с помощью производных с примерами решения — критические точки первого рода. Изменение знака первой производной покажем на числовой оси (рис. 9.4).

Исследование функций с помощью производных с примерами решения

Так как Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то функция возрастает на указанных промежутках; так как Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то функция убывает на указанном промежутке. При переходе через точку Исследование функций с помощью производных с примерами решения производная Исследование функций с помощью производных с примерами решения изменяет знак с «-» на «+», следовательно, в этой точке функция имеет минимум, причем Исследование функций с помощью производных с примерами решения

5. Определим промежутки выпуклости и вогнутости графика функции, точки перегиба. Для этого найдем критические точки второго рода:

Исследование функций с помощью производных с примерами решения

Решим уравнение Исследование функций с помощью производных с примерами решения т. е. Исследование функций с помощью производных с примерами решенияПолучаем единственное решение Исследование функций с помощью производных с примерами решения — критическая точка второго рода. Изменение знака второй производной покажем на числовой оси (рис. 9.5).

Исследование функций с помощью производных с примерами решения

Так как Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то график функции будет выпуклым на данном промежутке; так как Исследование функций с помощью производных с примерами решения при Исследование функций с помощью производных с примерами решения то график функции будет вогнутым на указанных промежутках. При переходе через точку Исследование функций с помощью производных с примерами решения выпуклость графика функции сменяется вогнутостью, следовательно, это абсцисса точки перегиба, тогда ордината Исследование функций с помощью производных с примерами решения Таким образом, (0; 0) — точка перегиба графика функции.

6. Найдем точки пересечения графика функции с осями координат.

Для точек оси Исследование функций с помощью производных с примерами решения всегдаИсследование функций с помощью производных с примерами решеният. е. Исследование функций с помощью производных с примерами решения откуда Исследование функций с помощью производных с примерами решения

Для точек оси Исследование функций с помощью производных с примерами решения всегдаИсследование функций с помощью производных с примерами решения т. е. Исследование функций с помощью производных с примерами решения

Таким образом, единственной точкой пересечения графика функции с осями координат является начало системы координат Исследование функций с помощью производных с примерами решения

7. Построим график функции на рис. 9.6.

Исследование функций с помощью производных с примерами решения

  • Формула Тейлора и ее применение
  • Интегрирование рациональных дробей
  • Интегрирование тригонометрических функций
  • Интегрирование тригонометрических выражений
  • Замечательные пределы
  • Непрерывность функций и точки разрыва
  • Точки разрыва и их классификация
  • Дифференциальное исчисление

Исследование функции — задача, заключающаяся в определении основных параметров заданной функции. Одной из целей исследования является построение графика функции.

Точки экстремума

Максимумом или минимумом функции y = f(x) называется
такое ее значение Исследование функции для которого имеют место
неравенства при любых малых положительных и отрицательных значениях Исследование функции

Исследование функции — для случая максимума;

Исследование функции — для случая минимума.

Таким образом, в точках максимума (минимума) значение Исследование функциибольше (соответственно меньше) всех соседних значений функции (рис. 7.1).

Исследование функции

Функция, представленная на рис. 7.1, в точке Исследование функции имеет
максимум, а в точке Исследование функцииминимум.

Точки, в которых функция принимает максимальное или минимальное значения, называются точками экстремума.

Необходимое условие максимума и минимума функции

Теорема Ферма:

Если функция определена и дифференцируема
в некотором промежутке X и во внутренней точке этого промежуткаИсследование функции имеет наибольшее (наименьшее) значение, то
производная функции в этой точке равна нулю, т.е. Исследование функции

Доказательство:

Пусть функция y = f(x) в точке Исследование функции
промежутка X имеет наибольшее значение (рис. 7.2).

Исследование функции

Тогда Исследование функции если Исследование функции принадлежит Х. Отсюда Исследование функции при достаточно малых Исследование функции независимо от его знака.

Если Исследование функциито Исследование функции и Исследование функции а если Исследование функции то Исследование функции и Исследование функции

Переходя к пределам справа при Исследование функции и слева при Исследование функции
получим

Исследование функции

Так как по условию функция y=f(x) дифференцируема в
точке Исследование функции то ее предел при Исследование функции не зависит от способа
стремления (слева или справа).

Поэтому

Исследование функции

т.е. Исследование функцииАналогично доказывается случай для наименьшего значения функции.

Необходимым условием максимума (минимума) непрерывной функции является равенство нулю первой производной.

Это условие является следствием теоремы Ферма. Действительно, если в точке Исследование функции дифференцируемая функция имеет экстремум, то в некоторой окрестности этой точки выполняются условия теоремы Ферма и, следовательно, производная функции в этой точке равна нулю, т.е. Исследование функции

Необходимое условие максимума или минимума непрерывной функции имеет простой геометрический смысл. Так как в экстремальных точках касательная параллельна оси Ох (см. рис. 7.1 и 7.2), т.е. угол наклона касательной к оси Ох равен нулю, то тангенс данного угла, который равен производной, также равен нулю.

Максимум или минимум может иметь место также в тех точках, где производная не существует вовсе (рис. 7.3).

Исследование функции

Приведенное условие существования экстремумов является необходимым, но не достаточным. На рис. 7.4 приведен случай, когда необходимое условие выполняется в точке Исследование функции но ни максимума, ни минимума нет.

Исследование функции

Достаточные условия существования экстремума

Первое условие. Если при переходе через точку Исследование функции производная дифференцируемой функции y = f(x) меняет свой знак с плюса на минус, то точка Исследование функции является точкой максимума, а если с минуса на плюс, то точкой минимума.

Действительно, если Исследование функции при Исследование функции и Исследование функции при Исследование функциито в промежутке Исследование функции функция f(x) возрастает, а в
промежутке Исследование функции убывает, так что значение Исследование функции будет
наибольшим в промежутке Исследование функциит.е. в точке Исследование функциифункция имеет максимум. Аналогично доказывается случай для минимума функции. Графически сказанное поясняется на рис. 7.5.

Исследование функции

Если при переходе через точку Исследование функции производная не меняет
своего знака, то в точке Исследование функции нет ни максимума, ни минимума
(см. рис. 7.4).

Второе условие. Если функция y = f(x) дважды дифференцируема в точке Исследование функции, и ее первая производная в данной точке равна
нулю, а вторая производная в этой точке положительна, то точка
Исследование функции является точкой минимума. Если вторая производная
функции y = f(x) отрицательна в точке Исследование функции, то она является точкой максимума.

Действительно, вторая производная вычисляется по формуле:

Исследование функции

так как Исследование функции по условию.

Пусть Исследование функции Тогда дробь Исследование функции положительна для всех х
из окрестности точки Исследование функции. Для Исследование функции знаменатель этой дроби Исследование функции поэтому Исследование функции а для Исследование функции знаменатель дроби
Исследование функции Таким образом, производная при переходе
точки Исследование функции меняет знак с минуса на плюс. Согласно первому условию
в такой точке имеет место минимум. Аналогично можно показать,
что при Исследование функциив точке Исследование функции имеет место максимум. Сказанное
поясняется на рис. 7.5.

Если вторая производная в некоторой точке равна нулю, то эта
точка также может быть экстремальной. Например, для функции
Исследование функции в точке х = 0 имеет место минимум, хотя вторая производная в этой точке равна нулю. Действительно, Исследование функции и Исследование функции

Алгоритм исследования функции на экстремум

1.Найти производную функции и приравнять ее нулю.

2.Решив это уравнение, определить подозрительные точки.

3.Исследовать знак производной слева и справа от каждой
подозрительной точки и принять решение о наличии
минимума или максимума.

4.Найти значения функции в экстремальных точках.

Пример:

Найти максимумы и минимумы функции

Исследование функции

Решение:

Область определения функции — вся числовая ось.
Определяем производную:

Исследование функции

Подозрительные точки находим, решая уравнение Исследование функции

Отсюда Исследование функции или Исследование функции

Определяем вторую производную: Исследование функции

Для точки Исследование функции имеем у» = 18*0 —12*0 —12 = -12, т.е. в этой точке
имеет место максимум. Его значение равно

у = 1,5*0-2*0-6*0 + 1 = 1.

Для точки Исследование функции имеем Исследование функции т.е. в этой точке
имеет место минимум. Его значение равно

Исследование функции

Для точки Исследование функции имеем Исследование функции т.е. в этой
точке имеет место минимум. Его значение равно Исследование функцииИсследование функции

Пример:

Производитель реализует свою продукцию по цене
60 ден. ед. за единицу продукции. Издержки производителя
определяются кубической зависимостью Исследование функции где х —
количество изготовленной и реализованной продукции. Найти оптимальный объем выпуска и соответствующий ему доход.

Решение:

Доход определяется разностью между выручкой за
проданную продукцию 60х и ее себестоимостью, т.е.

Исследование функции

Для определения оптимального объема выпуска найдем производную
этой функции, приравняем ее нулю и решим полученное уравнение

Исследование функции

Отрицательный корень не имеет экономического смысла, поэтому
для дальнейших исследований принимаем Исследование функции Вторая
производная в исследуемой точке r»(х) = -0,006х = -0,006 • 100 = -0,6 является отрицательной, т.е. в этой точке имеет место максимум функции. Таким образом, оптимальный объем выпуска равен 100 единицам продукции.

Доход, соответствующий оптимальному выпуску,

Исследование функции

Для определения наибольшего и наименьшего значений на
отрезке, помимо указанного алгоритма, находят значения функции на концах отрезка. Затем выбирают наибольшее и наименьшее
значения из этих двух и всех экстремальных значений. Смысл
сказанного поясняется на рис. 7.6.

Исследование функции

Монотонность и выпуклость функций

Функция y = f(x) не убывает (не возрастает) на промежутке X, если для любых Исследование функции из этого промежутка при условии Исследование функции следует неравенство

Исследование функции

Если меньшему значению неравенства аргумента соответствует меньшее значение функции, то функция называется возрастающей (рис. 7.7). Если меньшему значению аргумента соответствует большее значение функции, то функция называется убывающей (рис.7.8).

Исследование функции

Функции возрастающие и убывающие называются монотонными.

Функция называется ограниченной на промежутке X, если существует такое положительное число М > 0, что Исследование функции для любого х из промежутка X. Например, функция у = cos х ограничена на всей числовой оси, так как Исследование функции для любого х числовой оси.

Функция y = f(x) на интервале (а,b) имеет выпуклость вниз (вверх), если в пределах данного интервала график лежит не ниже (не выше) любой касательной к графику функции. На рис. 7.9 изображен график функции, имеющей выпуклость вниз, а на рис. 7.10 — график функции, имеющей выпуклость вверх.

Исследование функции

Функция y = f(x) на интервале (а, b) называется выпуклой вниз, если для любых двух значений Исследование функции из данного интервала выполняется неравенство (рис. 7.9)

Исследование функции

Функция y = f(x) на интервале (а, b) называется выпуклой вверх, если для любых двух значений Исследование функции из данного интервала выполняется неравенство (рис. 7.10)

Исследование функции

При исследовании функций бывают полезны две следующие
теоремы.

Теорема:

Функция выпукла вниз (вверх) тогда и только тогда,
когда ее первая производная на этом промежутке монотонно
возрастает (убывает).

Теорема:

Если вторая производная дважды дифференцируемой
функции положительна (отрицательна) внутри интервала (a, b), то
функция выпукла вниз (вверх) внутри этого интервала (достаточное
условие
).

Однако, данное условие справедливо не всегда. Например,
функция Исследование функции выпукла вниз на всей числовой оси, хотя вторая
производная Исследование функции не всюду положительна (при х = 0 у» = 0).

Точка Исследование функции называется точкой перегиба графика функции
y = f(x), если в этой точке график имеет касательную и существует
такая окрестность точки Исследование функции, в пределах которой график функции слева и справа от точки Исследование функции имеет разные направления выпуклости.

На рис. 7.4 точка Исследование функции является точкой перегиба.

Необходимое условие перегиба. Вторая производная дважды
дифференцируемой функции в точке перегиба Исследование функции равна нулю:

Исследование функции

Достаточное условие перегиба. Вторая производная дважды
дифференцируемой функции при переходе точки перегиба Исследование функции
меняет свой знак.

Алгоритм исследования функции на выпуклость и точки перегиба

1.Найти вторую производную функции и приравнять ее нулю.

2.Решив это уравнение, определить подозрительные точки.

3.Исследовать знак второй производной слева и справа от
каждой подозрительной точки и принять решение об интервалах
выпуклости и наличии точек перегиба.

4.Найти значения функции в точках перегиба.

Пример:

Найти экстремальные точки, интервалы выпуклости
и точки перегиба функции Исследование функции

Решение:

Находим первую и вторую производные исследуемой
функции:

Исследование функции

Приравняем нулю первую производную и решим полученное
уравнение:

Исследование функции

Подставив полученные значения в формулу для второй
производной, найдем

Исследование функции

Таким образом, точка Исследование функции является точкой минимума.
Значение исследуемой функции в этой точке

Исследование функции

Точку Исследование функции необходимо исследовать дополнительно. Первая
производная определена на всей числовой оси, так как точек, в которых производная отсутствует, не существует. Исследуем знак производной на интервале Исследование функции Для этого рассчитаем значения производной в точках х = 1 и х = 3:

Исследование функции

Так как слева и справа от точки Исследование функции знак производной
положительный, то в этой точке экстремума нет.

Приравняем нулю вторую производную и решим полученное
уравнение:

Исследование функции

Вторая производная также определена на всей числовой оси. В
точке х = 0 значение второй производной

Исследование функции

в точке Исследование функции

Исследование функции

в точке х = 3 —

Исследование функции

Поэтому:

■ на интервале Исследование функции — функция выпукла вниз;

■ на интервале (1; 2) у» < 0 — функция выпукла вверх;

■ на интервале Исследование функции — функция выпукла вниз.

Таким образом, точки Исследование функции являются точками перегиба.
Значение исследуемой функции в этих точках:

Исследование функции

Асимптоты функций

Прямая называется асимптотой функции y = f(x), если расстояние от
точки (х, f(x)) , лежащей на графике функции, до этой прямой
стремится к нулю при движении точки по графику в бесконечность.

Существуют три вида асимптот: вертикальные (рис. 7.11),
горизонтальные (рис. 7.12) и наклонные (рис. 7.13, 7.14).

Исследование функции

На рис. 7.14 кривая приближается к асимптоте, все время пересекая ее.

Прямая х = а называется вертикальной асимптотой графика
функции у = f(x), если хотя бы одно из предельных значений Исследование функцииили Исследование функции равно Исследование функции или Исследование функции

Прямая у = b называется горизонтальной асимптотой графика
функции y = f (х), если Исследование функции или Исследование функции

Прямая y = kx + b Исследование функции называется наклонной асимптотой
графика функции у = f(x), если существуют конечные пределы Исследование функции

Действительно, если у = kх + b — наклонная асимптота, то Исследование функции

Из последнего выражения следует

Исследование функции

При известном k из равенства Исследование функции находим Исследование функции

Если для горизонтальной и наклонной асимптот конечен только
предел при Исследование функции или при Исследование функции то эти асимптоты называются соответственно правосторонней или левосторонней.

Пример:

Найти асимптоты графика функции Исследование функции

Решение:

Областью определения является вся числовая ось,
кроме точки х = 3 . Причем

Исследование функции

Поэтому прямая х = 3 — вертикальная асимптота. Так как Исследование функции то график функции наклонных асимптот не имеет. ►

Пример:

Найти асимптоты графика функции у = х + arctg х.
Решение. Функция непрерывна на всей числовой оси, поэтому
вертикальные асимптоты отсутствуют. Так как

Исследование функции

то отсутствуют и горизонтальные асимптоты.

Для правосторонней наклонной асимптоты Исследование функцииИсследование функции

Уравнение правосторонней асимптоты имеет вид Исследование функции

Для левосторонней наклонной асимптоты Исследование функцииИсследование функции

Уравнение правосторонней асимптоты имеет вид Исследование функции

Правило Лопиталя

При отыскании предела часто сталкиваются с
неопределенностями Исследование функции или Исследование функции Для решения задачи применяют правило Лопиталя.

Прежде чем переходить к доказательству правила Лопиталя,
рассмотрим две теоремы.

Теорема Ролля:

Пусть функция y = f(x) удовлетворяет
следующим условиям:

■ непрерывна на промежутке [а,b];
■ дифференцируема на промежутке (а,b);
■ на концах промежутка принимает равные значения, т.е.
f(a) = f(b).

Тогда внутри промежутка существует по крайней мере одна точка
Исследование функции производная функции в которой равна нулю, т.е. Исследование функции

Доказательство. Действительно, если внутри промежутка функция имеет хотя бы одну точку, в которой она принимает наибольшее или наименьшее значение, то в соответствии с теоремой Ферма производная в этой точке равна нулю. Если же таких точек нет, то функция тождественно постоянна на всем интервале. Тогда производная равна нулю во всех точках указанного интервала.

Теорема Лагранжа:

Пусть функция y = f(x) удовлетворяет
следующим условиям:

■ непрерывна на промежутке [а, b];
■ дифференцируема на промежутке (а, b).

Тогда внутри промежутка существует по крайней мере одна точка
Исследование функции в которой производная функции равна частному от деления
приращения функции на приращение аргумента на данном промежутке:

Исследование функции

Доказательство:

Введем функцию

Исследование функции

Эта функция удовлетворяет условиям теоремы Ролля, поскольку она:

■ непрерывна на промежутке [а, b];

■ дифференцируема на промежутке (а, b) и

Исследование функции

■ на концах промежутка принимает равные значения:

Исследование функции

Следовательно, внутри промежутка существует по крайней мере одна точка Исследование функции производная функции g(x) в которой равна нулю:

Исследование функции

Отсюда находим Исследование функции

Правило Лопиталя

Пусть Исследование функции Причем функции Исследование функции и Исследование функции удовлетворяют следующим условиям:

■ непрерывны на промежутке [х, а];

■ дифференцируемы на промежутке (х, а) и Исследование функции

Исследование функции (неопределенность Исследование функции

Исследование функции (неопределенность Исследование функции

Тогда Исследование функции

Доказательство:

Доказательство проведем для неопределенности Исследование функции Применяя теорему Лагранжа для функций Исследование функции и Исследование функцииполучим Исследование функции

Так как при Исследование функции имеем Исследование функции то, используя теорему о пределе частного двух функций, получим

Исследование функции

В случае, если Исследование функции снова представляет собой неопределенность вида Исследование функции или Исследование функции то применяют это правило вторично, и т.д.

Пример:

Используя правило Лопиталя, найти пределы:

Исследование функции

Решение:

Во всех примерах имеем неопределенность Исследование функции. Используя правило Лопиталя, получим

Исследование функции

Пример:

Используя правило Лопиталя, найти предел Исследование функции

Решение:

Имеем неопределенность Исследование функции Применяя правило Лопиталя n раз, получим:

Исследование функции

Пример:

Используя правило Лопиталя, найти предел Исследование функции

Решение:

Имеем неопределенность Исследование функции Разделив числитель и
знаменатель на х , получим Исследование функции Неопределенность этого предела Исследование функции Используя правило Лопиталя, найдем:

Исследование функции

Построение графиков функций

Изучение функции и построение ее графика целесообразно
проводить по следующей схеме:

1.Найти область существования функции, точки разрыва и
определить их характер.

2.Определить поведение функции в бесконечности, вычислив
пределы

Исследование функции

3.Найти асимптоты.

4.Найти пересечение кривой с осью Ох, решая уравнение
f(x) = 0, и с осью Оу , вычисляя у = f(0).

5.Найти экстремумы и интервалы монотонности функции.

6.Найти интервалы выпуклости функции и точки перегиба.

7.По полученным данным постепенно делают набросок
кривой, уточняя его по отдельным точкам.

Пример:

Построить график функции

Исследование функции

Решение:

1. Эта функция определена и непрерывна для всех Исследование функцииПри приближении к точке Исследование функции слева Исследование функции
а справа — Исследование функции Таким образом, прямая х = -1 является вертикальной асимптотой.

2.Пределы функции в бесконечности:

Исследование функции

3.Определим параметры наклонных асимптот. Угловой
коэффициент справа

Исследование функции

Угловой коэффициент слева

Исследование функции

Точка пересечения асимптоты с осью Оу справа

Исследование функции

Точка пересечения асимптоты с осью Оу слева

Исследование функции

Таким образом, параметры правой и левой асимптот совпали,
т.е. имеет место одна асимптота, определенная уравнением прямой
у = х-4.

4.Точка пересечения кривой с осью Оу находится из
соотношения

Исследование функции

Точка пересечения кривой с осью Ох находится из уравнения

Исследование функции

Дробь равна нулю, если числитель равен нулю, т.е.

Исследование функции

Решение данного квадратного уравнения имеет вид

Исследование функции

5.Для определения экстремумов и интервалов монотонности
функции найдем первую и вторую производные:

Исследование функции

Приравняв нулю первую производную, получим:

Исследование функции

Решив данное уравнение, найдем подозрительные точки:

Исследование функции

Значения функции в этих точках:

Исследование функции

Подставив полученные координаты экстремальных точек в формулу
второй производной, найдем: Исследование функции

т.е. в точке (0,4; -2,2) имеет место минимум,

Исследование функции

т.е. в точке (-2,4; -7,8) имеет место максимум.

Для исследования функции на монотонность проследим поведение производных внутри полученных интервалов (рис. 7.15). Знаками плюс и минус показан знак производной на данном интервале.

Исследование функции

В точке Исследование функции имеет место максимум, поэтому на промежутке Исследование функции функция возрастает, а на промежутке (-2,4; -1) убывает и при Исследование функции слева стремится к Исследование функции В точке Исследование функции имеет
место минимум, поэтому на промежутке (-1; 0,4) функция
убывает, а на промежутке Исследование функции — возрастает.

6.Для нахождения точек перегиба приравняем нулю вторую производную: Исследование функции Это уравнение не имеет корней, т.е. точек перегиба нет.

По полученным данным строим график функции (рис. 7.16). ►

Исследование функции

Производные и дифференциалы функций нескольких переменных

Пусть задана функция n переменных Исследование функции

Первой частной производной функции Исследование функции по переменной Исследование функции называется производная данной функции по Исследование функции при фиксированных остальных переменных:

Исследование функции

Аналогично определяется первая частная производная по любой другой переменной. Например, первую частную производную по Исследование функции записывают в виде

Исследование функции

Второй частной производной функции Исследование функции называется первая частная производная от первой частной производной данной функции.

Функция n переменных имеет Исследование функции вторых частных производных. Действительно, количество частных производных от частной производной по переменной Исследование функции равно n (см. первую строку табл. 7.1). Количество строк в табл. 7.1 также равно n.

Таблица 7.1

Исследование функции

Для функции двух переменных имеем четыре вторые частные производные:

Исследование функции

Вторая частная производная по двум различным переменным, например Исследование функции называется смешанной. Величина смешанной производной, непрерывной при данных значениях переменных Исследование функции и Исследование функции, не зависит от порядка переменных, по которым берутся производные, т.е.

Исследование функции

Аналогично определяются производные более высоких порядков, например третья частная производная, четвертая частная производная и т.д.

Частный дифференциал функции n переменных Исследование функции по одной из переменных, например по Исследование функции, определяется равенством

Исследование функции

Полный дифференциал функции n переменных Исследование функции определяется по формуле

Исследование функции

Полный дифференциал второго порядка функции двух переменных Исследование функции задается соотношением

Исследование функции

Пример:

Найти частные производные первого и второго порядка от функции Исследование функции

Решение:

Находим первую и вторую частные производные по х:

Исследование функции

Находим первую и вторую частные производные по у :

Исследование функции

Находим смешанные вторые частные производные:

Исследование функции

Как и следовало ожидать, смешанные частные производные равны. ►

Пример:

Найти дифференциалы первого и второго порядков от функции Исследование функции

Решение. Частные производные первого и второго порядков исследуемой функции равны:

Исследование функции

Дифференциал первого порядка

Исследование функции

Дифференциал второго порядка

Исследование функции

Градиент

Градиентом функции n переменных Исследование функции называется вектор с координатами

Исследование функции

При этом пишут grad y, Исследование функции

Известно, что вектор Исследование функции в n-мерной системе координат можно представить в виде

Исследование функции

где Исследование функции — проекции вектора Исследование функции на оси координат;

Исследование функции — орты или векторы единичной длины, совпадающие по направлению с координатными осями Исследование функции соответственно.

Градиент функции трех переменных u = f(x, у, z) можно представить в виде

Исследование функции

где Исследование функции — орты координатных осей х, у, z соответственно.

Градиент функции в заданной точке показывает направление самого быстрого роста функции в этой точке.

В экономике достаточно часто используются функции двух переменных. Градиент функции двух переменных u = f(х, у) можно представить в виде

Исследование функции

Существует четкая связь между линиями уровня таких функций и направлением градиента.

Теорема:

Пусть задана дифференцируемая функция u = f(x,у) и величина градиента данной функции, отличная от нуля, в точке Исследование функции. Тогда градиент в точке Исследование функции перпендикулярен линии уровня, проходящей через эту точку.

Доказательство. Линия уровня, представленная на рис. 7.17, задана уравнением L = f(x, у).

Исследование функции

В точке Исследование функции линии уровня проведем касательную и построим вектор Исследование функции, совпадающий по направлению с касательной, с началом в этой точке.

Пусть проекция вектора Исследование функции на ось Ох будет равна единице. Отношение проекций Исследование функции или Исследование функции

Таким образом, вектор Исследование функции можно представить в виде:

Исследование функции

Умножив данный вектор на dx , получим

Исследование функции

Найдем скалярное произведение градиента функции u = f(x,y)
в точке Исследование функции и вектора Исследование функции

Исследование функции

С другой стороны, полный дифференциал функции u = f(x, у)
в точке Исследование функции

Исследование функции

На линии уровня функция u = f(x, у) не изменяется по определению, поэтому полный дифференциал по направлению вектора Исследование функции равен нулю:

Исследование функции

Сопоставив это выражение с (7.1), можно сделать вывод о
перпендикулярности векторов Исследование функции и grad u.

Пример:

Для функции u = ху построить линию уровня, проходящую через точку Исследование функциии Исследование функции и найти градиент в данной
точке.

Решение:

Уровень в исследуемой точке равен с = 1 • 1 = 1. Линия уровня определяется формулой

1 = ху или Исследование функции

Таким образом, линией уровня является гипербола.

Для отыскания градиента найдем частные производные функции в
исследуемой точке:

Исследование функции

Отсюда следует выражение для градиента функции в исследуемой
точке:

Исследование функции

Из полученной формулы видно, что градиент в исследуемой точке
направлен вправо вверх под углом 45° к осям Ох и Оу (рис. 7.18).

Исследование функции

Его модуль равен

Исследование функции

Однородные функции

Пусть задана функция и переменных Исследование функции определенная при Исследование функции где i = 1, 2,…, n, и имеющая в области определения непрерывные первые частные производные.

Функция Исследование функции называется однородной функцией степени р, если для любого числа t > 0 выполняется равенство

Исследование функции

Заметим, что условие определения функции Исследование функции при Исследование функции где i = 1, 2,…, n, широко используется в экономическом анализе.

Для однородных функций п переменных Исследование функции степени р справедлива формула

Исследование функции

Для однородной функции двух переменных u=f(x, у) степени р имеем

Исследование функции

Приведенные формулы называются формулами Эйлера.

Пример:

Определить степень однородных функций:

а) u = ах + by;

б) Исследование функции

Решение:

a) a(tx) + b(ty) = t(ax + by) = tu , т.е. функция u = ax + by имеет первую степень однородности;

б) Исследование функции т.е. функция Исследование функции имеет вторую степень однородности. ►

Экстремумы функции двух переменных

Пусть задана функция двух переменных u = f(x, у).

Точка Исследование функции называется точкой локального максимума (минимума), если для всех точек (х, у) из области определения функции u = f(x, у), близких к точке Исследование функции — лежащих в двумернойИсследование функции окрестности точки Исследование функции, справедливо неравенство Исследование функции (соответственно для точки локального минимумаИсследование функции

Двумерной Исследование функцииокрестностью точки Исследование функции называется множество точек (х,у), принадлежащих открытому кругу сколь угодно малого радиуса Исследование функциис центром в точке Исследование функции. Если при фиксированном числе Исследование функции точка (х, у) принадлежит Исследование функцииокрестности точки Исследование функции, то говорят, что точка (х, у) близка к точке Исследование функции, в противном случае — далека от точки Исследование функции (рис. 7.19).

Исследование функции

Если Исследование функции — точка локального экстремума функции u = f(x,y). то около точки Исследование функциигде Исследование функции функция
u = f(х,у) имеет вид шапочки, повернутой выпуклостью вверх
(максимум) или вниз (минимум).

Точка Исследование функции называется точкой глобального (абсолютного)
максимума (глобального (абсолютного) минимума) функции
u = f(x,у), если для всех точек (х, у), для которых функция u = f(х, у) определена, справедливо неравенство Исследование функции (соответственно для точки глобального минимума Исследование функции

Пусть функция u = f(x, у) определена в окрестности точки
Исследование функции и имеет в ней первые частные производные. Необходимым
условием локального экстремума данной функции в точке Исследование функции
является равенство нулю первых частных производных:

Исследование функции

Эти точки являются подозрительными и среди них следует
искать точки локального экстремума. Подозрительные точки не
обязаны быть точками локального экстремума.

Достаточное условие локального экстремума функции u = f(x, у)
дважды дифференцируемой в точке Исследование функции состоит в следующем.
Пусть функция u = f(x, у) в точке Исследование функции имеет первые частные
производные, равные нулю:

Исследование функции

1.Если Исследование функции или Исследование функции и выполняется неравенство Исследование функции то точка Исследование функцииявляется точкой локального минимума.

2. Если Исследование функции или Исследование функции и выполняется неравенство Исследование функции то точка Исследование функцииявляется точкой локального максимума.

3.Если Исследование функции то точка Исследование функциине является экстремальной.

Пример:

Исследовать на экстремум следующие функции
нескольких переменных: 1) Исследование функции

Решение:

1.Находим первые частные производные и приравниваем их к нулю:

Исследование функции

Решив полученные уравнения, находим подозрительные точки:

Исследование функции

Находим в подозрительной точке вторые частные производные:

Исследование функции

Так как Исследование функции то точка (0, 1) является точкой локального минимума. Значение функции в этой точке Исследование функции

2.Находим первые частные производные и приравниваем их к нулю:

Исследование функции

Решив систему из двух уравнений, находим подозрительные точки:

Исследование функции

Находим в подозрительной точке вторые частные производные:

Исследование функции

Так как Исследование функции то точка (1, 0) является точкой локального минимума. Значение функции в этой точке Исследование функции

Условный экстремум

При определении безусловного экстремума функции п
независимых переменных Исследование функции (см. §7.11) на независимые переменные Исследование функции не накладывается никаких
дополнительных условий. В задачах на условный экстремум поведение независимых переменных ограничено определенными условиями. Рассмотрим эту задачу для n независимых переменных в следующей формулировке.

Найти локальный экстремум функции n независимых
переменных Исследование функции при условии, что независимые переменные удовлетворяют ограничению

Исследование функции

Задача на условный экстремум записывается следующим образом:

Исследование функции

при условиях

Исследование функции

где m<n.

В задаче на условный экстремум функцию Исследование функции называют целевой, а функции Исследование функции где Исследование функциифункциями связи. При решении задач на условный экстремум обычно используется метод Лагранжа.

Пусть функция n независимых переменных Исследование функции и функции, определяющие условия (7.2), непрерывны и имеют непрерывные частные первые производные в точке локального экстремума Исследование функции a Исследование функции где Исследование функции При выполнении этих условий строят функцию Лагранжа, которая имеет вид

Исследование функции

где Исследование функции — множители Лагранжа.

Затем функцию Лагранжа от n + m переменных исследуют на
абсолютный экстремум. Для этих целей определяют подозрительную точку путем решения n + m уравнений:

Исследование функции

Система имеет n + m решений: Исследование функции которые являются координатами абсолютного экстремума функции Лагранжа. Точка Исследование функции является укороченной (так как из нее удалены координаты Исследование функции подозрительной точкой локального условного экстремума функции Исследование функции при условиях (7.2). Укороченную точку анализируют и выясняют, является ли она точкой условного экстремума при наличии ограничений (7.2) или не является.

Условия (7.3) являются необходимыми для существования локального условного экстремума.

Для функции двух независимых переменных задача на условный экстремум формулируется следующим образом: найти локальный экстремум функции u = f(x, у) при условии, что независимые переменные удовлетворяют ограничению g(x, у) = 0 , т.е.

Исследование функции

при условии

g(x,y) = 0.

Функция Лагранжа для этого случая имеет вид

Исследование функции

Подозрительная точка определяется путем решения трех
уравнений:

Исследование функции

Пример:

Отыскать условный экстремум функции u = ху при
условии у = 1-х (g(x, у) = у + х-1 = 0).

Решение:

Функция Лагранжа имеет вид

Исследование функции

Подозрительная точка определяется путем решения трех уравнений:

Исследование функции

Вычитая из первого уравнения второе, находим Исследование функции Из
третьего уравнения определяем Исследование функции Подставив Исследование функции в
последнюю формулу, окончательно получим Исследование функции С учетом полученных значений из первого или второго уравнения находим Исследование функции Значение функции в точке экстремума Исследование функцииГеометрия условий данного примера в координатах хОу представлена на рис. 7.20.

Исследование функции

Линия уровня, проходящая через подозрительную точку,
описывается уравнением ху = 1/4. Все линии уровня, лежащие ниже линии уровня ху = 1/4 , имеют уровень меньше 1/4 , а лежащие выше линии уровня ху = 1/4 — больше 1/4 . Это следует из уравнения линий уровней Исследование функции где k — значение уровня. Ясно, что чем больше k, тем
правее проходит кривая.

Функция, определяющая условие g (х, у) = у + х -1 = 0 , является
прямой линией (см. рис. 7.20). Из-за симметрии задачи функции
ху = 1/4 и g(x, у) = у + х-1 = 0 касаются друг друга в подозрительной
точке (1/4,1/4). Из сказанного следует, что на прямой g(x, у) = у + х-1 = 0 значение функции u = ху меньше 1/4, т.е. в подозрительной точке имеет место максимум. ►

Геометрический смысл локального условного экстремума
функции u = f(x, у) в точке Исследование функции состоит в том, что градиенты
целевой функции grad Исследование функции и функции связи Исследование функции
выходящие из точки Исследование функции, обязательно расположены на одной
прямой. Отсюда следует, что линии уровней функций f(x, у)
и g(x, у), содержащие точку Исследование функции, касаются в этой точке.

Действительно, пусть функции f(х, у) и g(x, у) непрерывны и
имеют непрерывные частные производные первого порядка по переменным х и у , Исследование функции — точка условного локального
экстремума функции u = f(x, у) при наличии ограничения g(x, у) = 0, а

Исследование функции

Перепишем условия (7.4) в виде

Исследование функции

Так как grad Исследование функции то, умножив первое уравнение системы на орт Исследование функции а второе — на орт Исследование функциии сложив их, получим

Исследование функции

Отсюда следует, что

Исследование функции

Таким образом, если два вектора равны, то они лежат на одной
прямой и противоположно направлены.

Пример:

Для условий примера 7.15 определить градиенты
целевой функции Исследование функциии функции связи Исследование функции в точке экстремума и построить их на графике.

Решение. Первые частные производные целевой функции
u = ху и функции связи g(х, у) = у + х-1 = 0 имеют вид

Исследование функции

Градиенты целевой функции и функции связи в экстремальной
точке

Исследование функции

Так как Исследование функции то равенство (7.5) имеет место:

Исследование функции

Полученные градиенты представлены на рис. 7.21. ►

Исследование функции

Дополнение к исследованию функции

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Исследование функций

Смотрите также:

Предмет высшая математика

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Понравилась статья? Поделить с друзьями:
  • Как найти высату равнобедренного треугольника
  • Как найти сумму геометрической прогрессии видео
  • Составить алгоритм как собраться в школу
  • Как найти планеты на ночном небе
  • Как найти перемещение для равноускоренного движения