Как найти точку касания двух функций

Тема 7.

Взаимосвязь функции и ее производной

7

.

04

Расчет касания двух графиков

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами — ЛЕГКО!

Подтемы раздела

взаимосвязь функции и ее производной

Решаем задачи

Прямая y = 6x + 7  параллельна касательной к графику функции
g = x2 − 5x +6  . Найдите абсциссу точки касания.

Показать ответ и решение

Поскольку касательная параллельна прямой y = 6x+ 7  , то уравнение
касательной имеет вид y = 6x + b  , где b ∈ ℝ  . Поскольку прямая является
касательной, то это может быть только, если функции совпадают, но при этом
решение может быть только одно, то есть должно получиться уравнение,
дискриминант которого равен 0:

pict

Однако если квадратное уравнение имеет D =  0  , то его корень равен
x = − b-= − −-11-= 5,5
      2a     2  , что и будет являться абсциссой точки касания.

Прямая y =− 3x+ 8  параллельна касательной к графику функции     2
y = x + 7x− 6.  Найдите абциссу точки
касания.

Показать ответ и решение

Пусть x0  — абцисса точки касания. Тогда угловой коэффициент касательной в точке x0  равен значению производной в этой
точке. Найдём производную функции f(x)  в точке x0 :

      (         )′
f′(x)=  x2+ 7x− 6 = 2x +7   ⇒   f′(x0)= 2x0 +7

Если прямые параллельны, то их угловые коэффициенты равны, значит,

−3 =2x0+ 7  ⇔   2x0 =− 10  ⇔   x0 = −5

Показать ответ и решение

Способ 1

Прямая и парабола касаются, если их функции совпадают только в одной
точке. Нужно приравнять функции, тогда получится квадратное уравнение,
которое будет иметь один корень при нулевом дискриминанте:

pict

Способ 2

В точке касания значения функций и их производных равны:

pict

Чтобы найти c  , подставим x = − 0,5  в квадратное уравнение:

pict

Прямая y = 8(2x− 1)  параллельна касательной к графику функции

        2
f(x) = 3x + 7x+ 5

Найдите абсциссу точки касания.

Показать ответ и решение

Так как параллельные прямые имеют равные угловые коэффициенты и прямая имеет вид y = 16x − 8  , то уравнение
касательной будет выглядеть как

yk = 16x+ b

где b  — некоторое число. Так как значение производной в точке x0  касания равно угловому коэффициенту
касательной, то

f ′(x ) = 16 ⇒    6x + 7 = 16  ⇔   x  = 3 = 1,5
    0              0               0   2

Показать ответ и решение

Графики функций y = f (x)  и y = g(x )  касаются в точке (x0;y0)  тогда и только тогда,
когда

{
    f(x0) = g(x0) = y0
    f′(x0) = g′(x0)

Тогда график функции y = x2 + c  и прямая y = x  касаются в точке (x0;y0)  тогда и только тогда,
когда

{                                 {
    x02 + c = x0 = y0                 0,25 + c = 0,5 =  y0
    2x  =  1               ⇔          x  = 0,5,
       0                               0

то есть ответ: 0, 5  .

Прямая y = 7x − 5  параллельна касательной к графику функции y = x2 + 6x − 8  . Найдите абсциссу
точки касания.

Найдите ординату точки касания графика функции y = sin2x  и прямой                π
y = x + 0, 5 − --
               4  .

Показать ответ и решение

Если указанные графики касаются в точке (x0;y0)  , то производные соответствующих функций равны в
точке x0   :

                                                           π-
2sinx0 ⋅ cos x0 = 1    ⇔      sin2x0 =  1     ⇔      x0 =  4 + πk, k ∈ ℤ

При этом необходимо, чтобы при x = x0   значения соответствующих функций совпадали:

  2                 π-
sin  x0 = x0 + 0,5 − 4 ,

но при       π
x0 =  --+ πk, k ∈ ℤ
      4  имеем: sin2x0 =  0,5  , тогда

0,5 = x0 + 0,5 −  π,
                  4

куда
подходит только       π-
x0 =  4  .

Таким образом, для касания указанных графиков в точке (x0;y0)  необходимо, чтобы было
выполнено      π-
x0 = 4  . Но этого и достаточно, ведь при      π-
x0 = 4  совпадают значения функций и их
производных.

В итоге,

y0 = sin2x0 = 0, 5

Прямая y = 12x + 13  является касательной к графику функции y =  x3 − 9x2 − 9x + 2  . Найдите
абсциссу точки касания.

п.1. Уравнение касательной

Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Уравнение касательной
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}

Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) — существует и конечна.

Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$

Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}

п.2. Алгоритм построения касательной

На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)

Например:

Алгоритм построения касательной Пусть (f(x)=x^2+3).
Найдем касательную к этой параболе в точке (x_0=1).

(f(x_0)=1^2+3=4 )
(f'(x)=2x )
(f'(x_0)=2cdot 1=2)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

п.3. Вертикальная касательная

В случае, если производная (f'(x_0)=pminfty) — существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).

Внимание!

Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).

Например:

Вертикальная касательная Пусть (f(x)=sqrt[5]{x-1}+1).
Найдем касательную к этой кривой в точке (x_0=1).

(f(x_0)=sqrt[5]{1-1}+1=1)
(f'(x)=frac15(x-1)^{frac15-1}+0=frac15(x-1)^{-frac45}=frac{1}{5(x-1)^{frac45}} )
(f'(x_0)=frac{1}{5(1-1)^{frac45}}=frac10=+infty)
В точке (x_0) проходит вертикальная касательная.
Её уравнение: (x=1)
Ответ: (y=2x+2)

п.4. Примеры

Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

Пример 1а Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0).
Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*}

б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

Пример 1б Общее уравнение касательной: (f'(x)=4x+4)
По условию (f'(x_0)=tgalpha=tg45^circ=1)
Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*}

в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

Пример 1в Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*}

г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

Пример 1г У горизонтальной прямой (k=0).
Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*}

Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$

Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*} Пример 3
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})

Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b — для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Пример 4
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) — решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.

Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)

Пример 5 Ищем расстояние между двумя параллельными прямыми:
(y=2x) и (y=2x-1).
Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})

Задачи с параметрами. Условия касания.

Темы для повторения:

Геометрический смысл производной

Графический метод решения задач с параметрами

Друзья, мы продолжаем тему «Задачи с параметрами». Это №18 Профильного ЕГЭ по математике. В этой статье рассказано, как в решении задач с параметрами применяется производная.

Рассмотрим следующую задачу:

При каких значениях параметра a уравнение left|x-2right|=a{log}_2left|x-2right| имеет ровно 2 решения?

Поскольку логарифмы определены для положительных чисел, Это значит, что xne 2.

Сделаем замену  При  каждому значению t соответствует два значения x.

Получим уравнение t=a{log}_2t.

В левой части уравнения — линейная функция, в правой — логарифмическая. Это функции разных типов. Пытаться справиться с таким уравнение аналитически — бесполезно. Попробуем графический способ.

Если a=0, то t=0 и условие  не выполняется. Рассмотрим по отдельности случаи  и  

Пусть . Нарисуем графики функций y_1=frac{t}{a} и y_2={log}_2t. Функция y_2={log}_2t монотонно возрастает при . Обозначим  Функция y_1=bt монотонно убывает при .

Докажем, что графики функций y_1=bt и y_2={log}_2t имеют единственную точку пересечения при   и любом 

Рассмотрим функцию z(t)={y_2-y}_1={log}_2t-bt. Функция z(t) является монотонно возрастающей при  (как сумма монотонно возрастающих функций {log}_2t и -bt), следовательно, каждое свое значение, в том числе и значение z=0, она принимает ровно один раз.

Уравнение {log}_2t-bt=0 имеет единственное решение при положительных t и  Значит, при всех  исходное уравнение имеет ровно 2 решения. Теперь случай 

y_{}={log}_2t

Уравнение {log}_2t=bt имеет единственное решение, если прямая y=bt касается графика функции y_{}={log}_2t. Мы помним, как записываются условия касания:

left{begin{matrix}f(x)=kx+b \f

В нашем случае 

Учитывая, что b=frac{1}{a}, получим:

left{ begin{array}{c}frac{t}{a}={log}_2t \frac{1}{a}=frac{1}{tln2} end{array}Leftrightarrow left{ begin{array}{c}a=tln2 \frac{1}{ln2}={log}_2t end{array}right.right.

{log}_2e={log}_2t,, , t=e,, , a=eln2

Мы получили, что, t=e — точка касания. При этом a=eln2.

Ответ: 

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задачи с параметрами. Условия касания.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

На примере двух парабол покажем, как составить уравнение общей касательной к графикам функций. Заметим, что общих касательных может быть несколько.

Для решения данной задачи потребуются знания о производной на уровне школьного курса.

В рамках подготовки к профильному ЕГЭ при изучении производной я предлагаю своим ученикам решать, в том числе, и подобные задачи, помимо стандартных 7 и 12 заданий.

Это необходимо для того, чтобы школьники учились применять свои знания при решении задач, а не просто решать стандартные задания по шаблону.

Составим уравнение общих касательных к графикам квадратичных функций (параболам):

Касательная представляет собой прямую. Запишем уравнение касательной в виде уравнения прямой с угловым коэффициентом:
y = kx + b, k – угловой коэффициент.
Обозначим точку, в которой она касается первой параболы, как A (a1, a2), второй параболы – B (b1, b2).

Рассмотрим функцию

1. Вычислим ее производную: y’ = 2(x – 1).

2. Найдем координаты точки касания A (a1, a2).
Используем геометрический смысл производной: значение производной в точке касания равно угловому коэффициенту касательной.
y’ = 2(a1 – 1) — значение производной в точке касания, 
k – угловой коэффициент.
Таким образом,
2(a1 – 1) = k
a1 = k/2 + 1.

Подставим a1 в уравнение (1) и найдем a2:
a2 = (a1 — 1)^2 + 1 = (k/2 + 1 — 1)^2 + 1 = k^2/4 + 1.

Таким образом, мы выразили координаты точки A через угловой коэффициент касательной:
A (k/2 + 1, k^2/4 + 1).

Аналогичным способом выразим координаты точки B:
B (-k/2 + 3, — k^2/4 + 1).

3. Угловой коэффициент прямой, проходящей через точки A (a1, a2) и B (b1, b2), равен (a2 – b2) / (a1 – b1). Значит
k = (a2 – b2) / (a1 – b1).

Подставим в это уравнение координаты точек A и B и получим уравнение относительно k:

Находим корни: k = 0 и k = 4.

Для k = 4.
4. Находим координаты точек A и B.
A (4/2 + 1, 4^2/4 + 1) = A (3, 5)
B (-4/2 + 3, — 4^2/4 + 1) = B (1, -3).

5. Составляем уравнение касательной (прямой) по двум точкам. (Данная тема разобрана в предыдущем посте)
(x – a1) / (b1 – a1) = (y – a2) / (b2 – a2)
(x – 3) / (1 – 3) = (y – 5) / (-3 – 5)
(x – 3) / (–2) = (y – 5) / (-8) – каноническое уравнение прямой
Выражаем y:
y = 4x – 7 – уравнение прямой с угловым коэффициентом.

Аналогично находим уравнение еще одной касательной (при k = 0):
y = 1.

✔ Для того, чтобы задать вопрос или записаться на консультацию, пишите в whatsapp 8 968 814 30 80.

Содержание  

Как найти координаты точки касания

Прежде чем приступить к нахождению координат точки касания, необходимо проверить возможность проведения касательной. Для этого выполните анализ функции, описывающей заданную кривую на определенном участке.

Как найти координаты точки касания

Инструкция

Касательная к произвольной линии на плоскости в прямоугольной системе координат — это предел, к которому стремится секущая к данной кривой при максимальном сближении точек пересечения кривой и прямой.

Следовательно, касательная имеет только одну общую точку с кривой. Однако это утверждение справедливо для строго определенного участка. В зависимости от поведения кривой в других областях координатной плоскости, касательная может пересекать заданную линию или, наоборот, удаляться от нее.

К некоторым кривым можно провести касательную в любой точке. Примеры таких линий — окружность, эллипс. Другие непрерывные кривые могут иметь точки, в которых построить касательную невозможно. Это происходит на участках, где секущая не стремится к одному предельному положению.

Пусть произвольная кривая описывается выражением Y=F(x). Общий вид уравнения прямой Y=kx+a. Очевидно, что в точке касания с координатами (Xo, Yо) справедливо равенство: F(Xo)=kXo+a.

Если функция F(x) дифференцируема в точке Xo, в этой точке можно провести касательную к кривой, и коэффициент наклона касательной к оси OX равен значению производной функции: k=F'(Xo). Уравнение касательной в точке касания принимает вид Yo=F'(Xo)*Xo+a. Задача нахождения координат точки касания сводится к решению системы двух уравнений с двумя неизвестными Yo=F(Xo) и Yo= F'(Xo)*Xo+a.

Плоскость является касательной к поверхности, если имеет общую с поверхностью точку и прямую или плоскую кривую линию. Определение координат (Xo Yo Zo) общей точки касательной плоскости и заданной криволинейной поверхности Z=F(x,y) возможно в случае если функция F(x,y) имеет полный дифференциал в данной точке.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Составить предложения запятая не ставится перед союзом как
  • Как психологу найти клиентов онлайн
  • Магия как найти работу заговор сильный
  • Как найти банкоматы сбербанка рядом
  • Касперский базы сильно устарели как исправить