Как найти точку максимума функции двух переменных

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $frac{partial z}{partial x}$ и $frac{partial z}{partial y}$. Составить и решить систему уравнений $
    left { begin{aligned}
    & frac{partial z}{partial x}=0;\
    & frac{partial z}{partial y}=0.
    end{aligned} right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $frac{partial^2z}{partial x^2}$, $frac{partial^2z}{partial xpartial y}$, $frac{partial^2z}{partial y^2}$ и вычислить значение $Delta=frac{partial^2z}{partial x^2}cdot frac{partial^2z}{partial y^2}-left(frac{partial^2z}{partial xpartial y} right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $Delta > 0$ и $frac{partial^2z}{partial x^2} > 0$ (или $frac{partial^2z}{partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
    2. Если $Delta > 0$ и $frac{partial^2z}{partial x^2} < 0$ (или $frac{partial^2z}{partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
    3. Если $Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
    4. Если $Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показатьскрыть

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

Решение

Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

$$
frac{partial z}{partial x}=8x-6y-34; frac{partial z}{partial y}=-6x+10y+42.
$$

Составим систему уравнений $ left { begin{aligned}
& frac{partial z}{partial x}=0;\
& frac{partial z}{partial y}=0.
end{aligned} right.$:

$$
left { begin{aligned}
& 8x-6y-34=0;\
& -6x+10y+42=0.
end{aligned} right.
$$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$
left { begin{aligned}
& 4x-3y=17;\
& -3x+5y=-21.
end{aligned} right.
$$

Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ begin{aligned}
& Delta=left| begin{array} {cc} 4 & -3\ -3 & 5 end{array}right|=4cdot 5-(-3)cdot (-3)=20-9=11;\
& Delta_x=left| begin{array} {cc} 17 & -3\ -21 & 5 end{array}right|=17cdot 5-(-3)cdot (-21)=85-63=22;\
& Delta_y=left| begin{array} {cc} 4 & 17\ -3 & -21 end{array}right|=4cdot (-21)-17cdot (-3)=-84+51=-33.end{aligned} \
x=frac{Delta_{x}}{Delta}=frac{22}{11}=2; ; y=frac{Delta_{y}}{Delta}=frac{-33}{11}=-3.
$$

Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$
frac{partial^2 z}{partial x^2}=8; frac{partial^2 z}{partial y^2}=10; frac{partial^2 z}{partial x partial y}=-6.
$$

Вычислим значение $Delta$:

$$
Delta=frac{partial^2z}{partial x^2}cdot frac{partial^2z}{partial y^2}-left(frac{partial^2z}{partial xpartial y} right)^2=
8cdot 10-(-6)^2=80-36=44.
$$

Так как $Delta > 0$ и $frac{partial^2 z}{partial x^2} > 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$
z_{min}=z(2;-3)=4cdot 2^2-6cdot 2 cdot (-3)-34cdot 2+5cdot (-3)^2+42cdot (-3)+7=-90.
$$

Ответ: $(2;-3)$ – точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Решение

Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

$$
frac{partial z}{partial x}=3x^2+3y^2-15; frac{partial z}{partial y}=6xy-12.
$$

Составим систему уравнений $ left { begin{aligned}
& frac{partial z}{partial x}=0;\
& frac{partial z}{partial y}=0.
end{aligned} right.$:

$$
left { begin{aligned}
& 3x^2+3y^2-15=0;\
& 6xy-12=0.
end{aligned} right.
$$

Сократим первое уравнение на 3, а второе – на 6.

$$
left { begin{aligned}
& x^2+y^2-5=0;\
& xy-2=0.
end{aligned} right.
$$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0cdot y-2=0$, $-2=0$. Отсюда вывод: $xneq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=frac{2}{x}$. Подставляя $y=frac{2}{x}$ в первое уравнение, будем иметь:

$$
x^2+left(frac{2}{x} right)^2-5=0;\
x^2+frac{4}{x^2}-5=0;\
x^4-5x^2+4=0.
$$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$
t^2-5t+4=0;\
begin{aligned}
& D=(-5)^2-4cdot 1 cdot 4=9;\
& t_1=frac{-(-5)-sqrt{9}}{2}=frac{5-3}{2}=1;\
& t_2=frac{-(-5)+sqrt{9}}{2}=frac{5+3}{2}=4.end{aligned}
$$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=frac{2}{x}$, получим:

begin{aligned}
& y_1=frac{2}{x_1}=frac{2}{1}=2;\
& y_2=frac{2}{x_2}=frac{2}{-1}=-2;\
& y_3=frac{2}{x_3}=frac{2}{2}=1;\
& y_4=frac{2}{x_4}=frac{2}{-2}=-1.
end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$
frac{partial^2 z}{partial x^2}=6x; frac{partial^2 z}{partial y^2}=6x; frac{partial^2 z}{partial x partial y}=6y.
$$

Найдём $Delta$:

$$
Delta=frac{partial^2z}{partial x^2}cdot frac{partial^2z}{partial y^2}-left(frac{partial^2z}{partial xpartial y} right)^2=
6xcdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2).
$$

Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем:

$$Delta(M_1)=36(1^2-2^2)=-108.$$

Так как $Delta(M_1) < 0$, то согласно алгоритму в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем:

$$Delta(M_2)=36((-1)^2-(-2)^2)=-108.$$

Так как $Delta(M_2) < 0$, то согласно алгоритму в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$
Delta(M_3)=36(2^2-1^2)=108;;; left.frac{partial^2 z}{partial x^2}right|_{M_3}=6cdot 2=12.
$$

Так как $Delta(M_3) > 0$ и $left.frac{partial^2 z}{partial x^2}right|_{M_3} > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$
z_{min}=z(2;1)=2^3+3cdot 2cdot 1^2-15cdot 2-12cdot 1+1=-27.
$$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$
Delta(M_4)=36((-2)^2-(-1)^2)=108;;; left.frac{partial^2 z}{partial x^2}right|_{M_4}=6cdot (-2)=-12.
$$

Так как $Delta(M_4) > 0$ и $left.frac{partial^2 z}{partial x^2}right|_{M_4} < 0$, то согласно алгоритму $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$
z_{max}=z(-2;-1)=(-2)^3+3cdot (-2)cdot (-1)^2-15cdot (-2)-12cdot (-1)+1=29.
$$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ:

  • $(2;1)$ – точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ – точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $Delta=36cdot(2^2-1^2)$. Здесь очевидно, что $Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа :)

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Решение

Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

$$
frac{partial z}{partial x}=4x^3-4x+4y; frac{partial z}{partial y}=4y^3+4x-4y.
$$

Составим систему уравнений $ left { begin{aligned}
& frac{partial z}{partial x}=0;\
& frac{partial z}{partial y}=0.
end{aligned} right.$:

$$
left { begin{aligned}
& 4x^3-4x+4y=0;\
& 4y^3+4x-4y=0.
end{aligned} right.
$$

Сократим оба уравнения на $4$:

$$
left { begin{aligned}
& x^3-x+y=0;\
& y^3+x-y=0.
end{aligned} right.
$$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$
y^3+x-y+(x^3-x+y)=0;\
y^3+x^3=0; y^3=-x^3; y=-x.
$$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$
x^3-x-x=0;\
x^3-2x=0;\
x(x^2-2)=0.
$$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-sqrt{2}$ или $x=sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-sqrt{2}$, $x_3=sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=sqrt{2}$, $y_3=-x_3=-sqrt{2}$.

Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-sqrt{2},sqrt{2})$, $M_3(sqrt{2},-sqrt{2})$.

Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

$$
frac{partial^2 z}{partial x^2}=12x^2-4; frac{partial^2 z}{partial y^2}=12y^2-4; frac{partial^2 z}{partial x partial y}=4.
$$

Найдём $Delta$:

$$
Delta=frac{partial^2z}{partial x^2}cdot frac{partial^2z}{partial y^2}-left(frac{partial^2z}{partial xpartial y} right)^2=
(12x^2-4)(12y^2-4)-4^2=\
=4(3x^2-1)cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16cdot((3x^2-1)(3y^2-1)-1).
$$

Теперь будем вычислять значение $Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем:

$$Delta(M_1)=16cdot((3cdot 0^2-1)(3cdot 0^2-1)-1)=16cdot 0=0.$$

Так как $Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-sqrt{2},sqrt{2})$. В этой точке получим:

begin{aligned}
& Delta(M_2)=16cdot((3cdot (-sqrt{2})^2-1)(3cdot (sqrt{2})^2-1)-1)=16cdot 24=384;\
& left.frac{partial^2 z}{partial x^2}right|_{M_2}=12cdot (-sqrt{2})^2-4=24-4=20.
end{aligned}

Так как $Delta(M_2) > 0$ и $left.frac{partial^2 z}{partial x^2}right|_{M_2} > 0$, то согласно алгоритму $M_2(-sqrt{2},sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$
z_{min}=z(-sqrt{2},sqrt{2})=(-sqrt{2})^4+(sqrt{2})^4-2(-sqrt{2})^2+4cdot (-sqrt{2})sqrt{2}-2(sqrt{2})^2+3=-5.
$$

Аналогично предыдущему пункту исследуем точку $M_3(sqrt{2},-sqrt{2})$. В этой точке получим:

begin{aligned}
& Delta(M_3)=16cdot((3cdot (sqrt{2})^2-1)(3cdot (-sqrt{2})^2-1)-1)=16cdot 24=384;\
& left.frac{partial^2 z}{partial x^2}right|_{M_3}=12cdot (sqrt{2})^2-4=24-4=20.
end{aligned}

Так как $Delta(M_3) > 0$ и $left.frac{partial^2 z}{partial x^2}right|_{M_3} > 0$, то согласно алгоритму $M_3(sqrt{2},-sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$
z_{min}=z(sqrt{2},-sqrt{2})=(sqrt{2})^4+(-sqrt{2})^4-2(sqrt{2})^2+4cdot sqrt{2}(-sqrt{2})-2(-sqrt{2})^2+3=-5.
$$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается «делайте, что хотите» :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$
z(x,0)=x^4+0^4-2x^2+4xcdot 0-2cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3.
$$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ – точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$
z(x,x)=x^4+x^4-2x^2+4xcdot x-2cdot x^2+3=2x^4+3.
$$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ: $(-sqrt{2},sqrt{2})$, $(sqrt{2},-sqrt{2})$ – точки минимума функции $z$. В обеих точках $z_{min}=-5$.

  1. Экстремумы функций двух и трёх переменных

Определение
1

Точка



называется
точкой максимума
функции

,
если
для любых точек


,
принадлежащих
окрестности точки

,
выполняется неравенство:


.

Определение
2

Точка


называется
точкой минимума
функции

,
если
для любых точек

,
принадлежащих окрестности точки

,
выполняется
неравенство:



.

Определение
3

Точки
максимума и минимума называются
точками
экстремума

функции.

Теорема
1 (необходимое условие экстремума)

Если
точка

является точкой экстремума функции

,
то её частные производные в точке

равны нулю или не существуют.

При
доказательстве теоремы 1 используются
определения частных производных и
теорема о необходимых условиях экстремума
функции одной переменной.

Замечание
1.

Аналогично формулируются определения
1 и 2 и теорема 1 для функции трёх и более
переменных.

Теорема
2

(достаточные
условия экстремума функции двух
переменных)

Если
функция

дважды дифференцируема в критической
точке

и её окрестности и определитель

,
то в точке

есть экстремум. Причём, если

,
то точка

является точкой минимума функции, а
если

,
то точка

является точкой максимума.
Замечание
2.

Если определитель

,
то в точке

нет экстремума, при этом точку

называют седловой точкой. Если

,
то вопрос об экстремуме в точке

остаётся нерешённым, нужны исследования
функции

по её производным более высокого порядка.

Теорема
3

(достаточные
условия экстремума функции трёх
переменных)

Пусть
функция

дважды дифференцируема в
критической точке

и её окрестности. Определитель

имеет все главные диагональные миноры


,


,

положительные, то

–точка минимума функции

.
Если

,

и

, то точка

– точка максимума функции

.

Замечание
3.

Если


критическая точка функции

и

,
но не выполняются условия теоремы 3, то
в точке

нет экстремума, при этом точка

называется седловой точкой. Если все


,
то вопрос об экстремуме в точке

решается с помощью производных более
высокого порядка.

Пример
1.

Найти экстремумы функции:


.

Решение.


;


.

.

Получили
две точки

и


;


;

а)
Исследуем точку

:


;


;

.

Тогда


точка

не является точкой экстремума.

б)
Исследуем точку

:


;


;

.

Тогда


точка

является точкой экстремума. Причём так
как

,
то точка

является точкой минимума функции:

.

Ответ:

  1. Условный экстремум

Пусть
задана функция

на множестве

.
Требуется найти экстремумы функции

,
если

и

связаны некоторым условием

,
называемым уравнением
связи
.

Определение
4.

Точка

называется точкой
условного экстремума

функции

при выполнении дополнительных условий

– уравнений связи.

Для
нахождения точек условного экстремума
существует два метода: метод прямого
отыскания и метод Лагранжа. Прямой
метод состоит в том, что из уравнения
связи

выражается одна из переменных через
другую, и её подставляют в функцию

.
Получают функцию одной переменной, для
которой и решают задачу нахождения
обычного экстремума. Такой метод
применяют тогда, когда удаётся из
уравнения связи выразить одну переменную
через другую.

Пример
2.

Найти условный экстремум функции


при
условии

Решение.
Используем метод прямого отыскания
точек условного экстремума. Из условия

выразим

и подставим его в функцию

.
Тогда

Найдём
для функции

обычный экстремум.


,



– +
x

Следовательно,

– точка минимума функции

.

Подставляем

в функцию

и получим:

.

Ответ:

.

Определение
5.

Функция

называется функцией
Лагранжа
,
а коэффициент λ

множителем
Лагранжа
.

Замечание
4.

Если связи не одно уравнение, а несколько
(например,

),
то функция Лагранжа для функции

записывается с

множителями Лагранжа:

Теорема
4

(необходимое
условие поиска условного экстремума)

Пусть
функции

и

,
дифференцируемые в точке

а

является точкой условного экстремума
функции

при условии

.
Тогда найдется такое число

,
при котором точка

является критической для функции
Лагранжа

.

Метод
Лагранжа

поиска условного экстремума состоит в
следующем:

1)
составляют функцию Лагранжа

;

2)
находят её частные производные по

;

3)
приравнять частные производные к нулю
и решают систему уравнений


;

4)
исследуют найденную в результате решения
системы точку

при найденном значении

и решают задачу обычного экстремума
для

.

Теорема
5 (достаточное условие поиска условного
экстремума для случая одного уравнения
связи)

Пусть
точка

и

найдены из решения системы

.

Пусть
определитель

.

Если


,
то функция

имеет в точке

условный максимум.

Если

,
то функция

имеет в точке

условный минимум.

Пример
3.

Методом Лагранжа найти условный экстремум
для функции

при условии

.
Решение.
Составим функцию Лагранжа

.

Найдём
её частные производные по

:


при

.

Выясним
характер точки

по теореме 5:


;


;


;


;


.

Составим
определитель:


.

Так
как

,
то

– точка условного минимума.

.

Ответ:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Экстремум функции двух переменных

Назначение сервиса. Онлайн-калькулятор используется для нахождения в онлайн режиме наибольшего и наименьшего значения функции двух переменных (см. пример). Решение оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Для функции трех переменных можно использовать матрицу Гессе.

Алгоритм исследования функции двух переменных на экстремум

Функция z = f(x,y) имеет максимум в точке M0(x0;y0), если f(x0;y0) > f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Функция z = f(x,y) имеет минимум в точке M0(x0;y0), если f(x0;y0) < f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Максимум и минимум функции называются экстремумами функции.

Исследование функции двух переменных на экстремум проводят по следующей схеме.

1. Находят частные производные dz/dx и dz/dy.

2. Решают систему уравнений:

и таким образом находят критические точки функции.

3. Находят частные производные второго порядка:

4. Вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках M(x0;y0).

5. Делаю вывод о наличии экстремумов:

а) если AC – B2 > 0 и A < 0 , то в точке M имеется максимум;

б) если AC – B2 > 0 и A > 0 , то в точке M имеется минимум;

в) если AC – B2 < 0, то экстремума нет;

г) если AC – B2 = 0, то вопрос о наличии экстремума остается открытым;

Пример №1. Найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию Сильвестра их тип.

Решение.

1. Найдем первые частные производные.





2. Решим систему уравнений.

3x2+2x+y2=0

2xy+2y=0

Получим:

а) Из первого уравнения выражаем x и подставляем во второе уравнение:

x = -1

y2+1=0

Данная система уравнений не имеет решения.

б) Из первого уравнения выражаем y и подставляем во второе уравнение:





или





или

Откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0

Данные значения x подставляем в выражение для y. Получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0

Количество критических точек равно 2: M1(-2/3;0), M2(0;0)

3. Найдем частные производные второго порядка.







4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).

Вычисляем значения для точки M1(-2/3;0)







AC — B2 = -4/3 < 0, то глобального экстремума нет.

Вычисляем значения для точки M2(0;0)







AC — B2 = 4 > 0 и A > 0 , то в точке M2(0;0) имеется минимум z(0;0) = 0

Вывод: В точке M2(0;0) имеется минимум z(0;0) = 0

Пример №2. Исследовать функцию на экстремум классическим методом: Z=8x2+2xy-5x+6.

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Заказать задачи по любым предметам можно здесь от 10 минут

Экстремум функции двух переменных

Как найти?

Постановка задачи

Найти экстремум функции двух переменных $ z = z(x,y) $

План решения

Экстремумы функции двух переменных возможны в стационарных точках функции. Стационарными точками называются точки $ M(x_1,y_1), M(x_2,y_2)… $, в которых первые частные производные функции равны нулю: $ z(x,y) = 0 $

Для нахождения стационарных точек (подозрительных на экстремум) составляем систему:

$$ begin{cases} z’_x = 0 \ z’_y = 0 end{cases} $$

Решая систему получаем точки $ M(x_1,y_1), M(x_2,y_2)… $, каждую из которых нужно проверить на экстремум.

Проверку осуществляется с помощью подстановки точек в выражение, называемое достаточным условием существования экстремума:

$$ A = z»_{xx} cdot z»_{yy} — (z»_{xy})^2 $$

Если в точке $ M(x_1,y_1) $:

  1. $ A>0 $ и $ z»_{xx} > 0 $, то $ M(x_1,y_1) $ точка минимума
  2. $ A >0 $ и $ z»_{xx} < 0 $, то $ M(x_1,y_1) $ точка максимума
  3. $ A < 0 $, то $ M(x_1,y_1) $ не является точкой экстремума
  4. $ A = 0 $, то требуется дополнительное исследование (по определению)

Итак, необходимо выполнить действия:

  1. Найти частные производные первого порядка. Приравнять их к нулю и решить систему уравнений. Получить точки $ M(x_1,y_1), M(x_2,y_2),… $
  2. Найти частные производные второго порядка в точках $ M(x_1,y_1), M(x_2,y_2),… $
  3. Используя достаточное условие существования экстремума делаем вывод о наличии экстремума в точках $ M(x_1,y_1), M(x_2,y_2),… $

Примеры решений

Пример 1
Найти экстремумы функции двух переменных $ z = x^2 -xy +y^2 $
Решение

Находим частные производные первого порядка:

$$ z’_x = 2x — y $$ $$ z’_y = -x + 2y $$

Приравниваем полученные выражения к нулю и решаем систему двух уравнений:

$$ begin{cases} 2x-y = 0 \ -x + 2y = 0 end{cases} $$

Решив систему получаем стационарную точку (подозрительные на экстремум):

$$ M (0,0) $$

Далее вычисляем значения частных производных второго порядка в точке $ M $:

$$ z»_{xx} Big |_M = 2 $$ $$ z»_{yy} Big |_M= 2 $$ $$ z»_{xy} Big |_M = -1 $$

Подставляя найденные значения в достаточное условие экстремума функции, проводим исследование знаков:

$$ A = Big |_M = z»_{xx} Big |_M cdot z»_{yy} Big |_M — (z»_{xy} Big |_M)^2 = 2 cdot 2 — (-1)^2 = 3 $$

Так как получили $ A > 0 $ и $ z»_{xx} > 0 $, то получается $ M(0,0) $ точка минимума.

Наименьшее значение находится в минимуме и равно:

$$ z_{min} (0,0) = 0^2 — 0 cdot 0 + 0^2 = 0 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
В точке $ M(0,0) $ находится минимум функции; $ z_{min} = 0 $
Пример 2
Найти экстремумы функции двух переменных $ z = x^3 + y^3 — 15xy $
Решение

Составляем систему уравнений из частных производных первого порядка:

$$ begin{cases} z’_x = 3x^2 — 15y = 0 \ z’_y = 3y^2 — 15x =0 end{cases} $$

Получаем стационарные точки $ M_1(0,0) $ и $ M_2(5,5) $, которые необходимо проверить через достаточное условие экстремума.

Вычисляем значение частных прозводных второго порядка в точке $ M_1 $:

$$ z»_{xx} Big |_{M_1} = 6x Big |_{M_1} = 0 $$

$$ z»_{yy} Big |_{M_1} = 6y Big |_{M_2} = 6y Big |_{M_2} = 0 $$

$$ z»_{xy} Big |_{M_1} = -15 $$

Подставляем данные значения в формулу достаточного условия экстремума:

$$ A Big |_{M_1} = 0 cdot 0 — (-15)^2 = -225 $$

Так как $ A < 0 $, то в точке $ M_1(0,0) $ экстремума нет.

Получаем значения частных производных 2 порядка в $ M_2 $:

$$ z»_{xx} Big |_{M_2} = 6x Big |_{M_2} = 6 cdot 5 = 30 $$

$$ z»_{yy} Big |_{M_2} = 6y Big |_{M_2} = 6 cdot 5 = 30 $$

$$ z»_{xy} Big |_{M_2} = -15 $$

Вычисляем значение выражения достаточного условия экстремума:

$$ A = 30 cdot 30 — (-15)^2 = 900 — 225 = 675 $$

Получили $ A > 0 $ и $ z»_{xx} > 0 $, то значит, $ M_2(5,5) $ точка минимума.

Наименьшее значение функции $ z = x^3 + y^3 — 15xy $ равно:

$$ z_{min} |_{M_2} = 5^3 + 5^3 — 15 cdot 5 cdot 5 = 125 + 125 — 375 = -125 $$

Ответ
В $ M_1 (0,0) $ экстремума нет, в $ M_2(5,5) $ минимум функции $ z_{min}=-125 $ 

Понравилась статья? Поделить с друзьями:
  • Как найти все характеристики в ноутбуке
  • Как найти американские каналы на ютубе
  • Как найти билеты на самолет по бронированию
  • Как найти площадь сечения тетраэдра треугольника
  • Как найти друзей мужского пола