Свойства степенной функции
1) Область определения и область значений
Аналитическое задание функции имеет смысл при любом значении х. Поэтому областью определения степенной функции с натуральным показателем является любое действительное число.
D(f)=(-∞;+∞)
Область значений функции:
Если n — четное, то область значений функции есть множество неотрицательных чисел
E(f)=[0 ;+∞)
2) Нули функции
Степенная функция пересекает ось ОХ в точке
х=0
3) Промежутки знакопостоянства
Если n — четное, то функция принимает положительные значения при
x ∈ (-∞; 0) U (0;+∞)
Если n — нечетное, то функция принимает положительные значения при
x ∈ (0;+∞)
Если n — нечетное, то функция принимает отрицательные значение при
x ∈ (-∞;0)
4) Промежутки монотонности
Если n — четное, то функция возрастает на промежутке x ∈ (0;+∞) и убывает на промежутке x ∈ (-∞;0)
Если n — нечетное, то функция возрастает на всей области определения
5) Четность и нечетность
Если n — четное, то функция является четной
Если n — нечетное, то функция является нечетной
План урока:
Что такое функция
Способы задания функции
Построение графика функции
Линейная функция
Степенная функция с натуральным показателем
Что такое функция
Нередко в жизни можно наблюдать взаимосвязь между различными величинами. Предположим, что на входе в зоопарк указана информация о стоимости билетов. Для детей до 7 лет проход бесплатен, для детей от 8 до 18 лет билет стоит 100 рублей, а взрослым он обойдется в 200 рублей. Таким образом, стоимость билета определяется возрастом его покупателя. Математики в таком случае говорят, что цена билета является функцией от возраста посетителя.
Пусть есть выражение 2s + 5. Обозначим его значение переменной d. Для любого значения s мы можем вычислить значение d, которое будет ему соответствовать. При s = 5 получаем
d = 2*5 + 2 = 15
а при s = 10 имеем
d = 2*10 + 2 = 25
Получается, что значение переменной d однозначно определяется s, то есть d является функцией от s.
Попробуем дать строгое определение функции. Как и многие другие определения в математике, оно использует понятие множества.
Обозначим буквой D множество всех тех чисел, которые можно подставить в функцию вместо величины d. Очевидно, что это множество всех действительных чисел. Аналогично буквой S обозначим множество всех тех значений, которые может принимать величина s. Получается, что функция
d = 2s + 5
задает правило, по которому каждому элементу множества D ставится в соответствие один из элементов множества S. В связи с этим можно сформулировать определение:
Множество S называют областью определения функции, а множество D – областью значений функции. Величину s называют независимой величиной, независимой переменной, либо просто аргументом, ведь мы можем по своему усмотрению придавать ей любое значение. Для величины d используют термин зависимая величина, зависимая переменная, либо просто функция, ведь ее значение ЗАВИСИТ от того, какое значение будет выбрано для аргумента. Другими словами, аргумент и функция – это две величины, одна из которых (независимая) определяет другую (зависимую). Иногда встречается запись:
d(s) = 2s + 5
Буква s в скобках означает, что d зависит именно от переменной s. Другой пример: запись u(t)обозначает некую функцию, где t выступает в роли независимой величины, а u – в роли зависящей от аргумента функции.
Иногда необходимо указать значение функции при конкретном значении аргумента. В этом случае этот аргумент пишут в скобках:
d(3) = 2*3 + 5 = 11
d(8) = 2*8 + 5 = 21
d(-100) = 2*(-100) + 5 = -195
То есть, если нам надо указать значение какой-то функции y(х) при х равном, например, 7, то мы просто пишем у(7).
Сделаем несколько уточнений. Во-первых, множества, между которыми устанавливается соответствие, не обязательно должны быть числовыми. Например, если стоимость чехла для телефона зависит от его цвета (синий, желтый, красный), то эту стоимость можно считать функцией от цвета, который не описывается числом. Если для каждого кассира, работающего в магазине, можно указать кассу, где он трудится, то касса является функцией от имени кассира. Впрочем, в основном математика, а особенно алгебра,изучает именно числовые функции.
Во-вторых, принципиально важно, чтобы для каждого значения аргумента функция задавала ровно 1 значение зависимой величины.
Например, пусть числу n соответствует такое число m, чтобы выполнялось условие:
m2=n
Тогда числу 4 мы можем поставить в соответствие как 2, так и – 2:
(-2)2=4
22 = 4
Значит, это соответствие не является функцией.
Однако допускается обратная ситуация, когда при разных аргументах функция имеет одинаковое значение:
Здесь на рисунке разным аргументам, 2 и (– 2), соответствует одно и тоже число, 4.
В-третьих, данное определение подходит только для функций, зависящих от одной переменной. Существуют и более сложные функции, зависящие от двух и более переменных. Например, в медицине используется индекс массы тела, который рассчитывается как отношение массы тела к квадрату роста. Таким образом, этот индекс зависит от двух переменных – от роста человека и его веса. В рамках школьного курса математики функции нескольких переменных не изучаются, однако они используются при решении многих практических задач.
Наконец, надо понимать, что фраза «переменная d зависит от s» не всегда означает наличия причинно-следственной связи между этими параметрами. Классический пример – цены на нефть на мировых биржах. Для каждого прошедшего момента времени можно указать, сколько именно тогда стоила нефть. Тем самым, с математической точки зрения, задается функция, где цена товара зависит от времени. Однако любой экономист скажет, что на самом деле стоимость продукции зависит отнюдь не от времени, а от спроса и предложения на товар, а также себестоимости его производства. Другими словами, в математике словосочетание «a зависит от b» правильнее понимать как «a соответствует b».
Способы задания функции
Самый простой способ задания какой-либо зависимости – описательный, или словесный. Вот пример такого описания: «каждому нечетному числу x соответствует число y, равное его наименьшему делителю (не считая единицы)». Такая формулировка значит, что, например, числу 15 соответствует число 3, ведь 15 делится только на 3 и 5, а тройка меньше пятерки. Числу 91 соответствует 7, так как 91 делится на 7 и 13. А какое число соответствует, скажем, 12? Никакое, ведь в описании функции указано, что аргументом должно быть нечетное число, а 12 – четное.
Чаще всего в алгебре применяют аналитический способ задания функции. Он подразумевает, что записывается формула, позволяющая по значению независимой величины вычислить величину зависимую:
Этим записям аналогична другая, где аргумент прямо указывается в скобках после зависимой величины:
Иногда функция может быть представлена в виде алгоритма. Например: «для вычисления значения g(х) необходимо сложить все десятичные цифры, из которых состоит натуральное число x». Тогда для аргумента 135 функция будет равна 9:
g(135) = 1 + 3 + 5 = 9
Вот ещё несколько значений этой функции:
g(89) = 8 + 9 =17
g(5656) = 5 + 6 + 5 +6 = 22
Подобный подход нередко встречается в некоторых языках программирования.
Если область определения функции не содержит бесконечное число чисел, то ее можно задать таблицей.В ней указывают все возможные значения независимой величины, а также соответствующие её значения зависимой величины. Вот пример табличной функции, задающей соответствие между размерами европейскими и английскими размерами мужских пальто:
А вот ещё одна табличная функция, которая каждому натуральному числу n от 1 до 5 ставит в соответствие число, равное 2n + 3:
По приведенной таблице легко определить, что
y(1) = 5
y(2) = 7
y(3) = 9
y(4) = 11
y(5) = 13
Очень распространен графический способ задания функции. Он предполагает, что нарисован график (линия или набор линий на координатной плоскости), с помощью которого можно по аргументу определить зависимую величину. Этот график может выглядеть так:
На координатной плоскости показана горизонтальная ось, по которой откладывают значение независимой переменной (в этом примере это х), и вертикальная ось, где отмечают зависимую переменную (у). Сам график показан синей линией. Покажем, как с его помощью находить значение y. Пусть надо узнать y(2), то есть значение y при x = 2. Находим на горизонтальной оси x (ее ещё называют осью абсцисс) число 2 и проводим с нее вертикальную линию до пересечения графика:
После этого от полученной точки проводится уже горизонтальная линия до пересечения с вертикальной осью y (другое ее название – ось ординат):
Далее смотрим, где именно горизонтальная линия пересекла ось у. В рассматриваемом случае получили, что у(2) = – 2,5.
Можно сформулировать определение графика функции:
Надо понимать, что не любая линия задает какую-нибудь функцию. Дело в том, что ни одна вертикальная линия не должна пересекаться с графиком в 2 и более точках, ведь тогда одному значению аргумента будет соответствовать несколько значений функции.Такая ситуация показана на рисунке:
Здесь можно видеть, что для x = 3 можно указать два значения для y. Однако по определению значению независимой величины в соответствие ставится лишь одно значение зависимой переменной. Поэтому синяя линия здесь не является графиком функции (приведен как пример того, что не всякая линия может являться графиком функции). Нередко полностью построить график невозможно. Например, зависимость
y = x + 2
определена и при x = 1, и при x =1000000000000000000. Поэтому иногда график строят частично, чтобы наглядно были видны его особенности.
Примерами графических функций являются кардиограммы, фиксирующие работу сердца, а также показания сейсмографа – прибора, измеряющего силу землетрясений.
Построение графика функции
Одну и ту же зависимость возможно порою задать как аналитически, так и графически. Графики помогают при решении многих сложных задач, ведь они наглядно иллюстрируют поведение функций. Посмотрим, как построить график функции, если для нее известна формула, ее описывающая.
Пусть дана зависимость
y(x) = 0.5x(4 — x)
Будем строить для нее график при значениях x от – 2 до 6. Для этого запишем в таблице все возможные целые значения х и вычислим для них величину y.Покажем несколько примеров расчета:
y(-2) = 0.5*(-2)(4-(-2)) = -6
y(-1) = 0.5*(-1)(4-(-1)) = -2.5
y(0) = 0.5*0*(4-0) = 0
Таким образом заполняется вся таблица:
Получили координаты 9 точек, которые отметим на плоскости (для первых двух точек пунктирами показано, как нашли их местоположение):
Они уже «намечают» некоторую линию. Конечно, отметить все возможные точки невозможно. Однако при необходимости можно «уплотнить» точки на графике, вычислив у ещё при некоторых дробных значениях x, например:
y(-1.5) = 0.5*(-1.5)(4-(-1.5)) = 4.125
y(-0.5) = 0.5*(-0.5)(4-(-0.5)) = 1.125
Отложим эти и ещё несколько дополнительных точек на графике:
С помощью современной компьютерной техники можно почти мгновенно вычислить местоположение миллионов таких точек. Соединив их все плавной линией, получим график:
Линейная функция
Можно представить огромное количество разных функций, однако есть некоторые, которые имеют особое значение как в математике, так и в естественных науках. Знакомство с основными функциями мы начнем с простейшей и одновременно важнейшей из них –линейной функции. Сначала познакомимся с ее частным случаем – прямой пропорциональностью.
Пусть автомобиль едет со скоростью 15 м/с. Обозначим за t время поездки в секундах, а за s – пройденное расстояние в метрах. Так как путь равен произведению скорости и времени, то можно записать:
s = 15t
Увеличение времени поездки, например, вдвое ведет также к удвоению пройденного расстояния. Сокращение времени в три раза приведет и к уменьшению пути втрое. В таком случае математики говорят, что величина s прямо пропорциональна величине t.
Периметр квадрата p зависит от длины его стороны a и вычисляется по формуле:
p = 4a
Величины p и a также прямо пропорциональны друг другу.
Зависимость, связывающая такие величины, называется прямой пропорциональностью. Она имеет вид
y = kx
где x – независимая величина, y – зависимая величина, а k – произвольное число (константа), которое не равно нулю.
Число k называют коэффициентом пропорциональности. Он показывает, во сколько раз зависимая переменная больше аргумента.
Легко заметить, что при x = 0 и y = 0, причем это правило будет выполняться независимо от значения коэффициента пропорциональности. Это значит, что график у = kх обязательно проходит через начало координат точку O (0;0).
Построим график прямой пропорциональности на примере
y = 0.5x
Выше мы уже строили график функции, находя несколько ее значений и занося их в таблицу. Здесь поступим также:
Теперь можно отметить найденные точки, соединить их и получить график:
Оказывается, что все точки лежат строго на одной прямой! И это будет верно для любой зависимости, которая является прямой пропорциональностью. Для наглядности покажем на графике функции:
- y = x (синий цвет);
- y = 2x (зеленый цвет);
- y = 3x (красный цвет).
Из курса геометрии известно, что для построения прямой достаточно двух ее точек. Поэтому, чтобы получить график заданной прямой пропорциональности, достаточно найти одну точку, относящуюся к этому графику, и соединить ее прямой с началом координат.
На координатной плоскости принято выделять координатные четверти, которые ещё называют квадрантами. Их использование упрощает анализ графиков:
По четверти, в которой располагается точка, можно сразу определить знак ее координат:
- в I четверти координаты х и у положительны;
- во II четверти х отрицателен, а у положителен;
- в III четверти обе координаты отрицательны;
- в IV четверти х положителен, а у отрицателен.
Все примеры графиков прямой пропорциональности, которые мы рассматривали до этого, проходили через I и III четверть. Это было связано с тем, что коэффициент пропорциональности в них был положительным числом. Теперь попробуем построить графики функций
y = -0.5x
y = -x
y = -2x
На графике они показаны соответственно синим, зеленым и красным цветом:
Видно, что при отрицательных значениях коэффициента пропорциональности прямая проходит через II и IV четверти.
Также можно заметить, что наклон графика зависит от k. Чем больше этот коэффициент (по модулю, то есть без учета знака), тем ближе прямая к вертикальной линии. Чем меньше k, тем ближе прямая к горизонтальной линии. Убедимся в этом, построив графики y = 10x и y = 0,1x:
Теперь рассмотрим собственно линейную функцию. Она отличается от прямой пропорциональности добавлением свободного коэффициента в правой части. Примерами линейной функции являются:
s = 8t + 2
d = 0.27b — 7.5
y = 19x + 0.001
Приведем пример из реальной жизни. Пусть есть бидон для молока, который весит 5 кг. Масса 1 литра молока равна 0,9 кг. Тогда масса бидона (обозначим ее как m), в который залили молоко, зависит от объема молока в нем (обозначим этот объем как p). Эту зависимость можно описать так:
m = 5 + 0.9p
Говорят, что масса бидона линейно зависит от объема молока в нем.
По сути, линейная функция – это такая же прямая пропорциональность. Отличие только в том, что при аргументе, равном нулю, сама зависимая переменная нулю может и не равняться. В данном примере при отсутствии молока в емкости у нее всё равно остается собственная масса.
Отдельно отметим два момента. Во-первых, прямая пропорциональность тоже является линейной функцией, если принять b = 0, а k≠ 0, то будет: у = kx. Во-вторых, в отличие от прямой пропорциональности, у линейной функции коэффициент k может быть и равным нулю.
Каковы особенности линейной функции и ее графика? До этого мы строили график
y = 0.5x
Теперь построим график линейной зависимости
y = 0.5x + 3
Будем сравнивать в таблице значения этих двух выражений:
Видно, что при любом значении x функция y = 0,5x + 3 имеет значение, которое на 3 больше значения y = 0,5x. Поэтому все точки графика можно получить, «подняв» на 3 единицы точки графика без коэффициента b (а это прямая пропорциональность):
Получается, что график линейной зависимости – это также прямая, которая, однако, может и не проходить через точку О (0; 0).
Если в зависимость
y = kx + b
подставить значение аргумента, равное нулю, то получим
y = k*0 + b
y = b
Это значит, что график линейной функции проходит через точку с координатами (0, b), в которой он и пересекает вертикальную ось у. С другой стороны, график линейной зависимости у = kх + b параллелен графику y = kx:
Так как коэффициент k определяет наклон прямой, его именуют угловым коэффициентом.
Через любые две точки проходит только одна прямая, а потому для построения графика линейной зависимости достаточно вычислить ее значение в двух точках, отметить их и соединить прямой линией.
Пусть необходимо построить график зависимости
y = 2x/3 + 2
Вычислим значение функции в двух точках. Удобнее всего взять значения х, равные 0 и 3:
y(0) = 2/3*0 + 2 = 2
y(3) = 2/3*3 + 2 = 2 + 2 = 4
Отметим эти точки на координатной плоскости и проведем прямую:
Рассмотрим отдельно ситуацию, когда число k = 0. В этом случае одночлен с переменной x можно опустить:
y = 0*x + b = b
Примерами подобных функций являются
y = 1
y = 5
y = 8.37
y = -3.23
Хотя в записи этих выражений аргумент не указан (нет переменной x), их всё равно можно считать функциями, ведь определить значение зависимой величины можно. Просто при любом значении независимой величины значение y остается одним и тем же.
Графиками подобных зависимостей являются горизонтальные прямые, пересекающие ось ординат в точке с координатами (0;b):
Если на плоскости построены два разных графика с одинаковым угловым коэффициентом, то они будут параллельны друг другу. В противном случае они пересекутся. Любые две прямые пересекаются только в одной точке. Покажем, как ее найти.
Пусть надо найти точку пересечения графиков
y = -3x + 1
и
y = x — 3
Ясно, что их общая точка должна иметь такие координаты, которые при подставлении в каждую из функций дают верное равенство. Обозначим ее координаты как x0 и y0. Тогда можно записать два равенства:
y0 = -3x0 + 1
y0 = x0 — 3
У этих двух уравнений равны левые части, значит, должны равняться и правые:
-3x0 + 1 = x0 — 3
Решим его:
-4x0 = -4
x0 = 1
Найдя значение x0, можно подставить его в любую из функций, чтобы вычислить и значение y0:
y0 = x0 — 3 = 1 — 3 = -2
Получили точку (1; – 2). Данный способ нахождения точки пересечения графиков функции называют аналитическим. Проверим себя, используя графический способ, то есть просто построим эти графики:
Степенная функция с натуральным показателем
Если обозначить сторону квадрата как a, то его площадь будет являться функцией:
S = a2
Для вычисления объема куба с ребром a необходимо возводить число уже в третью степень:
V = a3
Эти выражения являются примерами степенных функций с натуральным показателем. Таковой будет являться любое уравнение y = xs, где s – это какое-то натуральное число.
При s = 1 степенная функция обращается в зависимость у = х, то есть в прямую пропорциональность. Независимая величина х может принимать любые значения, а вот область значений зависит от четности или нечетности показателя s (этот вопрос будет рассмотрен подробнее чуть позже).
Рассмотрим функцию y = x2. Ясно, что при х, равном нулю, зависимая переменная также обращается в нуль:
y(0) = 02 = 0
Следовательно, ее график проходит через точку О (0;0). Это характерное свойство степенных функций с любым натуральным показателем.
Квадрат любого числа не может быть отрицательным числом, а потому график лежит в I и II четвертях. Следовательно, областью значений будет являться всё множество неотрицательных действительных чисел.
Заметим, что противоположным значениям х соответствуют одинаковые значения y:
y(-x) = (-x)2 = x2 = y(x)
Из-за этого график обладает симметрией относительно оси у.
Найдем несколько точек, по которым можно построить график степенной функции:
Полученную фигуру называют параболой, а точку О (0;0) – вершиной параболы. Видно, что точки параболы располагаются симметрично относительно оси ординат.
Заметим, что у степенных функций с четным показателем графики похожи. Они все симметричны относительно оси у, а также у них есть три общие точки:
- (0;0);
- (1;1);
- (– 1;1).
Они определены на множестве всех неотрицательных чисел. Чем выше показатель степени, тем более плотно график «прижимается» к горизонтальной оси при малых х и тем более резко он поднимается вверх при больших х:
Далее изучим те степенные функции, показатель которых – нечетное число. Одной из них является
y = x3
Её график также пересекает начало координат. При положительном значении аргумента куб числа также положителен, а при отрицательном значении аргумента он будет отрицательным числом. Следовательно, график должен проходить через I и III четверти. Построим график по точкам:
Полученный график называют кубической параболой. Графики других степенных функций (x5, x7, x9 и т.д.) похожи на этот:
Они проходят через точки (0;0), (1;1) и (– 1; –1), лежат в I и III четвертях. У всех этих функций и в область значений, и область определений попадают все действительные числа.
Свойства степенных функций, построение графиков
Содержание:
- Степенная функция — что это такое
- Виды и их свойства, область определения
- Степенная функция с рациональным и иррациональным показателем
- Как строить графики степенных функций
- Задачи со степенной функцией
Степенная функция — что это такое
Степенная функция является функцией вида (x^{a}), где а – целое, дробное, положительное или отрицательное число.
К степенным функциям в теории относятся следующие виды:
- линейная функция (y = kx + b);
- квадратичная парабола (y = x^{2}) (в общем виде: (y = ax^{2} + bx + c));
- кубическая парабола (y = x^{3});
- гипербола (y = frac{1}{x}), которую можно представить в виде( y = x^{-1};)
- функция (y =sqrt{x}), так как (sqrt{x} = x^{frac{1}{2}}.)
В качестве примера можно рассмотреть описание функции: (y=x^{frac{m}{n}}). В первую очередь следует проанализировать функции с показателем степени (frac{m}{n}>1). Например, задана некая функция:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
(y=x^2*5.)
Исходя из обозначения, при x≥0, область определения рассматриваемой функции – это луч [0;+∞).
Далее следует записать таблицу значений:
Затем можно сравнить несколько степенных функции следующим способом:
(y=x^2;)
(y=x^{2,5};)
(y=x^3.)
Число 2,5 находится между 2 и 3. В таком случае можно предположить, что и график рассматриваемой функции расположен между соответствующими графиками. Можно представить разные характеристики х, чтобы сравнить значения функций, которые зависят от x:
При (0<x<1), получается (x^6<x^5<x^4), но и выполняется (sqrt{x^6}<sqrt{x^5}<sqrt{x^4}) или (x^3<x^{2,5}<x^2.)
При (x>1), получается (x^4<x^5<x^6), но и выполняется (sqrt{x^4}<sqrt{x^5}<sqrt{x^6}) или (x^2<x^{2,5}<x^3.)
Все графики целесообразно построить на одном рисунке. В первом случае (0<x<1):
В данном случае синий цвет соответствует функции (y=x^2); красный:( y=x^{2,5}); зеленый: (y=x^3). На следующем этапе нужно построить графики по порядку на всей области определения функции (y=x^{2,5}). Цвет графиков останется прежним, как и на предыдущем рисунке:
График функции (y=x^{frac{m}{n}}), ((m>n)) является кривой, которая проходит через точки (0,0) и (1,1), и напоминает ветвь параболы. При увеличении показателя график функции в верхнем положении становится круче.
Линейная функция y = kx + b. Графиком данной функции является прямая линия. Для того, чтобы ее построить, требуется пара точек. При k > 0, линейная функция будет расти. При увеличении k график становится круче. Значение k представляет собой угловой коэффициент прямой и равно тангенсу угла наклона рассматриваемой прямой к положительному направлению оси X:
При использовании k < 0, можно наблюдать убывание линейной функции. Заметим, что в данном случае угол α — тупой и tg α < 0.
При k = 0, на графике будет изображена прямая y = b, которая параллельна оси X. В том случае, когда имеет место равенство угловых коэффициентов прямых, прямые будут параллельны друг другу.
Квадратичная функция (y = ax2 + bx + c) представляет собой параболу. Она обладает рядом особенностей:
- При a > 0, ветви параболы направлены вверх, при a < 0 — вниз.
- Формулы для вычисления координат, которые соответствуют вершине параболы:
- Точки пересечения параболы с осью X вычисляют, как корни квадратного уравнения (ax^{2} + bx + c = 0).
- При отсутствии корней или дискриминанте, который меньше нуля, парабола и ось Х не пересекаются.
- Точку пересечения параболы с осью Y можно определить, подставив в ее уравнение (x = 0).
Функция (y = x^{3}) является кубической параболой. Можно представить ее на рисунке, а также функции( y = x^{4}) и (y = x^{5}.)
Можно отметить, что функции (y = x^{2}) и (y = x^{4}) обладают некоторыми сходствами. Графики являются симметричными по отношению к оси Y. В данном случае можно сказать, что рассматриваемые функции – четные.
Функция (y = f(x)) является четной, когда:
- область определения функции симметрична относительно нуля;
- каждое значение x из области определения соответствует справедливому равенству (f(−x) = f(x)).
Графики функций (y = x^{3}) и (y = x^{5}) симметричны по отношению к началу координат. Данные функции являются нечетными.
Функция (y = f(x)) – нечетная, при условии, что:
- область определения функции симметрична относительно нуля;
- любой x из области определения соответствует равенству (f(-x) = -f(x)).
Можно заметить, что функция (y = x^{a}) четная при четных значениях α и нечетная при нечетных α.
Функция (small y = frac{1}{x}) в виде гиперболы также представляет собой степенную функцию. Это объясняется тем, что (small frac{1}{x} = x^{-1}). Так как знаменатель не должен быть равен нулю, рассматриваемая функция не определена при (x = 0). Гипербола представляет собой нечетную функцию с графиком, который симметричен по отношению к началу координат.
Источник: ege-study.ru
Построение графика функции (small y = sqrt{x}) следует начинать с области определения. Выражение (small sqrt{x}) определено при (x ≥ 0). Поэтому областью определения функции являются все неотрицательные числа. Также (small y = sqrt{x}) принимает только неотрицательные значения, поскольку (small sqrt{x} ≥ 0.)
Целесообразно воспользоваться данными свойствами в процессе решения уравнений и неравенств. Уравнение вида (small sqrt{f(x)}=g(x)) имеет смысл только при (f(x) ≥ 0) и (g(x) ≥ 0). Это является областью допустимых значений.
На одном графике можно построить параболу( y = x^{2}) и функцию (small y = sqrt{x}). Следует рассмотреть правую ветвь параболы, при (x ≥ 0). Заметим, что эта часть параболы и график функции (small y = sqrt{x}) словно нарисованы по одному шаблону, по-разному расположенному в координатной плоскости. Они симметричны относительно прямой y = x.
То, что для одной из них является областью определения, для другой — представляет собой область значений. Данные функции носят название взаимно-обратных.
Виды и их свойства, область определения
Степенные функции обладают рядом специфических свойств, которые могут отличаться в зависимости от их вида. Рассмотрим основные из них.
Свойства функции( y=x^{frac{m}{n}}, (m>n)):
- D(y)=[0;+∞);
- функцию нельзя отнести ни к четной, ни к нечетной;
- возрастает на [0;+∞);
- не имеет ограничений в верхней части, но ограничена в нижней;
- отсутствует максимальное значение, минимальное значение равно нулю;
- непрерывность;
- E(f)=[0; +∞);
- выпукла вниз.
В качестве примера можно рассмотреть случай, когда показатель степени является правильной дробью, у которой значение числителя меньше, чем знаменателя. График функции( y=x^{frac{m}{n}}), ((m>n)) напоминает график функции (y=sqrt[n]{x}):
Свойства функции( y=x^{frac{m}{n}}), (0<frac{m}{n}<1:)
- D(y)=[0;+∞);
- нельзя отнести ни к четной, ни к нечетной;
- возрастает на [0;+∞);
- не имеет ограничений сверху, ограничена снизу;
- максимальное значение отсутствует, наименьшее значение равно нулю;
- непрерывность;
- E(f)=[0; +∞);
- выпукла вверх.
Далее следует ознакомиться с графиком функции (y=x^{-frac{m}{n}}). Можно заметить, что он похож на гиперболу. График обладает двумя асимптотами:
- горизонтальной y=0;
- вертикальной х=0.
График имеет следующий вид:
Свойства функции (y=x^{-frac{m}{n}}:)
- D(y)=(0;+∞);
- не является ни четной, ни нечетной;
- убывает на (0;+∞);
- не ограничена в верхней части, обладает ограничением в нижней;
- максимальное значение отсутствует, минимальное – ноль;
- непрерывность;
- E(f)=(0; +∞);
- выпукла вниз.
В том случае, когда x>0, а r – какое-либо рациональное число, производная степенной функции (y=x^r) определяется, согласно формуле:
(y’=r*x^{r-1})
К примеру: ((x^{1000})’=1000x^{999} )
((x^{-8})’=-8x^{-9})
(frac{2}{(x^3)’}=frac{2}{3}*x^{-frac{1}{3}})
((sqrt[6]{(2x+5)^5})’=((2x+5)^{frac{5}{6}})’=2*frac{5}{6}(2x+5)^{-frac{1}{6}}=frac{5}{3}(2x+5)^{-frac{1}{6}}.)
Степенная функция с рациональным и иррациональным показателем
Степень действительного числа a, обладающего рациональным показателем n вычисляется, согласно уравнению:
(a^{r}=sqrt[n]{a^{m}})
Функция( f(x)=x^{r}(rin Q)) представляет собой степенную функцию с рациональным показателем.
Степенью числа a, которое является положительным, c иррациональным показателем (alpha) называется выражение вида (a^{alpha}) со значением, равным пределу последовательности (a^{alpha_{0}}), (a^{alpha_{1}}, a^{alpha_{2}}), …, где (alpha_{0}, alpha_{1}, alpha_{2}) являются последовательными десятичными приближениями иррационального числа (alpha).
Функция (f(x)=x^{r}(rin J)) представляет собой степенную функцию с иррациональным показателем.
Как строить графики степенных функций
График функции является множеством точек, у которых абсциссы являются допустимыми значениями аргумента х, а ординаты – соответствующими значениями функции y.
Согласно определению, построить график какой-либо функции можно путем поиска всех пар соответствующих значений аргумента и функции. Как правило, в результате получается бесконечное множество точек, что затрудняет процесс построения графика. В связи с этим требуется исследовать функцию:
- обозначить область определения и область изменения функции;
- найти области ее убывания или возрастания;
- определить асимптоты, интервалы знакопостоянства;
- выявить несколько точек, принадлежащих графику;
- соединить найденные точки плавной кривой.
Задачи со степенной функцией
Задача № 1
Необходимо определить максимальное и минимальное значения для функции (y=x^{frac{5}{2}}) на отрезке:
- [1;16];
- (2,10);
- на луче [9;+∞).
Решение
Показатель степени рассматриваемой функции обладает положительным значением. В этом случае, учитывая свойства записанной функции, можно заключить, что она возрастает на всей области определения. Таким образом, функция достигает своего максимума и минимума на концах заданных отрезков (если она определена в этих точках).
(y_{наим.}=1^{frac{2}{5}}=1; y_{наиб.}=16^{frac{5}{2}}=(sqrt{16})^5=4^5=1024)
На промежутке (2,10) максимальное и минимальное значения функции отсутствуют, в связи с тем, что промежуток является открытым, и точки 0 и 4 к данному интервалу не относятся.
На луче [9;+∞) наибольшее значение отсутствует
(y_{наим.}=9^{frac{5}{2}}=sqrt{9^5}=(sqrt{9})^5=3^5=243.)
Задача № 2
Требуется определить максимальное и минимальное значение на отрезке [1;9] для функции:
(y=frac{16}{5}x^{frac{5}{2}}-frac{1}{4}x^4)
Решение
Вычислим производную рассматриваемой функции:
(y’=frac{16}{5}*frac{5}{2}x^{frac{3}{2}}-x^3=8x^{frac{3}{2}}-x^3=8sqrt{x^3}-x^3)
Так как производная существует на всей области определения исходной функции, можно заключить, что критические точки отсутствуют.
Далее определим стационарные точки:
(y’=8sqrt{x^3}-x^3=0)
(8*sqrt{x^3}=x^3)
(64x^3=x^6)
(x^6-64x^3=0)
(x^3(x^3-64)=0)
(x_1=0 и x_2=sqrt[3]{64}=4)
Заданному отрезку принадлежит только одно решение (x_2=4)
Построим таблицу значений нашей функции на концах отрезка и в точке экстремума:
Ответ: (y_{наим.}=-862,65) при( x=9); ( y_{наиб.}=38,4) при (x=4.)
Задача № 3
Решить уравнение: (x^{frac{4}{3}}=24-x)
Решение
График функции (y=x^{frac{4}{3}}) будет возрастать, а график функции (у=24-х) – убывать. Известно, что когда одна функция возрастает, а вторая убывает, то будет лишь одна точка, в которой эти функции пересекаются. Следовательно, уравнение обладает всего одним решением. Можно заметить, что:
(8^{frac{4}{3}}=sqrt[3]{8^4}=(sqrt[3]{8})^4=2^4=16)
24-8=16
Таким образом, при х=8 уравнение преобразуется в справедливое равенство: 16=16, что является ответом к задаче.
Ответ: х=8.
Задача № 4
Необходимо построить график функции с объяснениями: (y=(x-3)^frac{3}{4}+2)
Решение
График рассматриваемой функции можно получить из графика функции:
(y=x^{frac{3}{4}})
Требуется сместить этот график на 3 единицы в правую сторону и на 2 единицы вверх:
Задача № 5
Требуется записать уравнение для касательной к прямой (y=x^{-frac{4}{5}}) в точке х=1.
Решение
Обозначение уравнения касательной:
(y=f(a)+f'(a)(x-a).)
По условию задачи число a является натуральным числом 1, поэтому:
(f(a)=f(1)=1^{-frac{4}{5}}=1)
Определим производную:
(y’=-frac{4}{5}x^{-frac{9}{5}})
Таким образом:
(f'(a)=-frac{4}{5}*1^{-frac{9}{5}}=-frac{4}{5}.)
Запишем уравнение касательной:
(y=1-frac{4}{5}(x-1)=-frac{4}{5}x+1frac{4}{5})
Ответ: (y=-frac{4}{5}x+1frac{4}{5}.)
10 класс
СТЕПЕННАЯ ФУНКЦИЯ
Степенной называется функция,
заданная формулой где
, p –
некоторое действительное число.
I. Показатель — чётное
натуральное число. Тогда степенная функция где n
– натуральное число, обладает следующими свойствами:
1) Область определения функции — множество всех
действительных чисел: D(y)=(−; +
).
2) Область значений функции – множество неотрицательных
чисел, если :
множество неположительных чисел, если :
3) ). Значит, функция
является чётной, её график симметричен относительно оси Oy.
4) Если , то функция
убывает при х (-
; 0] и
возрастает при х [0; +
).
Если , то
функция возрастает при х (-
; 0] и
убывает при х [0; +
).
Графиком степенной функции с чётным натуральным показателем является парабола п-ой
степени, симметричная относительно оси ординат, с вершиной в начале координат
(в точке ), ветви
которой направлены вверх, если , и вниз,
если . График
этой функции получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и
сжатием к оси Ох в а раз, если 0 < a < 1.
На левом рисунке изображены примеры графиков
степенных функций с чётным натуральным показателем, а на правом рисунке –
графики тех же функций, но с растяжением и сжатием.
II. Показатель — нечётное
натуральное число. Тогда степенная функция где n
– натуральное число, обладает следующими свойствами:
1) Область определения функции — множество всех
действительных чисел: D(y)=(−; +
).
2) Область значений функции – множество всех
действительных чисел: Е(y) = (−; +
).
3) Значит, функция
является
нечётной, её график симметричен относительно начала координат.
4) Если , функция
возрастает при х (-
; +
).
Если , функция убывает при х
(-
; +
).
Графиком степенной функции с нечётным натуральным
показателем является парабола п-ой
степени с вершиной в начале координат (точке (0;0)), симметричная
относительно начала координат, ветви которой расположены в I
и III четвертях, если ; и во II и IV четвертях, если
. График этой функции
получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и
сжатием к оси Ох в а раз, если 0 < a < 1.
На левом рисунке изображены примеры графиков
степенных функций с нечётным натуральным показателем, а на правом – графики тех
же функций, но с растяжением и сжатием.
III. Показатель — чётное
целое отрицательное число. Тогда степенная функция где n
– натуральное число, обладает следующими свойствами:
1) Область определения функции: .
2) Область значений функции — множество всех
положительных чисел, если : Е(y) =(0; +
);
множество всех отрицательных чисел, если : Е(y) =(-
;
0).
3) Значит, функция
является чётной, её график симметричен относительно оси Оу.
4) Если , функция
возрастает при х (-
; 0), убывает
при х (0; +
).
Если функция убывает при х
(-
; 0), возрастает
при х (0; +
).
Графиком степенной функции является
гипербола п-ой степени, симметричная относительно оси Оу, не пересекающая оси
координат и её ветви расположены в I и II четвертях, если , и в III и IV четвертях, если
. График этой функции получается
из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На первом рисунке изображены примеры графиков
степенных функций с чётным целым отрицательным показателем, а на втором рисунке
– графики тех же функций, но с растяжением и сжатием.
IV. Показатель — нечётное
целое отрицательное число. Тогда степенная функция где n
– натуральное число, обладает следующими свойствами:
1) Область определения функции:
2) Область значений функции:
3) Значит, функция
является нечётной, её график симметричен относительно начала
координат.
4) Если , функция убывает
при х
.
Если , функция возрастает при х
.
Графиком степенной функции является
гипербола п-ой степени, симметричная относительно начала координат, не
пересекающая оси координат и его ветви расположены в I и III четвертях, если , и во II и IV четвертях, если
. График этой функции получается
из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На левом рисунке изображены примеры графиков
степенных функций с нечётным целым отрицательным показателем, а на правом
рисунке – графики тех же функций, но с растяжением и сжатием.
V. Показатель
– положительная
правильная дробь . Тогда степенная функция
где m –
целое положительное число, n > 1 – натуральное
число, обладает следующими свойствами:
1) Областью определения функции, исходя из
определения степени с рациональным показателем, является множество неотрицательных
чисел:
2) Область значений функции — множество неотрицательных
чисел, если :
множество неположительных чисел, если :
.
3) Функция не
является ни чётной, ни нечётной, так как её
область определения не содержит противоположных значений.
4) Если , функция возрастает
при х
;
Если , функция убывает при х
.
График степенной функции расположен
в I четверти, если , и в IV четверти, если
. График этой функции
получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На рисунке изображены примеры графиков
степенных функций с показателем, представленным в виде положительной правильной
дроби и графики тех же функций, но с растяжением и сжатием.
VI. Показатель – положительная
неправильная дробь . Тогда степенная функция
где m –
целое положительное число, n > 1 – натуральное
число, обладает следующими свойствами:
1) Областью определения функции, исходя из
определения степени с рациональным показателем, является множество неотрицательных
чисел:
2) Область значений функции — множество неотрицательных
чисел, если :
множество неположительных чисел, если :
.
3) Функция не
является ни чётной, ни нечётной, так как её
область определения не содержит противоположных значений.
4) Если , функция
возрастает при х
;
Если , функция убывает при х
.
График степенной функции расположен
в I четверти, если , и в IV четверти, если
. График этой функции
получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На рисунке изображены примеры графиков
степенных функций с показателем, представленным в виде положительной
неправильной дроби и графики тех же функций, но с растяжением и сжатием.
VII. Показатель
– отрицательная
правильная дробь . Тогда степенная функция
где m –
целое отрицательное число, n > 1 – натуральное
число, обладает следующими свойствами:
1) Областью определения функции, исходя из
определения степени с рациональным показателем, является множество неотрицательных
чисел:
2) Область значений функции — множество неотрицательных
чисел, если :
множество неположительных чисел, если :
.
3) Функция не
является ни чётной, ни нечётной, так как её
область определения не содержит противоположных значений.
4) Если , функция убывает
при х
;
Если функция возрастает при х
.
График степенной функции расположен
в I четверти, если , и в IV четверти, если
. График этой функции
получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На рисунке изображены примеры графиков
степенных функций с показателем, представленным в виде отрицательной правильной
дроби и графики тех же функций, но с растяжением и сжатием.
VIII. Показатель – отрицательная
неправильная дробь . Тогда степенная функция
где m –
целое отрицательное число, n > 1 – натуральное
число, обладает следующими свойствами:
1) Областью определения функции, исходя из
определения степени с рациональным показателем, является множество неотрицательных
чисел:
2) Область значений функции — множество неотрицательных
чисел, если :
множество неположительных чисел, если :
.
3) Функция не
является ни чётной, ни нечётной, так как её
область определения не содержит противоположных значений.
4) Если функция убывает
при х
;
Если функция возрастает при х
.
График степенной функции расположен
в I четверти, если , и в IV четверти, если
. График этой функции
получается из графика функции растяжением
вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 < a < 1.
На рисунке изображены примеры графиков
степенных функций с показателем, представленным в виде отрицательной
неправильной дроби и графики тех же функций, но с растяжением и сжатием.
Содержание:
Рассмотрим выражение
Определение:
Показательной функцией называется функция вида где а — постоянная,
Область определения показательной функции — это естественная область определения выражения т. е. множество всех действительных чисел.
Графики некоторых показательных функций при а > 1 изображены на рисунке 23, при 0< а< 1 — на рисунке 24. Как получаются изображения таких графиков?
Например, чтобы изобразить график функции придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:
Вычислив приближенные значения у с точностью до 0,1, получим следующую таблицу:
Отметим точки с указанными координатами на координатной плоскости Оху (рис. 25) и соединим эти точки плавной непрерывной линией.
Полученную кривую можно рассматривать как изображение графика функции (рис. 26).
График функции расположен над осью Ох и пересекает ось Оу в точке
Заметим еще, что когда значения аргумента х уменьшаются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х увеличиваются, то график «круто поднимается» вверх.
Аналогично для любой функции (рис. 27).
Изобразим теперь график функции Для этого придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:
Вычислив приближенные значения у с точностью до 0,1. получим следующую таблицу:
Отметим точки с указанными координатами на координатной плоскости Оху (рис. 28) и соединим эти точки плавной непрерывной линией.
Полученную кривую можно рассматривать как изображение графика функции (рис. 29).
График функции расположен над осью Ох и пересекает ось Оу в точке
Заметим еще, что когда значения аргумента х увеличиваются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х уменьшаются, то график «круто поднимается» вверх.
Аналогично для любой функции (рис. 30).
Теорема (о свойствах показательной функции)
- Областью определения показательной функции является множество R всех действительных чисел.
- Множеством (областью) значений показательной функции является интервал
- Показательная функция наименьшего и наибольшего значений не имеет.
- График показательной функции пересекается с осью ординат в точке (0; 1) и не пересекается с осью абсцисс.
- Показательная функция не имеет нулей.
- Показательная функция принимает положительные значения на всей области определения; все точки ее графика лежат выше оси Ох в I и II координатных углах.
- Показательная функция не является ни четной, ни нечетной.
- При а > 1 показательная функция возрастает на всей области определения. При
показательная функция убывает на всей области определения.
- Показательная функция не является периодической.
Свойства, указанные в этой теореме, мы примем без доказательства.
Изображение графика показательной функции позволяет наглядно представить эти свойства.
Множество (область) значений показательной функции — это проекция ее графика на ось Оу, а на рисунках 27 и 30 видно, что эта проекция есть интервал на оси Оу. Это значит, что для любой точки
принадлежащей этому интервалу, найдется такая точка
на оси Ох, что
(свойство 2).
Множество (область) значений показательной функции — это интервал а в этом интервале нет ни наименьшего числа, ни наибольшего (свойство 3).
График показательной функции проходит через точку и лежит в верхней полуплоскости (свойства 4, 5, 6).
График показательной функции не симметричен относительно оси ординат, поэтому она не является четной; график показательной функции не симметричен относительно начала координат, поэтому она не является нечетной (свойство 7).
На рисунке 27 видно, что при а > 1 показательная функция возрастает, а на рисунке 30 видно, что при 0 < а < 1 показательная функция убывает (свойство 8).
На графике показательной функции нет точек с одинаковыми ординатами, поэтому она не является периодической (свойство 9).
К графику показательной функции можно провести невертикальную касательную в любой его точке, в том числе и в точке
(напомним, что это означает наличие производной функции в этой точке).
Если то угол
который образует такая касательная с осью Ох, острый. Например, если а = 2, то
(рис. 31, а), а если а = 3, то
(рис. 31, б).
Существует основание 2 < а < 3 такой единственной показательной функции, что касательная, проведенная к ее графику в точке (0; 1), образует с осью Ох угол (рис. 31, в).
Основанием показательной функции с таким свойством является число, которое было открыто еще в XVII в. Джоном Непером (его портрет — на обложке) и названо неперовым числом; оно приближенно равно 2,7182818284. С XVIII в. неперово число стали обозначать буквой е в честь великого Леонарда Эйлера. В 1766 г. Ламбертом (с помощью приема Эйлера) было доказано, что число е, как и число иррационально. Числа
очень важны для математики, они входят в большое число формул. В российских гимназиях для запоминания приближенного значения числа е использовали такое двустишие:
«Помнить е — закон простой: Два, семь, дважды Лев Толстой», Поскольку 1828 — год рождения великого русского писателя Л. Н. Толстого.
Пример:
Указать наибольшее и наименьшее значения функции (если они существуют):
Решение:
а) Поскольку 3 — положительное число больше 1, то большему значению показателя соответствует и большее значение степени
Но выражение
при х = 0 имеет наименьшее значение, а наибольшего значения не имеет. Значит, при любых значениях х верно неравенство
б) Поскольку 0,7 — положительное число меньше 1, то большему значению показателя sin х соответствует меньшее значение степени Значения выражения sin х при любых значениях х удовлетворяют неравенству
Таким образом, при любых значениях х верно неравенство
Значит, верно и неравенство
Ответ: а) 1 — наименьшее значение функции наибольшего значения нет;
б) наименьшее значение, а
наибольшее значение функции
Понятие показательной функции
Показательной функцией называется функция, заданная формулой
где — некоторое действительное число,
и
.
Теорема 1.
Областью определения показательной функции является множество всех действительных чисел, а областью значений — множество
всех положительных действительных чисел.
Доказательство:
Пусть . Тогда, по свойству (10) степени с действительным показателем из параграфа 6, выражение-степень
имеет значение при любом значении переменной
, а это означает, что областью определения показательной функции является множество
всех действительных чисел.
Поскольку , то, по свойству (11) степени с действительным показателем из параграфа 6, значение выражения
положительно при всех значениях переменной
. В курсе математического анализа доказывается, что при
уравнение
имеет единственный корень. Это означает, что каждое положительное число
можно получить как значение выражения
, иными словами, областью значений показательной функции является множество
всех положительных действительных чисел.
Теорема 2.
Показательная функция на множестве всех действительных чисел при
является возрастающей, а при
— убывающей.
Доказательство:
Сравним значения выражений и
:
Пусть , т. е.
. Если
, то, по свойству (12) степени с действительным показателем из параграфа 9, из условия
следует, что
, а потому
и, значит,
, так как
по свойству (11) из параграфа 6. Получили, что
, или
. Это неравенство вместе с определением возрастающей функции позволяет утверждать, что функция
является возрастающей при
.
Если , то
и по уже доказанному
, или
и потому
. Это неравенство с учетом определения убывающей функции позволяет утверждать, что при
функция
является убывающей.
Следствие 1.
Равные степени с одним и тем же положительным и не равным единице основанием имеют равные показатели:
Действительно, если допустить, что , то при
по теореме 2 получим, что
, а при
— что
. Но оба эти неравенства противоречат условию.
Так же приводит к противоречию с условием и допущение .
Теорема 3.
Графики всех показательных функций проходят через точку (0; 1).
Для доказательства теоремы достаточно заметить, что при любом положительном истинно равенство
.
Построим график функции . Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.
Используя построенные точки и установленные свойства показательной функции, получим график функции , который представлен на рисунке 153. Обратим внимание на то, что график функции
при уменьшении отрицательных значений переменной
быстро приближается к оси абсцисс, но остается выше нее.
Для построения графика функции учтем, что
, и используем утверждение о том, что график функции
получается из графика функции
симметричным отражением относительно оси ординат. Указанное преобразование приведено на рисунке 154. Обращаем внимание на то, что график функции
при увеличении положительных значений переменной
быстро приближается к оси абсцисс, но не пересекает ее.
Теорема 4.
Если , то
при
и
при
.
Доказательство:
Пусть , тогда
. Сравним значения выражений
и
:
Пусть , тогда
, так как
. Значит,
, а потому
, так как
. Значит,
, или
.
Пусть , тогда
и, значит,
. Поскольку
, то
. Значит,
, или
.
В соответствии с теоремой 4 при увеличении основания график функции
на промежутке
будет располагаться более близко к оси абсцисс, а на промежутке
— более далеко.
График любой показательной функции с основанием
, большим единицы, похож на график функции
. На рисунке 155 представлены графики функций
и
.
График любой показательной функции с положительным основанием
, меньшим единицы, похож на график функции
.
На рисунке 156 приведены графики функций и
.
Обратим внимание на ограничения на основание степени
показательной функции
. Первое ограничение вызвано тем, что значение выражения
определено при всех значениях показателя
только при положительном основании. Второе ограничение объясняется тем, что при
функция
принимает вид
, т. е. все значения такой функции равны единице (рис. 157), и такая функция не вызывает особого интереса.
Показательная функция описывает ряд физических процессов. Например, радиоактивный распад определяется формулой , где
и
— массы радиоактивного вещества в начальный момент времени 0 и в момент времени
,
— период полураспада, т. е. промежуток времени, за который количество радиоактивного вещества уменьшается в два раза. С помощью показательной функции описывается зависимость
от высоты
, где
— давление на уровне моря,
— определенная константа; ток самоиндукции в катушке после подачи постоянного напряжения.
Понятие показательной функции и ее график:
Определение: показательной функцией называется функция вида:
График показательной функции (экспонента):
Свойства показательной функции:
1. Область определения: 2. Область значений:
3. Функция ни четная, ни нечетная 4. Точки пересечения с осями координат: с осью
, с осью
5. Промежутки возрастания и убывания:
функция
возрастает на всей области определения
функция убывает на всей области определения
6. Промежутки знакопостоянства: 7. Наибольшего и наименьшего значений функция не имеет. 8. Для любых действительных значений
выполняются равенства:
Объяснение и обоснование:
Показательной функцией. называется функция вида Например,
— показательные функции. Отметим, что функция вида
существует и при
Тогда то есть
при всех значениях
Но в этом случае функция
не называется показательной. (График функции
— прямая, изображенная на рис. 13.1.) Поскольку при
выражение
определено при всех действительных значениях
то областью определения показательной функции
являю тся все действительные числа. Попытаемся сначала построить графики некоторых показательных функций, например
и
«по точкам», а затем перейдем к характеристике общих свойств показательной функции.
Составим таблицу нескольких значений функции
Построим на координатной плоскости соответствующие точки (рис. 13.2, а) и соединим их плавной линией, которую естественно считать графиком функции у = 2′ (рис. 13.2, б).
Как видно из графика, — возрастающая функция, которая принимает все значения на промежутке
Аналогично составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 13.3, а) и соединим их плавной линией, которую естественно считать графиком функции (рис. 13.3, б). Как видно из графика,
— убывающая функция, которая принимает все значения на промежутке
Заметим, что график функции можно получить из графика функции
с помощью геометрических преобразований. Действительно
Таким образом, график функции
симметричен графику функции
относительно оси
, и поэтому, если функция
является возрастающей, функция
обязательно будет убывающей.
Оказывается, что всегда при график функции
похож на график функции
а при
— на график функции
(рис. 13.4). График показательной функции называется экспонентой.
Свойства показательной функции
Как отмечалось выше, областью определения показательной функции являются все действительные числа:
В курсе математического анализа доказывается, что областью значений функции
является множество всех положительных чисел, иначе говоря, функция
принимает только положительные значения, причем любое положительное число является значением функции, то есть
Это означает, что график показательной функции всегда расположен выше оси
и любая прямая, которая параллельна оси
и находится выше нее, пересекает этот график.
При функция
возрастает на всей области определения, а при
функция
убывает на всей области определения. Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяют последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.
Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Остальные свойства показательной функции легко обосновать с помощью этих свойств.
Функция не является ни четной, ни нечетной, поскольку
(по определению
). Также
поскольку
(по свойству 1),
График и точки пересечения с осями координат
График функции пересекает ось
в точке
Действительно, на оси
значение
тогда
График показательной функции
не пересекает ось
так как на оси
но значение
не принадлежит области значений функции
(
только при
хотя по определению
). Промежутки знакопостоянства.
при всех действительных значениях
поскольку
при
Отметим еще одно свойство показательной функции. График функции
пересекает ось
в точке
Учитывая возрастание функции при
и убывание при
получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:
Значение функции
Значение аргумента при
Значение аргумента при
Значение функции
Значение аргумента при
Значение аргумента при
Функция не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток
не содержащий ни наименьшего, ни наибольшего числа.
Свойства показательной функции:
Рассмотрим одно из характерных свойств показательной функции, выделяющее ее из ряда других функций: если то
при любых действительных значениях аргументов и
выполняется равенство
Действительно, В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция
— это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению
а затем обосновывается, что функция
совпадает с функцией
Кроме общих свойств показательной функции при и при
отметим некоторые особенности поведения графиков показательных функций при конкретных значениях
Так, на рис. 13.5 приведены графики показательных функций
при значениях основания
Сравнивая эти графики, можно сделать вывод: чем больше основание тем круче поднимается график функции
при движении точки вправо и тем. быстрее график приближается к оси
при движении точки влево. Аналогично, чем меньше основание
тем круче поднимается график функции
при движении точки влево и тем быстрее график приближается к оси
при движении точки вправо.
Заканчивая разговор о показательной функции, укажем причины, по которым не рассматриваются показательные функции с отрицательным или нулевым основанием.
Отметим, что выражение можно рассматривать и при
и при
Но в этих случаях оно уже будет определено не при всех действительных значениях
как показательная функция
В частности, выражение
определено при всех
(и тогда
), а выражение
— при всех целых значениях
(например,
По этой причине не берут основание показательной функции (получаем постоянную функцию при
) и
(получаем функцию, определенную только при
). Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения
(например, как мы видели выше, пара значений
принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).
Примеры решения задач:
Пример №1
Сравните значения выражений:
Решение:
1) Функция убывающая
поэтому из неравенства
получаем
2) Функция
возрастающая
поэтому из неравенства
получаем
Комментарий:
Учтем, что функция при
является возрастающей, а при
— убывающей. Поэтому сначала сравним данное основание
с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.
Пример №2
Сравните с единицей положительное основание , если известно, что выполняется неравенство:
Решение:
1) Поскольку и по условию
то функция
— убывающая, следовательно,
2) Так как
и по условию
то функция
— возрастающая, поэтому
Комментарий:
В каждом задании данные выражения — это два значения функции . Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы). Если большему значению аргумента соответствует большее значение функции, то функция
является возрастающей и
Если большему значению аргумента соответствует меньшее значение функции, то функция
— убывающая, тогда
Пример №3
Постройте график функции:
Комментарий:
При значение
следовательно, график функции
всегда расположен выше оси
Он пересекает ось
в точке
При
показательная функция
возрастает, а значит, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.
При показательная функция
убывает, поэтому, графиком функции
будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь, график приближается к оси
но никогда ее не пересекает.) Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №4
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
оставим план построения графика данной функции с помощью последовательных геометрических преобразований.
Решение показательных уравнений и неравенств
Простейшие показательные уравнения
1. Основные формулы и соотношения
График функции
возрастает;
убывает;
постоянная.
2. Схема равносильных преобразований простейших показательных уравнений
Ориентир:
Пример:
Ответ: -1.
Корней нет (поскольку для всех
)
Ответ: корней нет.
3. Приведение некоторых показательных уравнений к простейшим
Ориентир:
Примеры:
1)
Ответ:
2)
Ответ: 2.
Объяснение и обоснование:
Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).
Рассмотрим простейшее показательное уравнение вида
Чтобы его найти, достаточно представить в виде
Очевидно, что
является корнем уравнения
Графически это проиллюстрировано на рис. 14.1.
Чтобы решить, например, уравнение достаточно представить его в виде
и записать единственный корень —
Если то уравнение
(при
) корней не имеет, так как
всегда больше нуля. (На графиках, приведенных на рис. 14.2, прямая
не пересекает график функции
при
) Например, уравнение
не имеет корней.
Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при и
уравнение вида
равносильно уравнению
Коротко это утверждение можно записать так: при
Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция является строго монотонной и каждое свое значение принимает только при одном значении аргумента
(то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2).
А это и означает, что уравнения (2) и (3) равносильны.
В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями привести (если это возможно) данное уравнение к виду
Для решения более сложных показательных уравнений чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Областью допустимых значений (ОДЗ) показательных уравнениях чаще всего является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. далее решение задач 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ.
Примеры решения задач:
Пример №5
Решите уравнение:
Решение:
1) 2)
— корней нет, поскольку 5′ > 0 всегда. 3)
Комментарий:
При всегда
поэтому уравнение
не имеет корней. Другие уравнения приведем к виду
и перейдем к равносильному уравнению
Пример №6
Решите уравнение:
Решение:
1) Данное уравнение равносильно уравнениям:
Ответ: 5.
2) Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени.
В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одинаковыми основаниями.
В уравнении 1 следует обратить внимание на то, что а
и
таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево. Например, для левой части этого уравнения воспользуемся формулой и запишем
Пример №7
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
Ответ: 1
Комментарий:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №8
Решите уравнение
Решение:
ОДЗ: любое
Рассмотрим два случая. 1) При
получаем уравнение
корни которого — все действительные числа из ОДЗ, то есть
2) При
значение
поэтому данное уравнение равносильно уравнению
Отсюда
тогда
Ответ: 1) при 2) при
Комментарий:
Это уравнение относительно переменной содержит параметр
Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях
основание
Функция
при
— возрастающая, а при
— постоянная (см. графики функции
). Основание
при
а при всех других значениях
основание
Рассмотрим каждый из этих случаев отдельно:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений
Ориентир:
1. Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями» приведенные в табл. 53).
Пример:
Учитывая, что приводим все степени к одному основанию 2:
Ориентир:
2. Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.
Пример:
Замена дает уравнение
Обратная замена дает
тогда
или
— корней нет. Ответ: 1.
Ориентир:
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Пример:
Приведем все степени к основаниям 2 и 3: Имеем однородное уравнение (у всех членов одинаковая суммарная степень —
). Для его решения разделим обе части на
Замена
дает уравнение
Обратная замена дает уравнения:
— корней нет или
тогда
Ответ: 0.
Ориентир:
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное выражение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций
Пример:
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем Теперь можно вынести за скобки общий множитель
Отсюда
или
Получаем два уравнения: 1)
тогда
2)
тогда
Ответ: 2; 1.
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в п. 14.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней. используя формулы:
Например, в уравнении
вместо записываем произведение
и получаем уравнение
равносильное данному.
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием 2: получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной). Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде —
поэтому удобно ввести замену
Получаем квадратное уравнение
для которого находим корни, а затем выполняем обратную замену. Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго, и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение. Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Получаем уравнение
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена
также равна
). Напомним ориентир:
Если все члены, уравнения, в левой и правой частях которого стоят многочлены от двух переменных (и ли от двух функций одной переменной), имеют одинаковую суммарную степень*, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным и его можно решить делением обеих частей или на или на
Отметим, что при всех значениях
выражения
и
не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на
получаем
или после сокращения
В последнем уравнении все члены можно представить как степени с одним основанием
и выполнить замену
Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в табл. 19.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесообразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в табл. 19 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №9
Решите уравнение
Решение:
Замена Получаем
Тогда
Отсюда
Обратная замена дает уравнения: — корней нет или
тогда
Ответ: 1.
Комментарий:
В данное уравнение переменная входит только в одном виде поэтому удобно ввести замену
и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения:
будет учтена автоматически).
*Конечно, если уравнение имеет вид (где
— многочлен), то речь идет только о степени членов многочлена
, поскольку нуль-многочлен степени не имеет.
Пример №10
Решите уравнение
Решение:
Замена
дает уравнение
Обратная замена дает
тогда
или
— корней нет. 5 Ответ: 0.
Комментарий:
- 1. Избавляемся от числовых слагаемых в показателях степеней.
- 2. Приводим все степени (с переменной в показателе) к одному основанию 5.
- 3. Выполняем замену
решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №11
Решите уравнение
Решение:
Ответ: 2.
Комментарий:
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №12
Решите систему уравнений
Решение:
Из первого уравнения системы Тогда из второго уравнения получаем
то есть
Замена
дает уравнение
из которого получаем уравнение
имеющее корни:
Обратная замена дает
тогда
или
откуда
Находим соответствующие значения
если
если
Ответ:
Комментарий:
Если из первого уравнения выразить через
и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2). Выполняя замену, учитываем, что
Тогда в полученном дробном уравнении
знаменатель
Таким образом, это дробное уравнение равносильно уравнению
Пример №13
Решите систему уравнений
Решение:
Замена и
дает систему уравнений и
Из второго уравнения этой системы имеем
Далее из первого уравнения получаем
Отсюда
тогда
Обратная замена дает уравнения:
тогда
отсюда
тогда
отсюда
Ответ: (2; 2).
Комментарий:
Если обозначить и
то
Тогда данная система будет равносильна алгебраической системе, которую легко решить.
Решение показательных неравенств
1. График показательной функции
2. Схема равносильных преобразований простейших показательных неравенств
— знак неравенства сохраняется
— знак неравенства меняется на противоположный
Примеры:
Функция
является возрастающей, следовательно:
Ответ:
Функция
убывающая, следовательно:
Ответ:
3. Решение более сложных показательных неравенств
Ориентир:
I. С помощью равносильных преобразований (по схеме решения показательны х уравнений) данное неравенство приводится к неравенству известного вида (квадратному, дробному и др.).
После решения полученного неравенства приходим к простейшим показательным неравенствам.
Пример:
Замена дает неравенство
решения которого
или
(см. рисунок).
Обратная замена дает
(ре шений нет) или
откуда
то есть
Ответ:
II. Применяем метод интервалов, приводя данное неравенство к виду и используя схему:
- Найти ОДЗ.
- Найти нули
- Отметить пули функции на ОДЗ и найти знак
в каждом из промежутков, на которые разбивается ОДЗ. 4. Записать ответ, учитывая знак неравенства.
Пример:
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству
Обозначим
- ОДЗ:
- Нули функции:
- Поскольку функция
является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
- Отмечаем нули функции на ОДЗ, находим знак
в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида (или
где
и
) основывается на свойствах функции
которая возрастает при
и убывает при
Например, чтобы найти решение неравенства
при
достаточно представить
в виде
Получаем неравенство
(1)
При функция
возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства совпадает со знаком неравенства(1)). При
функция
убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рис. 14.3.
Например, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
возрастающая, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
убывающая, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях значение
всегда больше нуля, получаем, что при
неравенство
решений не имеет, а неравенство
выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства
являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство
равносильно неравенству
а при О < а < 1 — неравенству
Коротко это утверждение можно записать так.
Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при неравенства
могут быть верными только одновременно, поскольку функция при
возрастающая и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) равносильны. Аналогично обосновывается равносильность неравенств
и
при
В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду
Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).
- Заказать решение задач по высшей математике
Примеры решения задач:
Пример №14
Решите неравенство
Решение:
Поскольку функция у убывающая, то
Отсюда
(см. рисунок).
Ответ:
Комментарий:
Запишем правую часть неравенства как степень числа Поскольку
то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному). Для решения полученного квадратного неравенства используем графическую иллюстрацию.
Пример №15
Решите неравенство
Решение:
ОДЗ:
Замена
дает неравенство
равносильное неравенству
Поскольку
получаем
Отсюда
Учитывая, что
имеем
Выполняя обратную замену, получаем
Тогда
Функция
возрастающая, таким образом,
Учитывая ОДЗ, получаем
Ответ:
Комментарий:
Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя и формулу избавляемся от а числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену
В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному. После выполнения обратной замены следует учесть не только возрастание функции
но и ОДЗ исходного неравенства.
Пример №16
Решите неравенство
Решение:
Решим неравенство методом интервалов. Обозначим 1. ОДЗ:
2. Нули функции:
Замена
Получаем
Обратная замена дает:
или
Отсюда 3. Отметим нули функции на ОДЗ, находим знак
в каждом из полученных промежутков и записываем решения неравенства
Ответ:
Комментарий:
Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в табл. 20. При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему. Разумеется, для решения данного неравенства можно было учесть, что
всегда, и после деления данного неравенства на
и замены
получить алгебраическое неравенство.
Пример №17
Решите неравенство
Комментарий:
Данное нестрогое неравенство также удобно решать методом интервалов. При этом следует учитывать, что в случае, когда мы решаем нестрогое неравенство все нули функции
должны войти в ответ.
Решение:
Обозначим 1. ОДЗ:
Тогда
или
(см. рисунок).
2. Нули функции:
Тогда
или
Из первого уравнения:
— не принадлежит ОДЗ, а из второго:
3. Отмечаем нули
на ОДЗ, находим знак
в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Определение и вычисление показательной функции
Если величины и
связаны уравнением
(где
), то величина у называется показательной функцией от
. Возьмем для примера
, тогда
. Будем давать
значения, равные нулю и целым положительным числам, тогда
будет принимать значения, указанные в таблице:
Мы видим, что если придавать независимому переменному значения, увеличивающиеся в арифметической прогрессии, то у будет расти в геометрической прогрессии со знаменателем, равным 2.
Вообще, если в уравнении независимое переменное увеличивается в арифметической прогрессии, то функция
возрастает в геометрической прогрессии со знаменателем
. Если независимое переменное уменьшать, придавая ему целые отрицательные значения, то у будет уменьшаться в геометрической прогрессии со знаменателем
. В самом деле, взяв уравнение
, составим таблицу:
Приняв за абсциссу, а
за ординату точки, построим точки, полученные в таблицах, и соединим их плавной кривой. Тогда получим кривую линию, изображенную на рис. 31. Эта линия называется графиком показательной функции.
Отметим, что показательная функция нигде не обращается в нуль, т. е. ее график нигде не пересекает ось .
Аналогичный график имеет и любая показательная функция с основанием, большим единицы ().
Если же взять основание положительное, но меньшее единицы (), то график будет иметь вид, изображенный на рис. 32.
Показательная функция — практическое занятие с решением
1) Составьте таблицу значений для функций и
.
2) На координатной плоскости постройте точки, абсциссы которых соответствуют аргументам, а ординаты значениям функции и соедините сплошной кривой линией.
3) Сравните с значение выражения
и
для произвольных значений х.
4) Увеличиваются или уменьшаются значения функции при увеличении значений х ? Увеличиваются или уменьшаются значения функции
при увеличении значений х?
5) В какой точке графики пересекают ось у ?
6) Сравните графики и запишите их сходные и отличительные черты.
7) Выполните задание для функций .
При а > 0, функция
называется показательной функцией.
1) Область определения показательной функции все действительные числа.
2) Множество значений показательной функции все положительные
числа.
3) Так как = 1(при х = 0), то показательная функция пересекает ось у в точке (0; 1).
4) При а > 1 функция возрастающая, при
функция
убывающая.
5) Показательная функция не пересекает ось абсцисс и её график расположен выше оси х, т.е. в верхней полуплоскости.
Функция и её график называется экспонентой.
Экспонента при изменении аргумента увеличивается или уменьшается с большой скоростью.
6) При , если х бесконечно возрастают, соответствующие значения у бесконечно убывают и точки графика функции
неограниченно стремятся к оси абсцисс. При
точки на графике неограниченно стремятся к оси абсцисс.
Экспоненциально возрастающая и экспоненциально убывающие функции
Функция
также называется экспоненциальной функцией.
Например: функцию можно записать в виде
Пример:
По графику функции зададим её уравнение.
Решение:
Составим таблицу значений.
Из таблицы значений видно, что при увеличении значений х на 1 единицу, значения у уменьшаются в .
Значит, .Тогда формула функции будет:
Пример:
При каких значениях переменных справедливо следующие:
а)равенство ; б) неравенство
; в) неравенство
?
Решение:
а) запишем равенство в виде
. Здесь по свойству степени с действительным показателем х = 3.
б)запишем неравенство в виде
. Здесь ясно, что
.
в)запишем неравенство в виде
(в виде степени с одинаковым основанием), степени с основанием меньше 1. Получим, что
.
Преобразование графиков показательных функций
Общий вид показательной функции . Функция вида
является основной функцией в семействе показательных функций. Выполняя различные преобразования можно построить графики следующих функций
.
•График в раз растягивается от оси х.
Например.
•При происходит отражение относительно оси х.
Например. График функции
можно построить при помощи графика функции
используя параллельный перенос.
Пример №18
Построим график функции при помощи параллельного переноса графика функции
. 1.Для функции
отметим точки (0; 3), (1; 6); (2; 12) и соединим эти точки гладкой линией. Прямая у = 0 является асимптотой 2.График функции
перенесём параллельно на одну единицу влево
и на одну единицу вверх
(на вектор (-1; 1)), найдём новые координаты указанных точек и расположим их на координатной плоскости. Соединим эти точки гладкой линией и получим график функции
.
Прямая у = 1 является горизонтальной асимптотой.
В реальной жизни, при ежегодном увеличении величины на постоянный процент, её состояние через лет можно оценить формулой
, при уменьшении — формулой
.Здесь а — начальное количество,
— процент увеличения (уменьшения) ( десятичная дробь),
-количество лет.
При помощи данных формул решим следующее задание.
Пример №19
Цена автомобиля купленного за 24 ООО руб ежегодно снижается на 12%. Запишем зависимость между количеством лет эксплуатации автомобиля и его ценой.
Решение.
В формулепримем а = 24000,
= 12% = 0,12, 1 —
= 0,88.
Тогда данную ситуацию можно смоделировать показательной
функцией .
Показательная функция. Число е.
Исследование:
Представьте, что вы вложили в банк 1 руб, под сложные проценты с процентной ставкой равной 100%. В течении года вы произвели вычислений раз, подставив в формулу сложного процентного роста следующие данные
.
Вычислите значения функции и установите, к какому числу приближается значение функции при различных значениях
.
Как видно, если банк будет чаще вычислять процент для вложенной суммы, то прибыль увеличится. Однако, отношение ежедневных вычислений к ежемесячным даёт прибыль 10 гяпик. Если даже банк будет находить процент для денег на счету ежесекундно , то и в данном случае разница между начислением процентов ежечасно или ежедневно будет незначительна. Из графика функции построенного при помощи графкалькулятора видно, что при
функция
имеет горизонтальную асимптоту.
Число е:
Исследование показывает, что при увеличении значений значение выражения
колеблется между 2,71 и 2,72. Это число записывается буквой е и имеет значение е = 2,718 281 828 459… .
Число е, так же как и число является иррациональным числом. Эти числа называются трансцендентными числами. Трансцендентным называется число, которое не является корнем уравнения
степени с целыми коэффициентами. Экспоненциальное возрастание или убывание по основанию е задаётся формулой
. Здесь No-начальное значение, t -время,
-постоянное число.
График функции y=ex
График функции .
Для построения графика функции можно использовать различные граф калькуляторы. Например, (http://www.meta-calculator.com/onlinc) или как показано на рисунке, при помощи программы Geometer’s Sketchpad®.
Показательная и логарифмическая функции их свойства и график
Понятие показательной функции и ее график:
Определение. Показательной функцией называется функция вида
График показательной функции (экспонента)
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат:
с осью
5. Промежутки возрастания и убывания:
функция при
возрастает на всей области определения
функция при
убывает на всей области определения
6. Промежутки знакопостоянства:
7.
8. Для любых действительных значений выполняются равенства:
Понятие показательной функции
Показательной функцией называется функция вида
Например, показательная функция
Отметим, что функция вида существует и при
Тогда при всех значениях
Но в этом случае функция
не называется показательной. (График функции
— прямая, изображенная на рис. 118.)
Поскольку при выражение
определено при всех действительных значениях
то областью определения показательной функции
являются все действительные числа.
Попытаемся сначала построить графики некоторых показательных функций, например «по точкам», а затем перейдем к характеристике общих свойств показательной функции.
Составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 119, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 119,6).
Как видим из графика, функция является возрастающей функцией, которая принимает все значения на промежутке
Аналогично составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 120, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 120, б).
Как видим из графика, функция является убывающей функцией, которая принимает все значения на промежутке. Заметим, что график функции
можно получить из графика функции
с помощью геометрических преобразований. Действительно,
Таким образом, график функции симметричен графику функции
относительно оси
(табл. 4, с. 28), и поэтому, если функция
является возрастающей, функция
обязательно будет убывающей.
Оказывается, что всегда при график функции
похож на график функции
— на график функции
(рис. 121). График показательной функции называется экспонентой.
Свойства показательной функции
Как было обосновано выше, областью определения показательной функции являются все действительные числа:
Областью значений функции является множество всех положительных чисел, то есть функция
принимает только положительные значения, причем любое положительное число является значением функции, то есть
Это означает, что график показательной функции всегда расположен выше оси
и любая прямая, которая параллельна оси
и находится выше нее, пересекает этот график.
При функция
возрастает на всей области определения,
при
функция
убывает на всей области определения.
Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяются последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.
Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Все остальные свойства показательной функции легко обосновываются с помощью этих свойств.
Функция не является ни четной, ни нечетной, поскольку
(по определению
Также
поскольку
(по свойству 1), а
Точки пересечения с осями координат. График функции пересекает ось
в точке
Действительно, на оси
значение
тогда
График показательной функции не пересекает ось
поскольку на оси
но значение
не принадлежит области значений показательной функции
только при
но по определению
Промежутки знакопостоянства. при всех действительных значениях
поскольку
Отметим еще одно свойство показательной функции. Поскольку график функции пересекает ось
в точке
то, учитывая возрастание функции при
и убывание при
получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:
Функция не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток
который не содержит ни наименьшего, ни наибольшего числа.
Свойства показательной функции, приведенные в пункте 8 таблицы 49:
были обоснованы в разделе 3.
Отметим еще одно свойство показательной функции, которое выделяет ее из ряда других функций: если то при любых действительных значениях аргументов
выполняется равенство
Действительно, В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция
— это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению
а затем обосновывается, что функция
совпадает с функцией
Кроме общих свойств показательной функции при отметим некоторые особенности поведения графиков показательных функций при конкретных значениях
Так, на рисунке 122 приведены графики показательных функций
при значениях основания
Сравнивая эти графики, можно сделать вывод: чем больше основание тем круче поднимается график функции
при движении точки вправо и тем быстрее график приближается к оси
при движении точки влево. Аналогично, чем меньше основание
тем круче поднимается график функции
при движении точки влево и тем быстрее график приближается к оси
при движении точки вправо.
Заканчивая разговор о показательной функции, укажем те причины, которые мешают рассматривать показательные функции с отрицательным или нулевым основанием.
Отметим, что выражение можно рассматривать и при
и при
Но в этих случаях оно уже будет определено не при всех действительных значениях
как показательная функция
В частности, выражение
определено при всех
(и тогда
а выражение
— при всех целых значениях ( например
По этой причине не берут основание показательной функции
(получаем постоянную функцию при
и
(получаем функцию, определенную только при достаточно «редких» значениях
Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения
(например, как мы видели выше, пара значений
принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).
Примеры решения задач:
Пример №20
Сравните значения выражений:
Решение:
1) Функция является убывающей
поэтому из неравенства
получаем
2) Функция является возрастающей поэтому из неравенства
получаем
Комментарий:
Учтем, что функция является возрастающей, а при
— убывающей. Поэтому сначала сравним данное основание
с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.
Пример №21
Сравните с единицей положительное основание а, если известно, что выполняется неравенство:
Решение:
1) Поскольку и по условию
то функция
является убывающей, следовательно,
2) Поскольку и по условию
то функция
является возрастающей, следовательно,
Комментарий:
В каждом задании данные выражения — это два значения функции
Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы).
Если большему значению аргумента соответствует большее значение функции, то функция является возрастающей и
Если большему значению аргумента соответствует меньшее значение функции, то функция
является убывающей, и тогда
Пример №22
Постройте график функции:
Комментарий:
При значение
следовательно, график функции
всегда расположен выше оси
Этот график пересекает ось
в точке
При показательная функция
возрастает, следовательно, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.
При показательная функция
убывает, следовательно, графиком функции
будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь вниз, график приближается к оси
но никогда ее не пересекает.)
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №23
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план построения графика данной функции с помощью последовательных геометрических преобразований (табл. 4 на с. 28). 1. Мы можем построить график функции основание
показательная функция убывает).
2. Затем можно построить график функции справа от оси
(и на самой оси) график функции
остается без изменений, и эта же часть графика отображается симметрично относительно оси
3. После этого можно построить график функции
параллельно перенести график вдоль оси
на (-3) единицы.
4. Затем можно построить график данной функции выше оси
(и на самой оси) график функции
должен остаться без изменений(но таких точек у графика функции
нет, а ниже оси
— график функции
необходимо отобразить симметрично относительно оси
Решение показательных уравнении и неравенств
Основные формулы и соотношения:
График функции
— возрастает
— убывает
— постоянная
Схема равносильных преобразований простейших показательных уравнений:
Ориентир:
При
Пример №24
Ответ: —1
Корней нет (поскольку для всех
Ответ: корней нет.
Приведение некоторых показательных уравнений к простейшим:
1) Если в левой и правой частях показательного уравнения стоят только произведения, частные, корни или степени, то целесообразно с помощью основных формул попробовать записать обе части уравнения как степени с одним основанием.
Пример №25
Ответ:
2) Если в одной части показательного уравнения стоит число, а в другой все члены содержат выражение вида (показатели степеней отличаются только свободными членами), то удобно в этой части уравнения вынести за скобки наименьшую степень
Пример №26
Ответ: 2
Объяснение и обоснование:
Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).
Простейшие показательные уравнения
Рассмотрим простейшее показательное уравнение вида
где
Поскольку при этих значениях
функция
строго монотонна (возрастает при
и убывает при
то каждое свое значение она принимает только при одном значении аргумента. Это означает, что уравнение
имеет единственный корень. Чтобы его найти, достаточно представить
Очевидно, что является корнем уравнения
Графически это проиллюстрировано на рисунке 123.
Например, чтобы решить уравнение достаточно представить это уравнение в виде
и записать его единственный корень
Если то уравнение
корней не имеет, поскольку
всегда больше нуля. (На графиках, приведенных на рисунке 124, прямая
не пересекает график функции
Например, уравнение не имеет корней.
Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при уравнение вида
равносильно уравнению
Коротко это утверждение можно записать так: при
Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция является строго монотонной и каждое свое значение принимает только при одном значении аргумента (
то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2). А это и означает, что уравнения (2) и(3) равносильны.
В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями (см. таблицу 46) привести (если это возможно) данное уравнение к виду
Для решения более сложных показательных уравнений чаще всего используют замену переменных (применение этого метода рассмотрено в табл. 51, с. 344) или свойства соответствующих функций (применение этих методов рассмотрено в табл. 58, с. 403).
Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Но в показательных уравнениях чаще всего областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. ниже задачи 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ (задача 4″ на с. 343).
Примеры решения задач:
Пример №27
Решите уравнение:
Решение:
1)
2) — корней нет, поскольку
всегда;
3)
Комментарий:
При всегда
поэтому уравнение
не имеет корней.
Другие уравнения приведем к виду и перейдем к равносильному уравнению
Пример №28
Решите уравнение:
Решение:
1) Данное уравнение равносильно уравнениям:
Ответ: 5.
2) Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени. В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одним основанием.
В уравнении 1 следует обратить внимание на то, что а
таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево, например для левой части этого уравнения воспользуемся формулой то есть запишем
Пример №29
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №30
Решите уравнение
Решение:
► ОДЗ:
Рассмотрим два случая.
1) При получаем уравнение
корни которого — все действительные числа из ОДЗ, то есть
2) При значение
и тогда данное уравнение равносильно уравнению
Отсюда
Ответ: 1) при
2) при
Комментарий:
Это уравнение относительно переменной которое содержит параметр
Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях
основание
Функция
является возрастающей, а при
— постоянной (см. графики функции
в табл. 50).
Основание а при всех других значениях
основание
Рассмотрим каждый из этих случаев отдельно, то есть:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений:
- Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями, приведенные в табл. 50).
- Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.
Учитывая, что приводим все степени к одному основанию 2:
Замена
дает уравнение
Обратная замена дает тогда
корней нет.
Ответ: 1.
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Приведем все степени к двум основаниям 2 и 3:
Имеем однородное уравнение (у всех членов одинаковая суммарная степень — Для его решения разделим обе части на
Замена дает уравнение
Обратная замена дает
— корней нет или
тогда
Ответ: 0.
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное уравнение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций.
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем
Теперь можно вынести за скобки общий множитель
Тогда Получаем два уравнения:
Ответ: 2; 1.
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в предыдущем пункте 30.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней, используя формулы: Например, в уравнении
вместо
записываем произведение
и получаем уравнение
равносильное заданному.
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием и получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде —
поэтому в этом уравнении удобно ввести замену
Получаем квадратное уравнение
для которого находим корни, а затем выполняем обратную замену (см. решение в табл. 51).
Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений на с. 341).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение.
Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Получаем уравнение
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена
также равна
Напомним (см. раздел 2, с. 172):
Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным, и его можно решить делением обеих частей или на или на
Отметим, что при всех значениях
выражения
не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на
получаем
или после сокращения
В последнем уравнении все члены можно представить как степени с одним основанием и выполнить замену
Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в таблице 51.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесобразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в таблице 51 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №31
Решите уравнение
Решение:
Замена Получаем
Тогда Отсюда
Обратная замена дает
— корней нет или
тогда
Ответ: 1.
Комментарий:
В данное уравнение переменная входит только в одном виде и поэтому удобно ввести замену
и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения:
будет учтена автоматически).
Пример №32
Решите уравнение
Решение:
Замена дает уравнение
Обратная замена дает тогда
корней нет
Ответ: 0.
Комментарий:
- Избавляемся от числовых слагаемых в показателях степеней.
- Приводим все степени (с переменной в показателе) к одному основанию 5.
- Выполняем замену
решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №33
Решите уравнение
Решение:
Ответ: 2
Комментарий:
- Избавляемся от числовых слагаемых в показателях степеней,переносим все члены уравнения в одну сторону и приводим подобные члены.
- Замечаем, что степени всех членов полученного уравнения
(с двумя основаниями 2 и 3) одинаковые —
следовательно, это уравнение однородное. Его можно решить делением обеих частей на наибольшую степень одного из видов выражений с переменной — или на
или на
Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему (а значит, и заданному).
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №34
Решите систему уравнений
Решение:
Из первого уравнения системы
Тогда из второго уравнения получаем то есть
Замена
дает уравнение
из которого получаем уравнение
имеющее корни:
Обратная замена дает
тогда
откуда
Находим соответствующие значения
если
если
Ответ:
Комментарий:
Если из первого уравнения выразить через
и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2).
Выполняя замену, учитываем, что Тогда в полученном дробном уравнении
знаменатель
Таким образом, это дробное уравнение равносильно уравнению
Пример №35
Решите систему уравнений
Решение:
Замена и дает систему
Из второго уравнения этой системы имеем Тогда из первого уравнения получаем
Отсюда
Обратная замена дает
Ответ:
Комментарий:
Если обозначить то
Тогда данная система будет равносильна алгебраической системе, которую легко решить.
После обратной замены получаем систему простейших показательных уравнений
Решение показательных неравенств
График показательной функции :
Схема равносильных преобразований простейших показательных неравенств:
знак неравенства сохраняется знак неравенства меняется на противоположный
Пример №36
. Функция
является возрастающей, следовательно:
Ответ:
Пример №37
Функция
убывающая, следовательно:
Ответ:
Решение более сложных показательных неравенств
I. С помощью равносильных преобразований (по схеме решения показательных уравнений, табл. 51) данное неравенство приводится к неравенству известного вида (квадратному, дробному и т. д.). После решения полученного неравенства приходим к простейшим показательным неравенствам.
Пример №38
Замена дает неравенство
решения которого
(см. рисунок).
Обратная замена дает (решений нет) или
откуда
Ответ:
II. Применяем общий метод интервалов, приводя данное неравенство к виду f (x)0 и используя схему:
1. Найти ОДЗ.
2. Найти нули
3. Отметить нули функции на ОДЗ и найти знак в каждом из промежутков, на которые разбивается ОДЗ.
4. Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству Обозначим
1. ОДЗ:
2. Нули функции:
Поскольку функция является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
3. Отмечаем нули функции на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида где
основывается на свойствах функции
которая возрастает при
и убывает при
Например, чтобы найти решение неравенства
достаточно представить
в виде
Получаем неравенство
При функция
возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства совпадает со знаком неравенства (1)).
При функция
убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем
(знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рисунке 125.
Например, чтобы решить неравенство достаточно представить это неравенство в виде
учесть, что
(функция
является возрастающей, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Заметим, что решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство Достаточно представить это неравенство в виде
Учесть
что (Функция
является убывающей, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях а значение всегда больше нуля, получаем, что при
неравенство
решений не имеет, а неравенство
выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство
равносильно неравенству
а при
— неравенству
При (знак неравенства сохраняется).
При (знак неравенства меняется на противоположный).
Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при неравенства
могут быть верными только одновременно, поскольку функция
при
является возрастающей и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) являются равносильными.
Аналогично обосновывается равносильность неравенств и
при
В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду
Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).
Примеры решения задач:
Пример №39
Решите неравенство
Решение:
Поскольку функция
является убывающей, то
Отсюда ( см.рисунок)
Ответ:
Комментарий:
Запишем правую часть неравенства как степень числа Поскольку
то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному).
Для решения полученного квадратного неравенства используем графическую иллюстрацию.
Пример №40
Решите неравенство
Решение:
ОДЗ:
Замена дает неравенство
равносильное неравенству
Поскольку
получаем
Отсюда
Учитывая, что
имеем
Выполняя обратную замену, получаем
Тогда
Функция является возрастающей, таким образом,
Учитывая ОДЗ, получаем
Ответ:
Комментарий:
Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя формулу избавляемся от числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену
В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному.
После выполнения обратной замены следует учесть не только возрастание функции но и ОДЗ исходного неравенства.
Пример №41
Решите неравенство
Решение:
Решим неравенство методом интервалов. Обозначим
1 ОДЗ:
2. Нули функции:
Замена Получаем
Обратная замена дает:
Отсюда Отметим нули функции на ОДЗ, находим знак
в каждом из полученных промежутков и записываем решения неравенства
Ответ:
Комментарий:
Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в таблице 52.
При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Учитывая, что
при всех значениях
в результате деления на
получаем уравнение, равносильное предыдущему.
Разумеется, для решения данного неравенства можно было учесть, что всегда, и после деления данного неравенства на
и замены
получить алгебраическое неравенство.
Пример №42
Решите неравенство
Комментарий:
Данное нестрогое неравенство также удобно решать методом интервалов. Записывая ответ, следует учитывать, что в случае, когда мы решаем нестрогое неравенство все нули функции
должны войти в ответ.
Решение:
Обозначим
1. ОДЗ: Тогда
(см. рисунок).
2. Нули функции:
Тогда
Из первого уравнения:
— не принадлежит ОДЗ, а из второго:
3. Отмечаем нули на ОДЗ, находим знак
в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Показательные функции в высшей математике
Рассмотрим функцию, заданную равенством Составим таблицу её значений для нескольких значений аргумента:
На рисунке 19, а обозначены точки, координаты которых соответствуют этой таблице. Когда на этой же координатной плоскости обозначить больше точек с координатами удовлетворяющих равенству
они разместятся, как показано на рисунке 19, б. А если для каждого действительного значения
вычислить соответствующее значение
и обозначить на координатной плоскости точки с координатами
они разместятся на одной бесконечной кривой (рис. 19, в). Эта кривая — график функции
График функции размещён в I и II координатных четвертях. Когда
он как угодно близко подходит к оси
но общих точек с ней не имеет. Говорят, что график функции
асимптотически приближается к оси
что ось
— асимптота этого графика. Когда
неограниченно увеличивается, график функции
всё дальше отходит от оси
Как видим, функция
определена для всех действительных чисел, её область значений — промежуток
На всей области определения функция возрастает, она ни чётная, ни нечётная, ни периодическая.
Рассматриваемая функция — пример показательной функции, а именно — показательная функция с основанием 2.
Показательной функцией называется функция, заданная формулой
Примеры других показательных функций: Их графики изображены на рисунке 20. Согласно определению функция
не является показательной.
Основные свойства показательной функции
- Область определения функции
— множество
ибо при каждом положительном
и действительном
выражение
определено.
- Область значений функции
— множество
поскольку, если основание
степени положительное, то положительная и степень
Следовательно, функция
принимает только положительные значения.
- Если
функция
возрастает, а если
— убывает. Это свойство хорошо видно на графиках функций (рис. 20).
- Функция
каждое своё значение принимает только один раз, т. е. прямую, параллельную оси
график показательной функции может пересечь только в одной точке. Это следует из свойства 3.
- Функция
ни чётная, ни нечётная, ни периодическая. Поскольку каждое своё значение она принимает только один раз, то не может быть чётной или периодической. Не может она быть и нечётной, так как не имеет ни отрицательных, ни нулевых значений.
- График каждой показательной функции проходит через точку
поскольку если
При решении задач и упражнений, связанных с показательной функцией, особенно часто используется третье свойство, в котором указывается на монотонность показательной функции, то есть её возрастание или убывание. В частности из него вытекают следующие утверждения.
- Если
- Если
- Если
Присмотритесь к графикам показательных функций и
(рис. 21). Угловой коэффициент касательной, проведённой в точке
к графику функции
меньше 1, а к графику функции
— больше 1. Существует ли такая показательная функция, у которой угловой коэффициент касательной к её графику в точке
равен 1? Существует (рис. 22).Основание этой показательной функции — иррациональное число 2,71828 …, которое принято обозначать буквой
Показательная функция
в математике и многих прикладных науках встречается довольно часто, ее называют экспонентом (лат. exponens — выставлять напоказ).
К показательной функции иногда относят также функции вида При помощи таких функций описывают много разных процессов, связанных с физикой, химией, биологией, экономикой, социологией и т. д. Например, процессы новообразования и распада вещества можно описать с помощью формулы
Здесь
— количество вновь образованного (или распавшегося) вещества в момент времени
— начальное количество вещества,
— постоянная, значение которой определяется для конкретной ситуации. Подберите самостоятельно соответствующие примеры.
Пример №43
Сравните с единицей число:
Решение:
а) Представим число 1 в виде степени с основанием 0,5. Имеем: Поскольку функция
убывающая и
отсюда
функция возрастающая и
поэтому
отсюда
Пример №44
Функция задана на промежутке
Найдите её наименьшее и наибольшее значения.
Решение:
Поскольку то данная функция убывающая. Поэтому её наименьшее и наибольшее значения:
Пример №45
Постройте график функции
Решение:
Функция — чётная (проверьте). График чётной функции симметричен относительно оси
поэтому достаточно построить график заданной функции для
и отобразить его симметрично относительно оси
Если
Построим график функции
для
и отобразим его симметрично относительно оси
(рис. 23).
- Производные показательной и логарифмической функций
- Показательно-степенные уравнения и неравенства
- Показательные уравнения и неравенства
- Логарифмические уравнения и неравенства
- Техника дифференцирования
- Дифференциальная геометрия
- Логарифмическая функция, её свойства и график
- Логарифмические выражения