Как найти точку на поверхности вращения

Поверхность вращения – поверхность,
образованная врезанием какой-нибудь
линии (образующей) вокруг неподвижной
оси.

Конус – геом. фигура, образованная
вращением образующей – прямой линии
вокруг оси i, причем
образующая пересекается с осью вращения.

Цилиндр – геом. фигура, образованная
вращением прямой вокруг оси, причем
образующая параллельна оси.

Точка принадлежит поверхности, если
она принадлежит какой-либо линии этой
поверхности, т.е. в нашем случае –
параллелям или меридианам на 3 проекциях
. (стр 29 в белом пособии)

11)Поверхность вращения. Сфера. Тор. Принадлежность линии и точки поверхности вращения.

Поверхность вращения образуются
вращением линии вокруг прямой – оси
вращения.

Они могут быть Линейчатые(конус, цилиндр)
и нелинейчатые(сфера)

Криволинейная поверхность вращения
образуется при вращении любой кривой
вокруг оси.

Сфера – образуется вращением
окружности вокруг её диаметра Точка А
на поверхности сферы принадлежит
Главному меридиану F,
точка B – экватору H,
а точка M построена на
вспомогательной параллели h`.

Тор образуется вращением окружности
или её дуги вокруг оси, лежащей в плоскости
окружности.

а) Если ось расположена в пределах
образующей окружности, то такой тор
называется закрытым.

б)Если ось вращения находится вне
окружности, то такой тор называется
открытым.

Тор это поверхность 4-го порядка,
построение проекций точек выполняется
с помощью параллелей.

Положение точки на поверхности вращения
определяют с помощью окружности,
проходящей через эту точку на поверхности
вращения. В случае линейчатых поверхностей
для этой цели возможно применение и
прямолинейных образующих.

12)Построение линии пересечения двух поверхностей. Способ вспомогательных секущих плоскостей.

При построении линии пересечения
поверхностей рекомендуется следующий
порядок решений
:

1) Выяснить вид и расположение заданных
поверхностей относительно друг друга.

2) Определить характер линии пересечения.

3) Построить опорные точки.

4)Построить промежуточные точки.

5) Определить на всех проекциях линии
пересечения, видимость отрезков и
обвести чертеж.

Способ вспомогательных плоскостей
заключается в том, что заданные поверхности
β и ∆ пересекается вспомогательными
плоскостями ∑

Алгоритм:

1)∑∩β˄∑∩∆

2)m=∑∩β;
n=∑∩∆

3)l=m∩n;
z=m∩n

13)Пересечение поверхности с прямой линией. Выбор видов вспомогательных плоскостей.

Возможное количество точек пересечения
поверхности с прямой линией соответствует
порядку поверхности. Поверхности второго
порядка прямая линия пересекает в двух
точках. Тор – поверхность четвертого
порядка – в четырех.

Схема построения:

1) Через прямую L проводии
вспомогательную плоскость ∆;

2) Строим линию пересечения m
этой плоскости ∆ с заданной поверхностью
фигуры;

3)Отмечаем точки А и В пересечения данной
прямой L с построенной
линией пересечения m,
которые были бы прямыми или окружностями.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Поверхностей вращения существует множество: цилиндр, конус, сфера, эллипсоиды, торы и др. Поверхность вращения общего вида образуется вращательным перемещением образующей линии вокруг неподвижной оси. Каждая точка образующей линии при вращении вокруг неподвижной оси описывает окружность с центром на оси вращения. Эти окружности называются параллелями.

Наибольшую из параллелей (окружностей) поверхности вращения называют экватором поверхности, а наименьшую — горлом (шейкой) поверхности. Плоскости, проходящие через ось поверхности вращения, называют меридиональными, а линии, по которым они пересекают поверхность, — меридианами. Меридиональная плоскость, параллельная плоскости проекции, называется плоскостью главного меридиана, а линия пересечения этой плоскости с поверхностью вращения называется главным меридианом.

Поверхности вращения

Поверхностью вращения называется поверхность, описываемая кривой (или прямой) образующей при ее вращении вокруг неподвижной оси (рис. 5.18). Эта поверхность определяется на чертеже заданием образующей и оси вращения.

Поверхности вращения в начертательной геометрии с примерами

Каждая точка образующей Поверхности вращения в начертательной геометрии с примерами

Плоскость, проходящую через ось поверхности вращения, называют меридиональной. Линию ее пересечения с поверхностью — меридианом. Меридиан, параллельный фронтальной плоскости проекций, называется главным меридианом. Все меридианы равны между собой.

На чертеже ось вращения Поверхности вращения в начертательной геометрии с примерами располагают перпендикулярно к одной из плоскостей проекций, например горизонтальной. Тогда все параллели проецируются на эту плоскость в истинную величину. Экватор и горло определят горизонтальный очерк поверхности. Фронтальным очерком такой поверхности будет главный меридиан, то есть меридиан, расположенный во фронтальной плоскости.

Точки на поверхностях вращения могут быть построены с помощью параллелей, то есть окружностей на поверхности (рис. 5.20, рис. 5.22, а, б, в, рис. 5.23 — рис. 5.25).

Рассмотрим некоторые тела и поверхности вращения.

1 .Поверхности, образованные вращением прямой линии:

а) цилиндр вращения — поверхность, полученная вращением прямой Поверхности вращения в начертательной геометрии с примерами вокруг параллельной ей оси Поверхности вращения в начертательной геометрии с примерами (рис. 5.19);

б) конус вращения — поверхность, образованная вращением прямой Поверхности вращения в начертательной геометрии с примерами вокруг пересекающейся с ней осью Поверхности вращения в начертательной геометрии с примерами (рис. 5.20);

в) однополостный гиперболоид вращения — поверхность, полу­ченная вращением прямой Поверхности вращения в начертательной геометрии с примерами вокруг скрещивающейся с ней осью Поверхности вращения в начертательной геометрии с примерами (рис. 5.21).

Поверхности вращения в начертательной геометрии с примерами

Точка А, лежащая на перпендикуляре к оси вращения и обра­зующей, будет описывать наименьшую окружность, являющуюся горлом гиперболоида. Однополостный гиперболоид может быть также получен вращением гиперболы вокруг ее мнимой оси.

2. Поверхности, образованные вращением окружности вокруг неподвижной оси: а) сфера — поверхность, полученная вращением окружности во­круг ее диаметра (рис. 5. 22, а);

б) тор — поверхность, полученная вращением окружности вокруг оси Поверхности вращения в начертательной геометрии с примерами лежащей в плоскости этой окружности, но не проходящей через ее центр (рис. 5.22, б-д).

Если ось вращения проходит вне окружности, то поверхность называется «открытый тор» или «тор — кольцо» (рис. 5.22, б); если ось касается окружности, то образованная поверхность называются «закрытый тор» (рис. 5.22, в); если ось пересекает окружность — «самопересекающийся тор» (рис. 5.22, г, д)). Тор, изображенный на рис. 5.22, г, назы­вается также «тор-яблоко», а на рис. 5.22, д — «тор-лимон». Сфера — частный случай торовой поверхности.

Поверхности вращения в начертательной геометрии с примерами

3. Поверхности вращения, образованные вращением кривых вто­рого порядка:

а) эллипсоид вращения — поверхность, полученная вращением эллипса вокруг оси (рис. 5.23). Поверхность, образованная вращением эллипса вокруг его большой оси, называется вытянутым эллипсоидом вращения (рис. 5.23, б), при вращении вокруг малой оси — сжатым элипсоидом вращения (рис. 5.23, а, в);

Поверхности вращения в начертательной геометрии с примерами

б) параболоид вращения — поверхность, образованная вращением параболы вокруг ее оси (рис. 5.24);

в) двухполостный гиперболоид вращения — поверхность, обра­зованная вращением гиперболы вокруг ее действительной оси (рис. 5.25).

Пересечение поверхностей вращения плоскостью

При пересечении поверхности вращения плоскостью получается линия сечения — плоская фигура. Построение проекций линии пересечения необходимо начинать с определения опорных точек. К ним относятся точки, расположенные на очерковых образующих поверхности (точки, определяющие границы видимости проекций кривой), и точки, удаленные на экстремальные (максимальное и минимальное) расстояния от плоскостей проекций. После этого определяют произвольные (промежуточные) точки линии пересечения.

Для определения точек, принадлежащих линии пересечения, можно использовать различные методы. Один из них — метод вспомогательных секущих плоскостей. Суть его заключается в том, что заданные плоскость и поверхность вращения пересекают вспомогательными плоскостями. Находят линии пересечения этой плоскости с заданными плоскостью и поверхностью вращения. Затем отмечают точки, в которых пересекаются полученные линии пересечения. Построенные точки фигуры сечения соединяют плавной кривой линией.

Развертки поверхностей вращения

Построение разверток поверхностей вращения имеет большое значение, особенно при конструировании из листового материала моделей различных сооружений, форм для металлических отливок, сосудов, трубопроводов, резервуаров и т.п.

Приближенные развертки

Поверхности, которые можно совместить с плоскостью без разрывов и складок, называют развертывающимися поверхностями. Фигуру, полученную при совмещении развертывающейся поверхности с плоскостью, называют разверткой. Для развертывающихся поверхностей можно построить приближенную развертку (условно-развертываемые поверхности). При построении приближенной развертки поверхность аппроксимируют поверхностями вписанных или описанных многогранников, имеющих грани в форме прямоугольников или треугольников. Поэтому при графическом выполнении разверток поверхности всегда приходится производить разгибание или спрямление кривых линий, принадлежащих поверхности, что неизбежно приводит к потере точности.

Условные развертки

Неразвертывающиеся поверхности не могут быть совмещены сплоскостью без разрывов и складок, т.е. теоретически они не имеют своей развертки. Поэтому говорят лишь об условном решении задачи по построению разверток неразвертывающихся поверхностей. На практике для получения развертки неразвертываемой поверхности, выполненной из листового материала, приходится кроме изгибания производить растяжение и сжатие определенных участков листа.

Построение условной развертки неразвертывающейся поверхности состоит в том, что отсеки заданной поверхности аппроксимируются отсеками развертывающихся поверхностей — гранными, цилиндрическими или коническими.  

Задание: построить проекции и натуральный вид фигуры сечения поверхности цилиндра плоскостью Р (рис. 11.1). Построить развёртку боковой поверхности усечённой части цилиндра.  

Решение: на рисунке 11.1 изображены прямой круговой цилиндр, основание которого принадлежит горизонтальной плоскости проекций Поверхности вращения в начертательной геометрии с примерами и секущая плоскость Р общего положения. Поскольку секущая плоскость наклонена к оси цилиндра, то боковая поверхность цилиндра пересекается по эллиптической кривой.Форма сечения в этом случае зависит от того, пересекает ли плоскость Р основания цилиндра. В рассматриваемом случае секущая плоскость Р не пересекает оснований цилиндра. Это видно из того, что горизонтальная проекция нижнего основания не пересекается с горизонтальным следом плоскости Р, а горизонтальная проекция горизонтали Поверхности вращения в начертательной геометрии с примерами, по которой плоскость Р пересекается с плоскостью верхнего основания, не пересекает его горизонтальную проекцию.

Для нахождения эллипса сечения плоскости Р с боковой поверхностью цилиндра находят сначала его низшую Поверхности вращения в начертательной геометрии с примерами и высшую Поверхности вращения в начертательной геометрии с примерами точки.

Эти точки являются концами большой оси эллипса сечения и лежат на линии наибольшего наклона плоскости Р к горизонтальной плоскости проекций. Следовательно, прямая АВ перпендикулярна к горизонтальному следу плоскости Р и пересекает ось цилиндра.

Для нахождения точек А и В проводят плоскость Σ, перпендикулярную к горизонтальному следу Поверхности вращения в начертательной геометрии с примерами и проходящую через ось цилиндра. Эта плоскость перпендикулярна к плоскости Поверхности вращения в начертательной геометрии с примерами. Затем находят линию пересечения плоскостей Р и Σ.

Боковая поверхность цилиндра является горизонтально проецирующей и поэтому проецируется на горизонтальную плоскость проекций в окружность. Так как отрезок АВ является частью линии пересечения плоскостей Р и Σ, а точки А и В лежат на боковой поверхности цилиндра, то горизонтальные проекции точек А и В должны лежать на одной окружности и на горизонтальной проекции прямой пересечения плоскостей Р и Σ. По горизонтальным проекциям точек А и В находят их фронтальные проекции, исходя из условия, что точки А и В лежат на найденной прямой пересечения плоскостей Р и Σ.

Для определения остальных точек эллипса сечения на цилиндрической поверхности выбирают ряд образующих. За первую образующую выбирают ту, на которой лежит точка А. Остальные образующие получают делением окружности (горизонтальной плоскости цилиндрической поверхности) на 12 равных частей (можно делить на другое количество частей). Затем находят точки пересечения образующих с плоскостью Р. В рассматриваемом примере все образующие перпендикулярны к горизонтальной плоскости проекций. Следовательно, горизонтальные проекции точек пересечения образующих с плоскостью Р совпадают с горизонтальными проекциями самих образующих.

Далее наносят горизонтальные проекции точек пересечения образующих с плоскостью Р (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) и находят фронтальные проекции этих точек, проводя через них горизонтали в плоскости.

Кривая линия, ограничивающая фронтальную проекцию фигуры сечения, включает видимые и невидимые участки. Точки, являющиеся границей видимости кривой, лежат на очерковых образующих. Отмечают горизонтальные проекции этих точек (Поверхности вращения в начертательной геометрии с примерами) и находят фронтальные проекции (Поверхности вращения в начертательной геометрии с примерами), проводя через эти точки в плоскости Р горизонтали. Полученные точки соединяют плавной кривой линией. Кривая от точки 12 через точки 10, А, 1, 2, 3, 4 до точки 11 на фронтальной плоскости проекций является видимой, а остальная часть — невидимой.

Видимую часть кривой обводят сплошной линией, а невидимую — штриховой. Малой осью эллипса сечения является отрезок 3 — 8, проецирующийся в натуральную величину на горизонтальную плоскость проекций. Натуральная величина малой оси эллипса в рассматриваемом примере равна диаметру цилиндра. Натуральную величину эллипса сечения строят путём совмещения плоскости Р с горизонтальной плоскостью проекций.

Развёртка боковой поверхности прямого кругового цилиндра, не усечённого плоскостью, представляет собой прямоугольник с основанием, равным длине окружности основания цилиндра, и высотой, равной высоте цилиндра. При построении развёртки боковой поверхности цилиндра, пересечённого плоскостью, на развёртке необходимо наносить точки, принадлежащие линии пересечения, и затем эти точки соединять плавной кривой линией (рис. 11.1).

Поверхности вращения в начертательной геометрии с примерами

Для этого на развёртке боковой поверхности цилиндра проводят 12 образующих, отстоящих друг от друга на равном расстоянии. За первую образующую рекомендуется выбирать ту, на которой лежит точка А. Затем наносят на все образующие последовательно точки А, 1, 2, 3, 4, 11, 5, В, 6, 7, 8, 9, 12, 10. Расстояние от этих точек до нижнего (или верхнего) основания проецируется на фронтальную плоскость проекций в натуральную величину. Соединив полученные точки плавной кривой линией, получают развёртку боковой поверхности усечённой части цилиндра.  

  • Заказать чертежи

Задание: построить проекции и натуральную величину линии пересечения поверхности конуса плоскостью Р (рис. 11.3).  

Решение: поверхность прямого кругового конуса относится к поверхностям вращения и является носителем кривых второго порядка: окружности, эллипса, параболы и гиперболы. Все эти кривые являются плоскими и, следовательно, могут быть получены в результате сечения конической поверхности плоскостью.

Поверхности вращения в начертательной геометрии с примерами

На рис. 11.2 приведены фронтальные проекции поверхности прямого кругового конуса, следы фронтально проецирующих секущих плоскостей и указан вид получаемой в сечении кривой. Можно установить признаки, обеспечивающие получение в сечении той или иной кривой второго порядка. Так, если обозначить угол наклона образующей конической поверхности к его оси через φ а угол между секущей плоскостью и той же осью через α , то можно утверждать, что при α > φ (рис. 11.2, а) в сечении получается эллипс (в частном случае, если α =90° — окружность), при α = φ (рис. 11.2, б) — парабола, и при α < φ (рис. 11.2, в) — гипербола.

На рис. 11.3 изображен прямой круговой конус и пересекающая его фронтально проецирующая плоскость Р. Угол между секущей плоскостью и осью конической поверхности больше угла наклона образующей конической поверхности к его оси, поэтому в сечении получается эллипс, большая ось которого АВ будет проецироваться на плоскость — Поверхности вращения в начертательной геометрии с примерами без искажения в Поверхности вращения в начертательной геометрии с примерами, а малая ось эллипса 1-2 спроецируется на плоскость П 2 в точку Поверхности вращения в начертательной геометрии с примерами, расположенную в середине отрезка Поверхности вращения в начертательной геометрии с примерами. Величина малой оси 1-2 определяется из условия принадлежности ее плоскости Р. Для построения горизонтальной проекции малой оси Поверхности вращения в начертательной геометрии с примерамиприменяют способ секущих плоскостей. Поверхность конуса рассекают горизонтальной вспомогательной секущей плоскостью Поверхности вращения в начертательной геометрии с примерами и строят на горизонтальной проекции конуса проекцию фигуры сечения — круг.

Определяют горизонтальные проекции малой оси эллипса Поверхности вращения в начертательной геометрии с примерами, которые лежат на линии пересечения (окружности) плоскости А и поверхности конуса, и проводят ряд вспомогательных секущих плоскостей для нахождения промежуточных точек 3, 4, 5, 6, принадлежащих фигуре сечения (эллипсу). Натуральную величину эллипса находят совмещением плоскости Р с горизонтальной плоскостью проекции. Эллипс Поверхности вращения в начертательной геометрии с примерами есть натуральная величина эллипса.  

Задание: построить проекции и натуральную величину сечения конуса плоскостью Р (рис. 11.4). Построить развёртку усечённой части боковой поверхности конуса.  

Решение: на рис. 11.4 изображены прямой круговой конус и секущая плоскость Р общего положения. Ось конуса расположена перпендикулярно к плоскости Поверхности вращения в начертательной геометрии с примерами основание конуса лежит на плоскости Поверхности вращения в начертательной геометрии с примерами. Поверхности вращения в начертательной геометрии с примерами

Решение задачи значительно упростится, если секущая плоскость Р будет проецирующей. Для этого преобразуют чертеж методом перемены плоскостей проекций, чтобы секущая плоскость Р стала фронтально проецирующей.

Построенная на Поверхности вращения в начертательной геометрии с примерами проекция показывает, что секущая плоскость пересекает только боковую поверхность конуса, не затрагивая его основания.

Для нахождения проекций сечения необходимо найти проекции эллипса, получаемого от пересечения конической поверхности плоскостью. На фронтальную плоскость проекции Поверхности вращения в начертательной геометрии с примерами эллипс проецируется в виде отрезка Поверхности вращения в начертательной геометрии с примерами. Точки А и В являются низшей и высшей точками эллипса (линии пересечения плоскости поверхностью конуса, т. е. концами большой оси эллипса). Поверхности вращения в начертательной геометрии с примерами — натуральная величина большой оси эллипса. Малая ось эллипса перпендикулярна к большой оси и делит её пополам. Большая ось эллипса Поверхности вращения в начертательной геометрии с примерами параллельна плоскости проекций Поверхности вращения в начертательной геометрии с примерами, а малая ось перпендикулярна Поверхности вращения в начертательной геометрии с примерами и проецируется на неё в точку Поверхности вращения в начертательной геометрии с примерами. Поверхности вращения в начертательной геометрии с примерами

Затем задают на эллипсе сечения ещё ряд точек (3, 4, 5, 6, 7, 8). По их фронтальным проекциям на плоскость Поверхности вращения в начертательной геометрии с примерами находят горизонтальные проекции (проводя через точки на конической поверхности образующие). По горизонтальным проекциям находят фронтальные проекции на плоскость проекций Поверхности вращения в начертательной геометрии с примерами (проводя фронтали через проекции точекПоверхности вращения в начертательной геометрии с примерами).

Для нахождения границы видимости кривой на фронтальной проекции находят проекции очерковых образующих, на которых лежат искомые точки, на фронтальную плоскость проекций Поверхности вращения в начертательной геометрии с примерами. На пересечении этих образующих с плоскостью Р и будут искомые точки (проекции Поверхности вращения в начертательной геометрии с примерами). По проекциям Поверхности вращения в начертательной геометрии с примерами находят горизонтальные проекции Поверхности вращения в начертательной геометрии с примерами а затем фронтальные проекции Поверхности вращения в начертательной геометрии с примерами. Видимая часть кривой на фронтальной проекции — от точки 10 через точки А, 5, 1, 3, 7 до точки 9. Остальная часть невидимая. Развёртка боковой поверхности прямого кругового конуса представляет собой сектор круга, радиус которого равен образующей конуса (рис. 11.5). Центральный угол сектора подсчитывается по формуле Поверхности вращения в начертательной геометрии с примерами где φ — радиус окружности основания конуса; L — длина образующей конуса. Поверхности вращения в начертательной геометрии с примерами

Чтобы избежать вычислений, связанных с определением длины дуги сектора или угла φ, обычно вписывают в основание конуса правильный многоугольник (в данном случае 12-угольник) и затем, описывают из произвольной точки S дугу радиусом L, откладывают последовательно из любой её точки количество дуг, равное сторонам многоугольника. Таким образом, развёртку боковой поверхности прямого кругового конуса заменяют, с достаточной для практики точностью развёрткой правильной пирамиды, вписанной в данный конус. Для нанесения на развёртку боковой поверхности конуса линии сечения (рис. 11.5) переносят на развёртку точки пересечения с секущей плоскостью 12 образующих конуса, которые заменены рёбрами 12- угольной правильной пирамиды. Соединив полученные точки плавной кривой, получают развёртку усечённой части боковой поверхности конуса.  

Задание: построить проекции линии пересечения сферы плоскостью Р (рис. 11.6).

Поверхности вращения в начертательной геометрии с примерами  

Решение: плоскость Р является фронтально проецирующей. На фронтальную плоскость проекций окружность (фигура сечения) проецируется в виде отрезка прямой, на горизонтальную — в виде эллипса. Эллипс строят по точкам. Точки 1 и 2 расположены на главном меридиане сферы, а точки 3 и 4 — на экваторе сферы. Для нахождения верхней и нижней (экстремальных) точек 5 и 6 определяют их фронтальные проекции Поверхности вращения в начертательной геометрии с примерами, которые находятся в середине фронтальной проекции отрезка Поверхности вращения в начертательной геометрии с примерами. Через фронтальные проекции точек проводят фронтальную проекцию окружности Поверхности вращения в начертательной геометрии с примерами (на плоскость Поверхности вращения в начертательной геометрии с примерами она проецируется в прямую линию). Расстояние от оси сферы до очерковой образующей определяет радиус окружности R’. Этим радиусом строят горизонтальную проекцию окружности Поверхности вращения в начертательной геометрии с примерами и на ней находят проекции точек 5 и 6 — Поверхности вращения в начертательной геометрии с примерами. Промежуточные точки 7 и 8 определяют аналогичным способом.  

Задание: построить проекции и истинную величину линии пересечения сферы плоскостью общего положения Поверхности вращения в начертательной геометрии с примерами (рис. 11.7).  

Решение: для решения задачи плоскость общего положенияПоверхности вращения в начертательной геометрии с примерами преобразуют методом замены плоскостей проекций в проецирующую.

Заменяют фронтальную плоскость проекции Поверхности вращения в начертательной геометрии с примерами на Поверхности вращения в начертательной геометрии с примерами Проводят осьПоверхности вращения в начертательной геометрии с примерами перпендикулярно к горизонтальному следу Поверхности вращения в начертательной геометрии с примерами плоскости Р. Строят плоскость Р в новой системе плоскостей Поверхности вращения в начертательной геометрии с примерами/Поверхности вращения в начертательной геометрии с примерами.

Для этого берут на фронтальном следе Поверхности вращения в начертательной геометрии с примерами плоскости Р произвольную точку Поверхности вращения в начертательной геометрии с примерами Находят горизонтальную проекцию Поверхности вращения в начертательной геометрии с примерами точки Е, затем строят проекцию Поверхности вращения в начертательной геометрии с примерами в системе Поверхности вращения в начертательной геометрии с примерами/ Поверхности вращения в начертательной геометрии с примерами. Через проекцию Поверхности вращения в начертательной геометрии с примерами и точку схода следов на оси x проводят фронтальный след плоскости Поверхности вращения в начертательной геометрии с примерами. Проекцию сферы переносят в систему Поверхности вращения в начертательной геометрии с примерами /Поверхности вращения в начертательной геометрии с примерами.

Для этого проводят через горизонтальную проекциюПоверхности вращения в начертательной геометрии с примерами, центра 0 сферы линию проекционных связей перпендикулярно к оси Поверхности вращения в начертательной геометрии с примерами и отмечают на ней (на линии проекционных связей) координату z точки 0. Полученную проекцию обозначают Поверхности вращения в начертательной геометрии с примерами. Затем строят проекцию сферы заданного радиуса в системе Поверхности вращения в начертательной геометрии с примерами Поверхности вращения в начертательной геометрии с примерами. После преобразования плоскости Р в проецирующее положение задача сводится к решению предыдущей задачи (см. п. 11.2.6), т. е. сначала строят горизонтальную проекцию фигуры сечения, а затем, используя признак принадлежности точки плоскости, строят фронтальную проекцию фигуры сечения сферы плоскостью общего положения.

Для определения натуральной величины сечения сферы необходимо выполнить вторую замену (плоскость проекций Поверхности вращения в начертательной геометрии с примерами заменить на плоскость Поверхности вращения в начертательной геометрии с примерами (рис. 11.7). С этой целью преобразовывают плоскость сечения Р в плоскость уровня. Проводят ось Поверхности вращения в начертательной геометрии с примерами параллельно фронтальному следу Поверхности вращения в начертательной геометрии с примерами. Проецируют центр окружности 0 в систему Поверхности вращения в начертательной геометрии с примерами/Поверхности вращения в начертательной геометрии с примерами. Рис. 11.7 Поверхности вращения в начертательной геометрии с примерами

Натуральная величина сечения окружности строится радиусом R, равным половине отрезка Поверхности вращения в начертательной геометрии с примерами.

Поверхность сферы не может быть развёрнута точно. Для неразвертываемых поверхностей строят приближённую развёртку (рис. 11.8). Поверхность сферы разбивается на равное число частей (рис. 11.8, а), например, на 12 частей. Разбивку производят плоскостями, проходящими через один из диаметров сферы MN.

Каждую часть поверхности сферы, находящуюся между двумя смежными плоскостями, заменяют частью цилиндрической поверхности с осью, проходящей через центр сферы и перпендикулярной к диаметру MN. Диаметр поверхности принимают равным диаметру сферы.

Для наглядности ниже рассмотрено построение только одной из частей поверхности сферы, расположенной между плоскостями Р и Σ . Выделенную часть поверхности сферы заменяют цилиндрической с осью Поверхности вращения в начертательной геометрии с примерами, которая перпендикулярна к диаметру MN и плоскости дуги 1-4. Дугу 1-4 делят на равные части (в каждом случае — на три). Для построения развёртки откладывают на вертикальной прямой отрезки, равные хордам данных дуг Поверхности вращения в начертательной геометрии с примерами. Величины этих хорд с достаточной степенью точности можно считать равными величинам дуг. По горизонтальной прямой откладывают величины соответствующих образующих поверхности Поверхности вращения в начертательной геометрии с примерами и т.д. Полученные точки соединяют кривой линией (рис. 11.8, б).

  • Пересечение прямой линии с поверхностью
  • Построение линии пересечения поверхностей
  • Проецирование прямой
  • Взаимное положение плоскостей, прямой линии и плоскости
  • Гранные поверхности
  • Проецирование точки
  • Прямая в пространстве и ее изображение на чертеже
  • Многогранники

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

7.1. Поверхности. Образование и задание поверхности на чертеже

Поверхности составляют широкое многообразие объектов трехмерного пространства. Инженерная деятельность человека связана непосредственно с проектированием, конструированием и изготовлением различных поверхностей. Большинство задач прикладной геометрии сводится к автоматизации проектно-конструкторского процесса и воспроизведения сложных поверхностей. Способы формообразования и отображения поверхностей составляют основу инструментальной базы трехмерного моделирования современных систем автоматизированного проектирования.

Рассматривая поверхности как непрерывное множество точек, между координатами  которых может быть установлена зависимость, определяемая уравнением вида F(x,y,z)=0, можно выделить алгебраические поверхности (F(x,y,z)— многочлен n-ой степени и трансцендентные (F(x,y,z)— трансцендентная функция.

Если алгебраическая поверхность описывается уравнением n-й степени, то поверхность считается поверхностью n-го порядка. Произвольно расположенная секущая плоскость пересекает поверхность по кривой того же порядка (иногда распадающейся или мнимой), какой имеет исследуемая поверхность. Порядок поверхности может быть определен также числом точек её пересечения с произвольной прямой, не принадлежащей целиком поверхности, считая все точки (действительные и мнимые).

Поверхность можно рассматривать, как совокупность последовательных положений l1,l2 линии l перемещающейся в пространстве по определенному закону (Рисунок 7.1). В процессе образования поверхности линия l может оставаться неизменной или менять свою форму — изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в виде одной линии или целого семейства линий (m, n, p…).

Подвижную линию принято называть образующей (li), неподвижные – направляющими (m). Такой способ образования поверхности принято называть кинематическим.

Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несёт на себе «отпечаток» режущей кромки резца, т.е. её поверхность можно рассматривать как множество линий конгруэнтных профилю резца.

Рисунок 7.1 - Кинематическая поверхность
Рисунок 7.1 — Кинематическая поверхность

По виду образующей различают поверхности линейчатые и нелинейчатые, образующая первых – прямая линия, вторых – кривая.

Линейчатые поверхности в свою очередь разделяют на развертывающиеся, которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся.

Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Такие поверхности носят название циклические (Рисунок 7.2).

 Рисунок 7.2 - Циклическая поверхность
Рисунок 7.2 — Циклическая поверхность

Если  группировать поверхности по закону движения образующей линии, то большинство встречающихся в технике поверхностей можно разделить на:

  • поверхности вращения;
  • винтовые поверхности;
  • поверхности с плоскостью параллелизма;
  • поверхности параллельного переноса.

Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов).

Для графического изображения поверхности на чертеже используется её каркас.

Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности.

Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом.

Проекции каркаса могут быть построены, если задан определитель поверхности – совокупность условий, задающих поверхность в пространстве и на чертеже.

Различают две части определителя: геометрическую и алгоритмическую.

Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности.

Вторая часть – алгоритмическая (описательная) – содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу.

Например, циклическая поверхность, каркас которой состоит из восьмиугольников (Рисунок 7.3), может быть задан следующим образом:

  • Геометрическая часть определителя: три направляющих l, m, n.
  • Алгоритмическая часть: выбираем плоскость α; находим точки А, В, С, в которых α пересекает соответственно направляющие l, m, n. Строим восьмиугольник, определяемый тремя найденными точками. Переходим к следующей плоскости и повторяем построение

Рисунок 7.3 –Образование циклической поверхности
Рисунок 7.3 –Образование циклической поверхности

7.2. Поверхности вращения

Поверхностями вращения называются поверхности, полученные вращением образующей вокруг неподвижной оси (Рисунок 7.5).

Цилиндрическая и коническая поверхности бесконечны (т.к. бесконечны образующие); сферическая, торовая поверхности — конечны.

Сферическая поверхность – частный случай торовой поверхности. При вращении окружности вокруг осей б, в, г (Рисунок 7.4, а) получим торовую поверхность (Рисунок 7.4, б), а вокруг оси а – сферическую.

Рисунок 7.4 – Образование поверхностей вращения

Рисунок 7.4 – Образование поверхностей вращения

Рисунок 7.5 – Элементы поверхности вращения

Рисунок 7.5 – Элементы поверхности вращения

Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения. Эти окружности называются параллелями (Рисунок 7.5).

Наименьшая параллель называется горлом, наибольшая – экватором.

Линия пересечения поверхности вращения плоскостью, проходящей через ось, называется меридианом.

Линия пересечения поверхности вращения плоскостью, проходящая через ось, параллельно фронтальной плоскости проекций, называется главным меридианом.

7.3. Цилиндрическая поверхность

Цилиндрическая поверхность образуется движением прямой линии, которая в любом своём положении параллельна данному направлению и пересекает криволинейную направляющую (Рисунок 7.6).

Цилиндр – геометрическое тело, ограниченное замкнутой цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими все образующие данной поверхности.

Взаимно параллельные плоские фигуры, ограниченные цилиндрической поверхностью, называются основаниями цилиндра.

Если нормальное сечение (плоскость сечения перпендикулярна образующим) имеет форму окружности, то цилиндрическая поверхность называется круговой.

Если образующие цилиндрической поверхности перпендикулярны к основаниям, то цилиндр называется прямым, в противном случае – наклонным.

Рассмотрим проецирование прямого кругового цилиндра  и принадлежащей ему точки F.

Условимся, что фронтальная проекция точки F – невидима (Рисунок 7.6).

Рисунок 7.6 – Проецирование цилиндра на плоскости проекций

Рисунок 7.6 – Проецирование цилиндра на плоскости проекций

Горизонтальная и профильная проекции точки F будут видимы.

При определении видимости, образующие, которые находятся на части, обращённой к наблюдателю и обозначенной на πсплошной зелёной  линией – на плоскости проекции π2 видны, а которые находятся на части, обозначенной толстой штриховой линией – видны на π3.

Пусть точка А на πвидима (Рисунок 7.7). Тогда на πона будет видима, а на π3 невидима.

Рисунок 7.7 – Эпюр прямого кругового цилиндра и принадлежащих ему точек
Рисунок 7.7 – Эпюр прямого кругового цилиндра и принадлежащих ему точек

7.4. Пересечение прямой с поверхностью прямого кругового цилиндра

Для построения точек пересечения прямой линии с поверхностью прямого кругового цилиндра не требуется дополнительных построений. На горизонтальной плоскости проекций точки пересечения (1 и 2) находятся сразу. Фронтальные проекции строим по линиям связи.

Но в общем случае, алгоритм решения рассмотрим на следующем упражнении.

Рисунок 7.8 – Пересечение прямой с поверхностью прямого кругового цилиндра
Рисунок 7.8 – Пересечение прямой с поверхностью прямого кругового цилиндра

Упражнение

Заданы: прямой круговой цилиндр с осью вращения, перпендикулярной плоскости проекций π1 и прямая а общего положения (Рисунок 7.8).

Построить точки пересечения прямой а с поверхностью цилиндра.

Решение:

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

  1. Заключить прямую во вспомогательную секущую плоскость частного положения σ (горизонтально-проецирующую).
  2. Построить фигуру пересечения поверхности цилиндра горизонтально-проецирующей плоскостью: результат пересечения — четырехугольник (на π2 условно заштрихован).
  3. Найти точки «входа» и «выхода» прямой: на пересечении её фронтальной проекции с фронтальными проекциями сторон четырёхугольника (они же — проекции образующей цилиндра);

Прямая а пересекается со сторонами сечения в двух точках – 1 и 2.

Определим видимость участков прямой: очевидно, что между точками 1-2 прямая невидима, а на плоскости проекций π2 будет ещё невидим участок прямой от точки 1 до левой крайней образующей.

7.5. Пересечение прямой с поверхностью наклонного цилиндра

Упражнение

Заданы: наклонный круговой цилиндр с осью вращения, наклонной к плоскости проекций π1 и прямая mобщего положения (Рисунок 7.9).

Построить точки пересечения прямой mс поверхностью цилиндра.
Решение:

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

Рисунок 7.9 – Пересечение прямой с наклонным цилиндром

Рисунок 7.9 – Пересечение прямой с наклонным цилиндром

  1. Заключить прямую во вспомогательную плоскость σ, дающую в сечении наиболее простую фигуру – четырехугольник (σ параллельна оси цилиндра или образующим). Эту плоскость зададим двумя пересекающимися прямыми m∩(1M);
  2. Построить горизонтальный след плоскости σ (прямую пересечения σ с плоскостью проекций π1) как проходящую через горизонтальные следы прямых и (1M) (точки пересечения прямых с плоскостью проекций π1 (основания)) – (MN);
  3. Найти точки пересечения MN с окружностью основания цилиндра. Через эти точки провести образующие r, по которым плоскость σ пересекает боковую поверхность цилиндра:

На анимации ниже представлена последовательность построения точек пересечения прямой с наклонным цилиндром.

последовательность построения точек пересечения прямой с наклонным цилиндром

7.6. Сферическая поверхность

Сферическая поверхность – поверхность, образованная вращением окружности вокруг отрезка, являющегося её диаметром.

Шаром называется тело, ограниченное сферической поверхностью.

Экватор – это окружность, которая получается пересечением сферы горизонтальной плоскостью, проходящей через ее центр (Рисунок 7.10).

Меридиан – это окружность, которая получается пересечением сферы плоскостью, перпендикулярной плоскости экватора и проходящей через центр сферы.

Параллелями называются окружности, которые получаются пересечением сферы плоскостями, параллельными плоскости экватора.

Рисунок 7.10 – Проецирование сферической поверхности
Рисунок 7.10 – Проецирование сферической поверхности

Прямоугольная проекция шара (сферы) на любую плоскость – есть окружность, которую часто называют очерковой.

Рисунок 7.11 – Эпюр сферы и принадлежащих ей точек
Рисунок 7.11 – Эпюр сферы и принадлежащих ей точек

Упражнение

Заданы: сферическая поверхность тремя проекциями (Рисунок 7.11) и фронтальные проекции точек 1, 2, 3, 4.

Необходимо построить горизонтальные и профильные проекции заданных точек.

Решение.

  • Проанализируем их расположение на поверхности сферы. Точки 1, 2, 3 лежат на очерковых образующих сферы.
  • Точка 1 принадлежит главному меридиану (очерковой окружности на π2), проекция которого на π1 совпадает с проекцией горизонтальной оси, на π3 – с проекцией вертикальной оси.
  • Недостающие проекции точки 1 находим посредством линий проекционной связи. Все проекции точки 1 видимы.
  • Рассмотрим положение точки 2. Точка 2 принадлежит экватору (очерковой окружности на π1), проекции которого на π2 и π3 совпадают с проекцией горизонтальной оси. Горизонтальная проекция точки 2 строится посредством линии проекционной связи, для построения профильной проекции необходимо измерить расстояние, отмеченное дугой, и отложить его по линии связи от точки О3 вправо. Профильная проекция точки 2 невидима.
  • Точка 3 принадлежит очерковой окружности на π3, которая также является меридианом, проекции которого на π2 и π1 совпадают с проекцией вертикальной оси. Профильная проекция точки строится посредством линии проекционной связи. Для построения горизонтальной проекции точки 3 необходимо расстояние, отмеченное на π3 двумя засечками,  отложить на π1 вверх от точки О1. Горизонтальная и профильная проекции точки 3 видимы.
  • Для построения проекций точки 4 необходимо ввести вспомогательную секущую плоскость (зададим плоскость σ//π1 и σ⊥π2). Плоскость σ пересекает поверхность сферы по окружности радиусом r. На π1 строим данное сечение и по линии проекционной связи находим 41. Для построения профильной проекции необходимо расстояние, отмеченное засечкой, отложить по линии проекционной связи на π3 вправо от оси. Все проекции точки 4 видимы.

7.7. Пересечение прямой с поверхностью сферы

Упражнение

Заданы: сфера и  прямая общего положения АВ.

Найти: точки пересечения прямой с поверхностью сферы (точки «входа» и «выхода»).

Чтобы найти точки пересечения прямой с поверхностью сферы необходимо:

  1. Заключить прямую во вспомогательную плоскость, пересекающую поверхность сферы так, чтобы получались простые фигуры (например, круг, ограниченный окружностью);
  2. Построить фигуру пересечения сферы вспомогательной плоскостью;
  3. Найти общие точки прямой и контура фигуры (окружность): так как прямая и окружность лежат в одной плоскости, то они, пересекаясь, образуют точки, общие для прямой и сферы, которые и будут являться искомыми точками (Рисунок 7.12).

Решение

  • Через прямую проводим плоскость σ. Пусть σ⊥π1 и пересекает сферу по окружности радиусом rС – центр окружности сечения ОС⊥σ:

Рисунок 7.12 – Пересечение прямой с поверхностью сферы

Рисунок 7.12 – Пересечение прямой с поверхностью сферы

  • Введём π3⊥π1 и π3//σ1. Построим проекцию окружности сечения на π3 и проекцию А3В3.
  • Находим точки их пересечения 12 и 23.
  • Определим видимость участков прямой.
  • На π1 точки 1 и 2 находятся на переднем полушарии, следовательно, на π2 они видимы.

7.8. Коническая поверхность

Коническая поверхность образуется движением прямой линии (образующей), которая в любом своем положении проходит через неподвижную точку и пересекает криволинейную направляющую (имеет две полости).

Тело, ограниченное замкнутой конической поверхностью вершиной и плоскостью, называется конусом.

Плоская фигура, ограниченная конической поверхностью, называется основанием конуса.

Часть конической поверхности, ограниченная вершиной и основанием, называется боковой поверхностью конуса.

Если основание конуса является кругом, то конус называется круговым.

Если вершина конуса расположена на перпендикуляре к основанию, восстановленному из его центра, то конус называется прямым круговым.

Рисунок 7.13 – Принадлежность точки конической поверхности

Перемещая точку A» — можно изменять диаметр основания конуса;
перемещая точку O’ — можно менять положение точки на поверхности конуса.

Рисунок 7.13 – Принадлежность точки конической поверхности

Рассмотрим вопрос принадлежности точки А поверхности конуса.
Дана фронтальная проекция точки А и она видима (Рисунок 7.13).

1 способ. Для построения ортогональных проекций точки, расположенной на поверхности конуса,  построим проекции образующей, проходящей через данную точку. При таком положении точки А все её проекции – видимы.

2 способ. Точка А лежит на параллели конуса радиусом r. На π1 строим проекцию окружности (параллели) и по линии проекционной связи находим А1. По двум проекциям точки строим третью.

7.9. Пересечение прямой с поверхностью конуса

Пусть задан прямой круговой конус и прямая общего положения (Рисунок 7.14). Найти точки «входа» и «выхода» прямой с поверхностью конуса.

  1. Через прямую m проводим вспомогательную секущую плоскость σ, дающую в сечении наиболее простую фигуру.
  2. Применение в качестве вспомогательной секущей плоскости проецирующей плоскости в данном случае нецелесообразно, так как в сечении получится кривая второго порядка, которую нужно строить по точкам.

Наиболее простая фигура – треугольник. Для этого секущая плоскость σ должна пройти через вершину S. Плоскость зададим с помощью двух пересекающихся прямых σ=SM∩MN или, что, то же самое,  (σ=SM∩m).

  1. Возьмем на прямой m точку А и соединим её с вершиной. Прямая SA пересечёт плоскость основания в точке М.
  2. Построим горизонтальные проекции этих объектов.
  3. Продлим фронтальную проекцию прямой m до пересечения с плоскостью основания в точке N.

Рисунок 7.14 – Построение точек пересечения прямой с поверхностью конуса

Рисунок 7.14 – Построение точек пересечения прямой с поверхностью конуса

  1. Построим её горизонтальную проекцию.
  2. Соединим точки M1N1, на пересечении с окружностью основания получим точки 1 и 2.
  3. Строим треугольник сечения конуса плоскостью σ, соединив точки 1 и 2 с вершиной S.
  4. На пересечении образующих 1-S и 2-S с прямой m получим искомые точки K и L.
  5. Определим видимость прямой относительно поверхности конуса.

На анимации ниже представлена последовательность построения точек пересечения прямой с поверхностью конуса.

последовательность построения точек пересечения прямой с поверхностью конуса

7.10. Пересечение цилиндра плоскостью

Пусть плоскость сечения γ – фронтально-проецирующая (Рисунок 7.15).

  1. Если плоскость сечения γ параллельна оси цилиндра, то она пересекает цилиндр по четырехугольнику.
  2. Если плоскость сечения γ перпендикулярна оси цилиндра, то она пересекает цилиндр по окружности.
  3. Если плоскость сечения γ не параллельна и не перпендикулярна оси цилиндра в сечении эллипс.

Рассмотрим алгоритм построения сечения – эллипс (Рисунок 7.15):

Рисунок 7.15 – пересечение цилиндра плоскостью

Рисунок 7.15 – пересечение цилиндра плоскостью

  1. Находим и строим характерные точки (точки, не требующие дополнительных построений) – в нашем случае, точки принадлежащие крайним образующим – 1, 3, 5, 7. Одновременно с этим, данные точки определяют величину большой и малой оси эллипса.
  2. Для построения участка эллипса необходимо построить не менее 5-ти точек (так как лекальная кривая второго порядка определяется как минимум пятью точками). Для построения точек 2, 4, 6, 8 возьмем на π1 произвольно расположенные образующие цилиндра, которые проецируются на данную плоскость проекции в точки.
  3. Построим вторые проекции данных образующих. Из точек пересечения вторых проекций образующих с проекцией плоскости сечения γ проводим линии связи к π3. Для построения третьей проекции, например, точки 6 измеряем расстояние Δ1 и откладываем его по соответствующей линии связи на π3. Симметрично ей, относительно оси вращения, строим точку 4. Аналогично строятся другие точки.

7.11. Пересечение сферы плоскостью

Плоскость пересекает поверхность сферы всегда по окружности. Задачу пересечения плоскости со сферой мы рассматривали при решении задачи построения точек пересечения прямой с поверхностью сферы (см. выше).

7.12. Пересечение конуса плоскостью

Рассмотрим пять возможных вариантов расположения плоскости относительно поверхности прямого кругового конуса. Пусть плоскость сечения перпендикулярна плоскости проекций π2 (Рисунок 7.16).

варианты расположения плоскости сечения относительно поверхности прямого кругового конуса

Рисунок 7.16

  1. Если плоскость проходит через вершину (1) – в сечении две образующие и прямая пересечения с плоскостью основания.
  2. Если плоскость перпендикулярна оси вращения конуса (2) – в сечении окружность.
  3. Если плоскость не параллельна ни одной образующей (пересекает все образующие (3)) – в сечении эллипс.
  4. Если плоскость параллельна одной образующей конуса – в сечении парабола (на примере – плоскость сечения (4) параллельна крайней образующей конуса).
  5. Если плоскость параллельна двум образующим (пересекает обе полости конической поверхности (5)) – в сечении гипербола (рисунок 7.17).

Рисунок 7.17. Плоскость сечения параллельна двум образующим конуса
Рисунок 7.17. Плоскость сечения параллельна двум образующим конуса

Ниже, на моделях, представлены варианты положения секущей плоскости относительно поверхности конуса, при которых получаются сечения в виде эллипса, параболы и гиперболы.

Рисунок 7.18 – Сечение конической поверхности плоскостью а — эллипс, б — парабола, в — гипербола

Рисунок 7.18 – Сечение конической поверхности плоскостью (а — эллипс, б — парабола, в — гипербола)

Рассмотрим пример построения сечения конической поверхности плоскостью.

Рисунок 7.19 – Построение пересечения конической поверхности плоскостью

Рисунок 7.19 – Построение пересечения конической поверхности плоскостью

Пусть задана секущая проецирующая плоскость σ⊥π2 (Рисунок 7.19). Если продлить коническую поверхность и проекцию плоскости, то видно, что плоскость пересекает вторую ветвь конической поверхности, следовательно, в сечении получится гипербола.

  1. Построим характерные точки. Это точки, лежащие на крайних образующих и на окружности основания конуса (1, 2, 3). Их проекции строятся по линиям проекционной связи.
  2. Для построения промежуточных точек, воспользуемся методом вспомогательных секущих плоскостей. Введём плоскость α⊥π2 и перпендикулярно оси вращения, что даст в сечении окружность радиусом r. Строим эту окружность на π1. Плоскость α пересекает и заданную плоскость сечения по прямой, проекции которой на πи πсовпадают с линиями проекционной связи.
  3. На пересечении этих двух сечений на плоскости проекций π1 строим точки 4, 5. Профильные проекции этих точек строим по линии проекционной связи, откладывая расстояние от оси вращения конуса, равное Δ.
  4. Аналогично строим точки 6, 7. Плавно соединим построенные точки, образуя гиперболу.
  5. Обведём то, что осталось от конуса после такого среза с определением видимости. В нашем примере все проекции построенной кривой будут видимы.

На анимации ниже представлена последовательность построения пересечения конической поверхности плоскостью.

последовательность построения пересечения конической поверхности плоскостью

7.13. Задачи для самостоятельной работы

1. Достроить проекции сферы с заданным вырезом (Рисунок 7.20).
ris7_19
Рисунок 7.20
2-3. Построить три проекции конуса с призматическим отверстием (Рисунки 7.21, 7.22).
ris7_21
Рисунок 7.21
ris7_22
Рисунок 7.22
4. Построить точки «входа» и «выхода» прямой при пересечении её с поверхностью полусферы (Рисунок 7.23).
ris7_23
Рисунок 7.23

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1250 р./ак.ч.

Поверхности вращения

Поверхностью вращения называют поверхность, образованную вращением некоторой линии (образующей поверхности) вокруг неподвижной прямой, называемой осью вращения. При этом образующая, вращаясь вокруг оси вращения, может пересекать окружность, называемую направляющей поверхности. Образующей поверхности вращения может быть кривая или прямая линия. Поверхность вращения называют линейчатой, если ее образующей является прямая линия, и криволинейной, если образующая — кривая линия.

На рис. 7.5 показана поверхность вращения общего вида, образующая которой (кривая линия) вращается вокруг горизонтально-проецирующей оси Поверхности вращения. Все точки образующей вращаются вокруг оси Поверхности вращения по окружностям соответствующего радиуса, которые называют параллелями поверхности. На фронтальную и профильную проекции поверхности эти параллели проецируются в прямые линии, перпендикулярные оси вращения. На горизонтальную проекцию параллели проецируются в виде окружностей. Некоторые параллели имеют определенные общепринятые наименования:

  • горло поверхности — параллель наименьшего (минимального) радиуса;
  • экватор — параллель наибольшего (максимального)
Поверхности вращения

Проекции поверхности вращения:

  • горизонтальная проекция, то есть ее горизонтальный очерк, определяется окружностью экватора Поверхности вращения;
  • фронтальная проекция, то есть ее фронтальный очерк, образуется замкнутой линией главного фронтального меридиана Поверхности вращения, полученного при пересечении этой поверхности фронтальной плоскостью уровня Поверхности вращения, проходящей через ось вращения Поверхности вращения;
  • профильная проекция, то есть ее профильный очерк, образуется замкнутой линией главного профильного меридиана Поверхности вращения, полученного при пересечении этой поверхности профильной плоскостью уровня Поверхности вращения, проходящей через ось вращения Поверхности вращения.

Построение проекций точек на поверхности вращения

Принадлежность точки поверхности вращения определяется ее принадлежностью параллели, по которой точка вращается вокруг оси вращения.

Проекции точек, лежащих на экваторе или на главных фронтальном и профильном меридианах поверхности, строятся по их принадлежности этим характерным линиям.

На рис. 7.5 показан пример построения невидимой фронтальной проекции характерной точки Поверхности вращения, лежащей на экваторе Поверхности вращения, по ее заданной горизонтальной проекции Поверхности вращения и построение профильной проекции характерной точки Поверхности вращения, лежащей на главном профильном меридиане Поверхности вращения, по ее заданной фронтальной проекции.

Для построения проекций точки Поверхности вращения, заданной своей фронтальной проекцией и не лежащей на характерных линиях поверхности, требуется выполнить следующий графический алгоритм:

1-е действие. Провести через заданную фронтальную проекцию точки Поверхности вращения параллель, которая имеет радиус Поверхности вращения.

2-е действие. Провести на горизонтальной проекции поверхности окружность-параллель радиусом Поверхности вращения.

3-е действие. Построить по вертикальной линии связи горизонтальную видимую проекцию точки Поверхности вращения по ее принадлежности построенной параллели радиусом Ra.

4-е действие. Построить профильную проекцию точки Поверхности вращения на горизонтальной линии связи по координате Поверхности вращения (лежит на невидимой части поверхности, проекция взята в скобки).

Видимость точек на проекциях поверхности вращения

На рис. 7.5 показаны границы видимости поверхности для каждой проекции по направлению взгляда на плоскости проекций Поверхности вращения и Поверхности вращения.

Видимость точек на проекциях поверхности определяется этими границами, то есть видимостью части поверхности на каждой проекции: если часть поверхности является по направлению взгляда на соответствующую плоскость проекций видимой, то точка на этой проекции будет также видимой.

На рис. 7.5 видно, что горизонтальная проекция Поверхности вращения заданной точки Поверхности вращения, лежащей на экваторе, расположена на невидимой части поверхности при взгляде на фронтальную плоскость проекций Поверхности вращения. Следовательно, ее фронтальная проекция Поверхности вращения лежит на экваторе, но будет невидимой (проекция взята в скобки). Профильная проекция Поверхности вращения точки будет видимой, так как точка лежит на видимой для профильной проекции части поверхности (см. взгляд по стрелке на плоскость Поверхности вращения). Поскольку заданная фронтальная проекция точки Поверхности вращения, лежащей на фронтальной проекции Поверхности вращения главного профильного меридиана, не взята в скобки, значит, она лежит на видимой для фронтальной проекции части поверхности и профильная проекция точки Поверхности вращения должна лежать на профильной проекции главного меридиана Поверхности вращения справа от оси вращения. Горизонтальная же проекция точки Поверхности вращения (на рисунке не построена) по направлению взгляда на горизонтальную плоскость проекций Поверхности вращения будет невидима, так как расположена под экватором. Соответственно профильная проекция точки Поверхности вращения будет невидимой, так как лежит на невидимой для профильной проекции части поверхности.

!!! К поверхностям вращения относятся две линейчатые поверхности с прямолинейными образующими — цилиндр и конус, а также поверхности с криволинейными образующими — сфера (образующая — окружность), эллипсоид (образующая — эллипс), одно- и двуполостные гиперболоиды (гипербола), параболоид (парабола), торовые (окружность). Все перечисленные виды поверхностей вращения, кроме торовых, являются поверхностями второго порядка (по порядку образующей или направляющей).

Торовые поверхности вращения относятся к поверхностям четвертого порядка (по произведению порядков двух окружностей — образующей и направляющей).

Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:

 Начертательная геометрия для 1 курса

Возможно эти страницы вам будут полезны:

Понравилась статья? Поделить с друзьями:
  • Как найти айфон без симки или интернета
  • Корсары возвращение легенды как найти порошок мумии
  • Как найти математическое ожидание на интервале
  • Скачать акула как тебя найти
  • Как найти координату центра масс системы