Как найти точку росы водяного пара

Что такое точка росы

Точкой росы называется температура, до которой должен охладиться воздух, чтобы содержащийся в нём водяной пар достиг состояния насыщения и начал конденсироваться в росу. Проще говоря, это температура, при которой выпадает конденсат.

Температура точки росы определяется только двумя параметрами: температурой и относительной влажностью воздуха. Чем выше относительная влажность, тем точка росы выше и ближе к фактической температуре воздуха. Чем ниже относительная влажность, тем точка росы ниже фактической температуры.

Таблица с точкой росы

Таблицу с температурой точки росы для различных значений температур (от -5°С до 35°С) и относительной влажности (от 40% до 95%) воздуха в помещении можно найти в справочном Приложении Р к СП 23-101-2004 «Проектирование тепловой защиты зданий». К сожалению, в эту таблицу закралось несколько опечаток. Я подготовил для вас файл с таблицей, там опечатки исправлены.

Формула расчета точки росы

Вы можете воспользоваться формулой для приблизительного расчёта точки росы Тр (°С) в зависимости от температуры воздуха Т (°С) и его относительной влажности Rh (%):

Расчет точки росы

Формула обладает погрешностью ±0.4 °С в диапазоне температуры воздуха Т от 0°С до 60°С, температуры точки росы Тр от 0°С до 50°С, относительной влажности Rh от 1% до 100%.

Приборы с определением точки росы

Психрометр (гигрометр психрометрический) — прибор для измерения влажности воздуха и его температуры. Психрометр состоит из двух спиртовых термометров, один из них — обычный сухой термометр, а второй имеет устройство увлажнения. Вследствие испарения влаги, увлажнённый термометр охлаждается. Чем ниже влажность, тем меньше его температура. При 100% влажности показания термометров одинаковы. Для определения относительной влажности используют психрометрическую таблицу. Такие приборы в настоящее время используются только в лабораторных условиях.

Наиболее удобны в практике обследования зданий портативные электронные термогигрометры с индикацией температуры и относительной влажности воздуха на цифровом дисплее. Отдельные модели термогигрометров имеют также индикацию точки росы.

Термогигрометры

Расчет точки росы в тепловизоре

Некоторые модели тепловизоров имеют встроенную функцию расчета точки росы в реальном времени и отображения на термограмме изотермы, наглядно показывающей поверхности, где температура ниже точки росы во время тепловизионной съемки. Такая функция есть, к примеру, линейке тепловизров строительного назначения (серия «B» от «Building») FLIR Systems.

Тепловизор FLIR и точка росы

Изотерму по точке росы можно добавить на термограмму позже в программе обработки на компьютере. Для расчета понадобится задать температуру и влажность воздуха. Изотерма закрасит на термограмме все поверхности, температура которых ниже точки росы. Не забывайте, что эта функция показывает опасные для конденсации участки только при услових тепловизионного обследования. Если наружная температура повысится, а внутри влажность упадет, опасные зоны исчезнут с термограммы (конструкции будут теплее, а точка росы ниже). Ниже приведены скриншоты программ FLIR и TESTO.

Точка росы в ПО FLIR QuickReport

Точка росы в ПО TESTO IRSoft

Точка росы в строительстве

О значении конденсации и точки росы при эксплуатации строительных конструкций, положении точки росы или плоскости возможной конденсации в стенах, оценке дефектности конструкций по критерию точки росы с использованием тепловизионной съемки я напишу в одной из следующих публикаций.

Вспомним основное, что мы знаем о влажности воздуха.

Так как на нашей планете очень много открытых водных поверхностей — моря, океаны, реки и озера, то безусловно, вода испаряется с этих огромных площадей и пар присутствует в воздухе абсолютно везде, даже в жаркой пустыне. Сколько этой самой воды в виде пара присутствует в одном кубическом метре воздуха — показывает абсолютная влажность, выражается она в г/м куб. Вы наверное заметили, что единицы измерения абсолютной влажности — такие же, как и у плотностей веществ. Действительно, абсолютная влажность — это и есть плотность водяного пара.

Абсолютная влажность  rho — это количество граммов водяного пара, содержащееся в кубическом метре воздуха при данных условиях

Испарение — это вылет молекул вещества с поверхности жидкости, и, как белые шахматы не могут без черных, так испарение не обходится без обратного процесса — конденсации. Часть молекул неизбежно возвращается обратно в жидкость. Если количество молекул, покидающих жидкость в единицу времени, равно количеству молекул, возвращающихся обратно — то пар называется насыщенным, то есть в пространстве над жидкостью не может уже находиться большее количество молекул. Понятно, что если температура высокая — то плотность такого насыщенного пара одна, а если низкая — то другая. Существует таблица, в которой указано, как изменяется давление и плотность насыщенного водяного пара rho_0 в зависимости от температуры.

Относительной влажностью называется отношение абсолютной влажности rho к плотности насыщенного водяного пара rho_0 при той же температуре.

Относительную влажность выражают в процентах: varphi=(rho/rho_0)*100%. Плотность водяного пара по-другому — это количество молекул в данном объеме, то есть она непосредственно связана с концентрацией молекул. А от концентрации зависит давление пара p=nkT. Поскольку мы рассматриваем все при одной и той же температуре, и нас не интересуют молекулы других газов, которые тоже присутствуют в воздухе, а только молекулы воды, можем записать относительную влажность как процентное отношение парциального давления пара p пара в воздухе к давлению насыщенного пара p_0:

varphi=(p/p_0)*100%

Парциальным называют давление водяного пара, которое он производил бы в отсутствие других газов в воздухе.

Что будет происходить с паром, если его охлаждать, как это происходит при наступлении летней ночи? Будем считать, что атмосферное давление этой ночью не меняется. Согласно уравнению  p=nkT, при снижении температуры и постоянном давлении концентрация молекул n должна расти, то есть плотность пара будет увеличиваться, пока он не станет насыщенным.

Точкой росы называется такая температура, при которой насыщенный пар начинает конденсироваться (выпадает роса).

Точка росы зависит от относительной влажности воздуха: если воздух сухой, и пара в нем мало, то температура должна сильно понизиться, чтобы пар стал насыщенным, и затем начал конденсироваться. А если влажность высокая — то воздуху достаточно немного охладиться, чтобы пар достиг состояния насыщения и выпала бы роса. Если относительная влажность равна 100% — то мы находимся в точке росы, то есть текущая температура — это и есть точка росы.

Теперь подумаем, что будет, если изменять объем сосуда, в котором находится насыщенный пар — а именно, уменьшать. Будет ли расти плотность пара или нет? Как мы уже заметили, плотность водяного пара можно записать как число молекул в объеме сосуда. А если пар насыщенный, то в данном объеме не может содержаться большее число молекул. Поэтому, если объем сосуда уменьшить, «лишние» молекулы конденсируются, и плотность пара останется той же, что и была.

Ну а теперь применим эти знания, и попробуем решать задачи.

1. Давление водяного пара при температуре 14{circ}C было равно 1 кПа. Был ли этот пар насыщенным?

По таблице, которую можно найти на странице Справочник, определяем, что давление насыщенного пара при температуре 14{circ}C должно быть равно 1, 6 кПа. Давление нашего пара меньше, значит, он не насыщенный.

2. В закрытом сосуде емкостью 5 л находится ненасыщенный водяной пар массой 50 мг. При какой температуре пар будет насыщенным?

Найдем плотность водяного пара:  rho=m/V. Нам нужно найти плотность в А9_1, значит, перевести милиграммы в граммы, а литры — в А9_2. Тогда плотность rho=m/V={50*10^{-3}}/{5*10^{-3}}=10. В таблице находим соответствующее такой плотности значение температуры — 11{circ}C.

3. Во сколько раз концентрация молекул насыщенного водяного пара при 50{circ}C больше, чем при 5{circ}C?

По уравнению состояния идеального газа  p=nkT. Выражаем концентрацию:  n=p/{kT}. Находим отношение концентраций: n_1/n_2={p_1/T_1}:{p_2/T_2}.  Давление насыщенного пара опять найдем по  таблице: при 50{circ}C это 12,33 кПа, а при 5{circ}C — 0,87 кПа. Не забудем также перевести температуру в {circ}C в температуру по абсолютной шкале:  50{circ}C=323 K5{circ}C=278 K. Теперь считаем: n_1/n_2={p_1T_2}/{p_2T_1}={12,33*278}/{0,87*323}=12,19. Между прочим, плотность, как уже было сказано ранее, это количество молекул в единице объема, поэтому задачу можно было решить проще: найти отношение плотностей насыщенного пара при этих температурах: n_1/n_2=rho_1/rho_2={82,8}/{6,8}=12,17.

4. Парциальное давление водяного пара в воздухе при 19{circ}C было 1,1 кПа. Найти относительную влажность.

Для того, чтобы воспользоваться формулой varphi=(p/p_0)*100%, нам нужно знать давление насыщенного пара, а его можно определить по таблице, оно равно 2,2 кПа. Определяем влажность: varphi=({1,1}/{2,2})*100%=50%

Ответ: 50 %

5. Относительная влажность воздуха вечером при 16{circ}C равна 50%. Выпадет ли роса, если ночью температура понизится до 8{circ}C?

Нужно узнать, является ли температура 8{circ}C точкой росы, то есть будет ли пар насыщенным при такой температуре. Определить, будет ли пар насыщенным, можно по его плотности, а плотность найдем по формуле относительной влажности: varphi=(rho/rho_0)*100%, откуда rho={varphi*rho_0}/{100%}={50/100}*{13,6}=6,8А9_1. По уже знакомой нам таблице определяем, что при 8{circ}C плотность насыщенного пара равна 8,3 А9_1, что больше, чем найденная нами. Поэтому пар не будет насыщенным и роса не выпадет. А вот если бы температура опустилась бы до 5{circ}C и ниже, то роса выпала бы, так как при такой влажности  5{circ}C — точка росы.

6. В цилиндре под поршнем находится водяной пар массой 0,4 г при температуре 290 К. Этот пар занимает объем 40 л. Как можно сделать пар насыщенным?

Найдем плотность пара в сосуде:

rho=m/V={0,4}/{40*10^{-3}}=10. Теперь перейдем от абсолютной температуры к температуре в {circ}C290 K=17{circ}C.  В таблице находим соответствующее такой плотности значение температуры насыщенного пара — 11{circ}C. То есть первый путь сделать наш пар насыщенным — это понизить его температуру на 6 градусов. Однако есть еще один путь: можно уменьшить объем. Действительно, плотность насыщенного пара при температуре 290 K=17{circ}C составляет 14,4 А9_1. Зная массу пара, найдем по плотности объем: V=m/rho={0,4}/{14,4}=27,7*10^{-3} — то есть, если объем сосуда станет равным 27,7 л, то пар в нем будет насыщенным. Таким образом, второе решение — уменьшить объем сосуда на 12,3 л.

7. Сухой термометр психрометра показывает 16{circ}C, а влажный 8{circ}C. Относительная влажность, измеренная по волосному гигрометру

, равна 30%. Правильны ли показания гигрометра?

Воспользуемся психрометрической таблицей , чтобы по показаниям сухого и влажного термометров определить относительную влажность. Сначала найдем разность показаний термометров: 16{circ}C-8{circ}C=8{circ}C. Теперь по этой разности находим в таблице нужный столбец, и двигаемся по нему вниз до строки 16{circ}C — показаний сухого термометра. В ячейке на пересечении столбца и строки находим значение относительной влажности — 30%. Значит, волосяной гигрометр показывает верную влажность.

8. Дав­ле­ние пара в по­ме­ще­нии при тем­пе­ра­ту­ре 5{circ}C равно 756 Па. Дав­ле­ние на­сы­щен­но­го пара при этой же тем­пе­ра­ту­ре равно 880 Па. От­но­си­тель­ная влаж­ность воз­ду­ха равна (ответ округ­лить до целых)

1) 1%
2) 60%
3) 86%
4) 100%

Воспользуемся формулой varphi=(p/p_0)*100%varphi=(756/880)*100%=0,859*100%=86%

Ответ: 3.

9. От­но­си­тель­ная влаж­ность воз­ду­ха равна 42%, пар­ци­аль­ное дав­ле­ние пара при тем­пе­ра­ту­ре 20{circ}C  рано 980 Па. Дав­ле­ние на­сы­щен­но­го пара при за­дан­ной тем­пе­ра­ту­ре равно (ответ округ­лить до целых)

1) 980 Па
2) 2333 Па
3) 1022 Па
4) 412 Па

Воспользуемся формулой varphi=(p/p_0)*100%, из которой выразим давление насыщенного пара:  p_0=(p/varphi)*100%=(980/42)*100=2333 Па

Ответ: 2.

10. В со­су­де с по­движ­ным порш­нем на­хо­дят­ся вода и её на­сы­щен­ный пар. Объём пара изо­тер­ми­че­ски умень­ши­ли в 2 раза. Кон­цен­тра­ция мо­ле­кул пара при этом

1) умень­ши­лась в 2 раза
2) не из­ме­ни­лась
3) уве­ли­чи­лась в 2 раза
4) уве­ли­чи­лась в 4 раза

Так как температура не менялась, то плотность пара при данной температуре неизменна, а значит, количество молекул в объеме одно и то же. То есть концентрация остается точно такой же, просто часть пара перейдет в жидкое состояние (конденсируется).

Ответ: 2.

11.

 От­но­си­тель­ная влаж­ность воз­ду­ха в ци­лин­дре под порш­нем равна 60%. Воз­дух изо­тер­ми­че­ски сжали, умень­шив его объём в два раза. От­но­си­тель­ная влаж­ность воз­ду­ха стала

1) 120 %
2) 100 %
3) 60 %
4) 30 %

Так как температура не менялась, то давление и плотность  насыщенного пара до сжатия и после одинаковы. При сжатии вдвое уменьшился объем, а масса водяного пара осталась прежней, значит, плотность пара вдвое увеличилась. С помощью формулы varphi=(rho/rho_0)*100% найдем отношение влажности до сжатия и после: {varphi_1}/{varphi_2}={rho_1}/{rho_2}=1/2, и {varphi_2}=2{varphi_1}=120%. Однако же, плотность водяного пара не может превышать значения 100%: когда будет достигнуто это значение, начнется  конденсация, и плотность все равно будет равна 100%.

Ответ: 2.

12. 

Ка­ко­ва от­но­си­тель­ная влаж­ность воз­ду­ха при тем­пе­ра­ту­ре 20{circ}C , если точка росы 12{circ}C? Дав­ле­ние на­сы­щен­но­го во­дя­но­го пара при 20{circ}C равно 2,33 кПа, а при 12{circ}C — 1,4 кПа. Ответ вы­ра­зи­те в про­цен­тах и округ­ли­те до целых.

1) 60%
2) 50%
3) 40%
4) 75%

В точке росы относительная влажность равна 100%, поэтому, зная давление насыщенного пара, можем определить парциальное давление:

varphi=(p/p_0)*100%p/p_0=1p=p_0=1,4 кПа.

Находим влажность воздуха:

varphi=(p/p_0)*100%={{1,4}/{2,33}}*100%=60%

Ответ: 1.

В окружающем нас воздухе, при наличии положительной температуры, всегда присутствует пар или просто мельчайшие капли воды. Каждый из нас, находясь на улице зимой, видел, как на том месте, куда попадает выдыхаемый нами воздух, образуется иней, или появляется влага.

И то, и другое, является остывшим паром. Как и почему это происходит, почему важно знать значение точки росы водяного пара – обо всем этом мнения специалистов, научные разработки, сферы применения.

Содержание

  • Что это за параметр, как изменяется пар при достижении точки росы?
  • Какова температура ТР?
  • Как найти значение?
    • Формула и правила расчета
    • Примеры
  • Области применения понятия
  • Заключение

Что это за параметр, как изменяется пар при достижении точки росы?

Температура воздуха, при которой происходит переход пара в воду, называется температурой точки росы или просто точкой росы.

Процесс перехода воды из одного агрегатного состояния (газообразное), в другое (жидкостное) происходит при охлаждении воздуха.

При понижении температуры, воздух, как и большинство физических тел, начинает сжиматься. Молекулы воды, ранее распространенные по большому объему воздуха, начинают стягиваться в более малый размер, и при сближении, объединяются.

При увеличении размеров, капли воды становятся тяжелее, молекулы воздуха не могут их больше удерживать, и они оседают на ближайшей поверхности. Появляется роса, или по-другому, конденсат.

foto47874-2

Параметр точки росы является расчетным, и для его вычисления необходимо знание еще одной величины – относительной влажности воздуха. Она определяется как разница показаний двух, рядом расположенных термометров – «влажного» и «сухого».

Для определения точки росы, показания «сухого» термометра используют дважды: при считывании температуры воздуха и для вычисления его относительной влажности.

Какова температура ТР?

Определить этот параметр можно различными способами:

  • применяя специальные формулы;
  • используя онлайн-калькуляторы;
  • обратившись к уже готовым таблицам.

Значения, приведенные в таблице, являются неточными и применение их в серьезных работах вряд ли оправданно, но для использования в бытовых целях они пригодны.

Влажность воздуха, (относительная), % Температура воздуха (сухой термометр), ˚С
0 5 10 15 20 25
20

30

40

50

60

70

-19,9

-15,1

-12,1

-9,0

-6,7

-4,9

-15,9

-11,1

-7,41

-4,49

-2,0

0,1

-11,9

-6,71

-2,89

0,11

2,59

4,81

-7,71

-2,39

1,51

4,69

7,31

9,59

-3,61

1,89

6,01

9,31

12,01

14,39

-0,6

6,21

10,49

13,89

16,71

19,11

Чем выше относительная влажность воздуха, тем меньше разрыв между показаниями сухого термометра и точкой росы. При достижении 100% относительной влажности воздуха, его температура будет равна точке росы.

Как найти значение?

Для определения значения можно использовать следующую инструкцию:

  1. foto47874-3На расстоянии 60 см от поверхности земли, либо от пола, необходимо закрепить два термометра – «сухой» и «влажный», или обычный термометр и гигрометр.

    Гигрометр – специальный прибор, который имеет две шкалы и указывает сразу оба параметра: температуру воздуха (шкала термометра) и относительную влажность воздуха (шкала гигрометра).

    Современные электронные приборы такого типа, помимо двух основных значений, могут индицировать дополнительные параметры и внешне похожи на обычные калькуляторы.

  2. После установления на приборах стабильных показателей (для этого нужно оставить приборы в покое на 5-6 минут), считать получившиеся значения.
  3. Подставить полученные значения в приведенную выше таблицу, и получить итоговое значение точки росы.

Инструкция приведена при использовании таблицы – если есть необходимость, то полученные значения температуры и относительной влажности воздуха можно использовать для определения точки росы с помощью онлайн-калькуляторов.

Наиболее точные расчеты можно получить, если полученные значения подставить в специальную формулу.

Формула и правила расчета

Формула, используемая для расчета точки росы, выглядит так: Тр = 237,71 * f (t, Rh)/ 17,28 — f (t, Rh), где:

  • Тр – температура точки росы;
  • f (t, Rh) – формула зависимости температуры воздуха по сухому термометру (t) и относительной влажности воздуха (Rh).

Теперь необходимо рассчитать саму формулу зависимости температуры и влажности воздуха: f (t, Rh) = 17,28 * t 237,71 + t + ln (Rh/100). Расчет по этой формуле даёт результат с погрешностью не более 0,4-0,5˚С.

Примеры

foto47874-4Для наглядности возьмем реальные значения температуры и влажности воздуха: t = 25˚C, Rh = 70%.

Сначала определим зависимость параметров: f (t, Rh) = 17,28 * t 237,71 + t + ln (Rh/100) = 17,28*25 237,71 + 25 + ln (70100) = 1,64 + (- 0,35) = 1,29.

Теперь, полученное значение, подставим в основную формулу: Тр = 237,71 * f (t, Rh)/ 17,28 — f (t, Rh) = 237,71 * 1,29 17,28 – 1,29 = 19,1.

Получим, что при температуре воздуха 25˚С и относительной влажности воздуха в 70%, температура точки росы будет равна 19,1˚С.

Попробуем рассчитать её значение для других параметров температуры и влажности: 30˚C и 60%. Рассчитаем зависимость: f (t, Rh) = 17,28 * t 237,71 + t + ln (Rh/100) = 17,28 * 30 237,71 + 30 + ln (60100) = 1,93 + (- 0.51) = 1,42.

Подставим значения в основную формулу: Тр = 237,71 * f (t, Rh)/ 17,28 — f (t, Rh) = 237,71 * 1,42 17,28 – 1,42 = 21,3. При этих значениях, разрыв между точкой росы и температурой воздуха будет относительно больше, и значение равняется 21,3˚C.

Области применения понятия

Учитывая, что точка росы показывает момент перехода воды в жидкое состояние, то это значение имеет применение во многих областях деятельности человека:

  1. Авиация – знание момента образования влаги помогает вовремя применить противообледенительную обработку самолетов.
  2. Строительство – среднегодовая точка росы помогает правильно спроектировать не только сам материал стен, но и утеплитель для этих стен. Тем самым становится возможным вынесение параметра за пределы стены.
  3. Лесное хозяйство – показатели температуры образования влаги помогают наиболее эффективно спланировать противопожарные мероприятия.
  4. Сельское хозяйство – знание момента образования конденсата позволяет определить вероятность поражения растений заболеваниями, вызванными плохими погодными условиями.

Приведены только те отрасли народного хозяйства, в которых знание точки росы является очевидно необходимым. Существуют и другие сферы деятельности человека, в которых влияние параметра может быть не прямым, а вторичным, но при этом не менее важным.

Известны случаи, когда жители пустынных регионов Земли, зная температуру точки росы, заранее принимали меры по сбору и сохранению получившейся воды, спасая себя от жажды.

Заключение

Точка росы является немаловажным параметром, знание которого необходимо человеку. Эти знания помогают защищать самолеты от аварий, тушить лесные пожары, выращивать богатые урожаи.

В строительстве, применив наружные утеплительные материалы стен зданий, можно сделать так, что влажность будет возникать не в середине стены, а на её наружной поверхности, спасая от возникновения сырости и плесени.

Измерение температуры этого параметра будет существовать до тех пор, пока существует человечество.

  • Что такое «точка росы»?
  • Как найти «точку росы»?
  • Влияние «точки росы»
  • Переувлажнение в ограждающей конструкции
  • Выводы

В проектно-расчетный центр часто поступают обращения с просьбой рассчитать «точку росы». Это непростая тема, а потому важно раскрыть её подробно.

Вопросы и опасения, которые мы часто слышим:
«Где она находится?»;
«Нам нужно избежать ее возникновения!»;
«Подберите толщину утеплителя так, чтобы в ней не было «точки росы», и т.д. 
Давайте разберем этот вопрос и рассмотрим на примерах, как и где она возникает, на что на самом деле нужно обращать внимание, помимо самой «точки росы». 
Забегая вперед, отметим, что важно избегать переувлажнения конструкций.

Что такое «точка росы»?
«Точка росы» – это температура, при которой происходит перенасыщение воздуха водяными парами и, как следствие, выпадение конденсата на поверхностях, на которых эта температура достигнута.
«Точка росы» — параметр, зависящий не только от температуры, но и от относительной влажности воздуха. Чем суше воздух, тем ниже для него будет температура, при которой начнет конденсироваться пар, верно и обратное. Получается, «точка росы» — параметр
переменный, и количество «точек росы» может быть многочисленным. Это зависит от значений температуры и влажности в помещении.
Температуру «точки росы» можно определить по приложению Р СП 23-101-2004:

Приложение.png

Как найти «точку росы»?
Давайте посмотрим, где в конструкции будет находиться «точка росы». В качестве примера возьмем ограждающую стену.
Конструкция стены имеет следующий состав:
Железобетон толщиной 180 мм;
Минераловатный утеплитель «Техновент СТАНДАРТ» толщиной 150 мм;
Система вентилируемого фасада (условно не показана).
Месторасположение объекта г. Москва. Температура в помещении +20 °С, влажность 55%. Температура «точки росы» при данных параметрах согласно приложению Р СП23-101-2004 составляет +10,69 °С.
Рассмотрим несколько примеров. Предположим, расчетная температура наружного воздуха = -26 °С:

В этом случае точка росы располагается в слое утеплителя на расстоянии 22 мм от границы слоев.
Рассмотрим еще пример, при котором расчетная температура наружного воздуха = -5 °С:

Теперь точка росы располагается в слое утеплителя на расстоянии 50 мм от границы слоев.
Как видим, в наших примерах «точка росы» перемещается в конструкции в ее теплоизоляционном слое и смещается в зависимости от изменения наружной температуры.
«Точка росы» всегда будет находиться в конструкции, изменяя лишь свое месторасположение. 
Влияние «точки росы»
Давайте теперь разберемся, на что она влияет. Согласно СП 50.13330 п. 5, «температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарно-гигиеническое требование)». 
Простыми словами это требование означает, что температура на внутренней поверхности конструкции была выше точки росы. Если это условие не выполняется, то вполне можно получить выпадение конденсата, образование плесени и другие негативные последствия. 
Переувлажнение в ограждающей конструкции
Согласно выполненным расчетам, мы выяснили, что точка росы располагается в конструкции. В связи с чем возникает вопрос: не происходит ли влагонакопление в ограждающей конструкции? Ведь все ее материалы паропроницаемы, а точка росы располагается не на поверхности, а внутри нее. 
На данный вопрос дает ответ СП 50.13330 п. 8 «Защита от переувлажнения ограждающих конструкций».
Таким образом, для понимания увлажнения конструкции нам нужно сделать специальный расчет. Он позволяет определить, обеспечивается ли конструкциями сопротивление паропроницанию не менее требуемого значения. Оно, в свою очередь, определяется расчетом одномерного влагопереноса по механизму паропроницаемости. 
Выводы
Подводя итог, можно сказать, что точка росы всегда существует в конструкции и важно, чтобы температура внутренней поверхности стены была выше «точки росы». И для того чтобы понять, будет ли происходить переувлажнение конструкции, необходимо делать расчет на «защиту от переувлажнения ограждающих конструкций». 
Источник: https://nav.tn.ru/knowledge-base/proektirovanie/tochka-rosy-opredelenie-temperatura-i-otnositelnaya-vlazhnost-vozdukha/

На чтение 10 мин Просмотров 17.7к.

Точка росы — показатель, играющий важную роль во многих сферах. В строительстве его учитывают при расчете толщины утеплителя. Потребуются специальные измерительные инструменты и знание формул.

Что такое точка росы

Точка росы
Точка росы — температура, при которой начинается образование конденсата.

Термин обозначает температуру, при которой наступает предельное насыщение воздуха водяным паром. При охлаждении его ниже критической точки образуются капли на предметах или туман.

Явление основано на том факте, что максимальная вместимость пара в куб. м воздуха меняется с его температурой.

Примеры (данные приведены в граммах):

  1. -5°С — 3,25.
  2. 0°С — 4,85.
  3. +10°С — 9,41.
  4. +22°С — 19,44.
  5. +28°С — 27,26.

Показатель относительной влажности означает, какую долю текущее удельное количество пара составляет от максимально возможного. Например, если этот параметр равен 34,5% при +28°С, содержание пара в воздухе будет равно 27,26*0,345=9,4047 г/куб. м. Исходя из приведенного перечня, при охлаждении до +10°С относительная влажность достигнет примерно 100%, т.е. данная температура при таких условиях является точкой росы. Если воздух охладится еще сильнее, количество пара станет избыточным, и часть его выпадет в конденсат.

Сферы применения понятия

Переход влаги в жидкое агрегатное состояние существенно меняет условия жизни и трудовой деятельности людей, отражается на работе конструкций и механизмов. Поэтому во многих сферах точке выпадения пара в осадок уделяют особое внимание.

Строительство

Ограждающие конструкции большинства зданий обладают паропроницаемостью. Исключением являются только металлические ангары и гаражи. Относительная влажность в помещении выше, чем снаружи, и пар под действием парциального давления проникает в стены.

Строительство
Здания обладают паропроницаемостью, которая зависит от типа строительного материала. 

В случае наличия в их толще участков с температурой насыщения или ниже он конденсируется, что приводит к таким последствиям:

  1. Снижению термического сопротивления конструкции.
  2. Сокращению срока службы строительного материала. При похолодании вода превращается в лед и расширяется, вызывая внутренние разрушения.
  3. Развитию колоний плесени и грибка (при увлажнении поверхности).

Строительные материалы имеют разную паропроницаемость. Наименьший показатель у тяжелого железобетона (панельные дома) — 0,03 мг/м*ч*Па, наибольший — у газобетонных блоков — 0,23 (при плотности 400 кг/куб. м).

Сельское хозяйство

При снижении температуры воздуха влага конденсируется на побегах и листьях растений. При частых повторениях это провоцирует заболевания. Таким образом, знание точки конденсации водяного пара позволяет планировать профилактические и лечебные мероприятия.

Сельское хозяйство
Влага конденсируется на листьях растений.

В засушливых регионах, наоборот, конденсация атмосферной влаги может частично заменить систему орошения. Селекционеры работают над выведением сортов, способных усваивать воду таким образом. Тогда знание критической точки поможет определить необходимую производительность поливальных установок, если прогноз погоды в ближайшее время не предвещает дождей.

Меры защиты некоторых растений, например винограда, тоже планируют с учетом данного параметра. Если он высокий, значит, воздух содержит много влаги, и повреждения от заморозков, в т.ч. радиационных, будут умеренными.

При низком расположении зоны конденсации пара укутывают побеги либо поливают участок.

Комфортные значения для человека

Большинство людей чувствует себя хорошо при следующих условиях:

  • температуре воздуха +22°С;
  • относительной влажности 50%.

Для таких параметров пар начинает конденсироваться при +10,5°С.

Расчет точки росы

Существует несколько способов определения параметра.

По математической формуле

Применяют следующее выражение:

Tp=b((aT/b+T)+InRH)/a-((aT/b+T)+InRH), где

Тр — точка росы, °С;

Расчет точки росы
Расчет точки росы происходит по математическим формулам.

A и b — безразмерные коэффициенты, равные 17,27 и 237,7 соответственно;

RH — относительная влажность воздуха в долях единицы;

Т — температура воздуха, °С;

Ln — натуральный логарифм.

Приведенная формула справедлива для значений Т=0…+60°С и атмосферного давления 762 мм. рт. ст.

Программы-калькуляторы

Специализированные приложения производят вычисления автоматически. Пользователю необходимо ввести исходные данные и нажать кнопку «Старт». Кроме числового результата, программы отображают графики зависимости влажности от степени нагретости воздуха. Такая форма представления информации является более наглядной.

С помощью онлайн-калькулятора

Вычислительные сервисы имеются на многих сайтах. Они избавляют пользователя от необходимости покупать и скачивать программу.

Онлайн-калькулятор
Онлайн-калькулятор есть на многих сайтах.

В специальные поля вводят данные:

  • температуру воздуха;
  • относительную влажность;
  • атмосферное давление.

После нажатия кнопки «Вычислить» на экране отображается искомая величина.

Недостаток данного способа состоит в том, что изготовитель калькулятора в большинстве случаев неизвестен, поэтому результат может быть недостоверным.

В отличие от онлайн-сервисов, популярные программы от хорошо зарекомендовавших себя разработчиков имеют 100%-ную надежность.

Специальные инструменты

Существуют тепловизоры с функцией расчета точки росы. Объекты с такой и более низкой температурой помечаются на экране особым образом.

Гигрометр
Гигрометр — измерительный прибор, предназначенный для определения влажности воздуха.

Влажность измеряют с помощью приборов:

  1. Гигрометра. Электронное устройство удобно в пользовании, но вычисления производит с большой погрешностью.
  2. Психрометра. Он состоит из 2 спиртовых термометров. Колбу одного обматывают влажной салфеткой. За счет испарения воды показания на нем будут ниже, чем на «сухом». Чем ниже влажность в помещении, тем активнее улетучивается жидкость. Значит, и разница в показаниях будет больше. Результат отыскивают в справочнике вручную. Определенная с помощью психрометра искомая точка является наиболее точной.

Таблицы

В интернете и специальной литературе публикуются таблицы со значениями точки образования росы для воздуха с разными параметрами.

Пример:

Температура
воздуха, °С
Температура насыщения в °С при влажности воздуха (в %)
30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
-10 -23,2 -21,8 -20,4 -19 -17,8 -16,7 -15,8 -14,9 -14,1 -13,3 -12,6 -11,9 -10,6 -10
-5 -18,9 -17,2 -15,8 -14,5 -13,3 -11,9 -10,9 -10,2 -9,3 -8,8 -8,1 -7,7 -6,5 -5,8
0 -14,5 -12,8 -11,3 -9,9 -8,7 -7,5 -6,2 -5,3 -4,4 -3,5 -2,8 -2 -1,3 -0,7
+2 -12,8 -11 -9,5 -8,1 -6,8 -5,8 -4,7 -3,6 -2,6 -1,7 -1 -0,2 -0,6 1,3
+4 -11,3 -9,5 -7,9 -6,5 -4,9 -4 -3 -1,9 -1 0 0,8 1,6 2,4 3,2
+5 -10,5 -8,7 -7,3 -5,7 -4,3 -3,3 -2,2 -1,1 -0,1 0,7 1,6 2,5 3,3 4,1
+6 -9,5 -7,7 -6 -4,5 -3,3 -2,3 -1,1 -0,1 0,8 1,8 2,7 3,6 4,5 5,3
+7 -9 -7,2 -5,5 -4 -2,8 -1,5 -0,5 0,7 1,6 2,5 3,4 4,3 5,2 6,1
+8 -8,2 -6,3 -4,7 -3,3 -2,1 -0,9 0,3 1,3 2,3 3,4 4,5 5,4 6,2 7,1
+9 -7,5 -5,5 -3,9 -2,5 -1,2 0 1,2 2,4 3,4 4,5 5,5 6,4 7,3 8,2
+10 -6,7 -5,2 -3,2 -1,7 -0,3 0,8 2,2 3,2 4,4 5,5 6,4 7,3 8,2 9,1
+11 -6 -4 -2,4 -0,9 0,5 1,8 3 4,2 5,3 6,3 7,4 8,3 9,2 10,1
+12 -4,9 -3,3 -1,6 -0,1 1,6 2,8 4,1 5,2 6,3 7,5 8,6 9,5 10,4 11,7
+13 -4,3 -2,5 -0,7 0,7 2,2 3,6 5,2 6,4 7,5 8,4 9,5 10,5 11,5 12,3
+14 -3,7 -1,7 0 1,5 3 4,5 5,8 7 8,2 9,3 10,3 11,2 12,1 13,1
+15 -2,9 -1 0,8 2,4 4 5,5 6,7 8 9,2 10,2 11,2 12,2 13,1 14,1
+16 -2,1 -0,1 1,5 3,2 5 6,3 7,6 9 10,2 11,3 12,2 13,2 14,2 15,1
+17 -1,3 0,6 2,5 4,3 5,9 7,2 8,8 10 11,2 12,2 13,5 14,3 15,2 16,6
+18 -0,5 1,5 3,2 5,3 6,8 8,2 9,6 11 12,2 13,2 14,2 15,3 16,2 17,1
+19 0,3 2,2 4,2 6 7,7 9,2 10,5 11,7 13 14,2 15,2 16,3 17,2 18,1
+20 1 3,1 5,2 7 8,7 10,2 11,5 12,8 14 15,2 16,2 17,2 18,1 19,1
+21 1,8 4 6 7,9 9,5 11,1 12,4 13,5 15 16,2 17,2 18,1 19,1 20
+22 2,5 5 6,9 8,8 10,5 11,9 13,5 14,8 16 17 18 19 20 21
+23 3,5 5,7 7,8 9,8 11,5 12,9 14,3 15,7 16,9 18,1 19,1 20 21 22
+24 4,3 6,7 8,8 10,8 12,3 13,8 15,3 16,5 17,8 19 20,1 21,1 22 23
+25 5,2 7,5 9,7 11,5 13,1 14,7 16,2 17,5 18,8 20 21,1 22,1 23 24
+26 6 8,5 10,6 12,4 14,2 15,8 17,2 18,5 19,8 21 22,2 23,1 24,1 25,1
+27 6,9 9,5 11,4 13,3 15,2 16,5 18,1 19,5 20,7 21,9 23,1 24,1 25 26,1
+28 7,7 10,2 12,2 14,2 16 17,5 19 20,5 21,7 22,8 24 25,1 26,1 27
+29 8,7 11,1 13,1 15,1 16,8 18,5 19,9 21,3 22,5 22,8 25 26 27 28
+30 9,5 11,8 13,9 16 17,7 19,7 21,3 22,5 23,8 25 26,1 27,1 28,1 29
+32 11,2 13,8 16 17,9 19,7 21,4 22,8 24,3 25,6 26,7 28 29,2 30,2 31,1
+34 12,5 15,2 17,2 19,2 21,4 22,8 24,2 25,7 27 28,3 29,4 31,1 31,9 33
+36 14,6 17,1 19,4 21,5 23,2 25 26,3 28 29,3 30,7 31,8 32,8 34 35,1
+38 16,3 18,8 21,3 23,4 25,1 26,7 28,3 29,9 31,2 32,3 33,5 34,6 35,7 36,9
+40 17,9 20,6 22,6 25 26,9 28,7 30,3 31,7 33 34,3 35,6 36,8 38 39

Место расположения

Помимо значения точки образования росы, строительному инженеру необходимо рассчитать ее положение внутри ограждающей конструкции. От этого зависит, где и в каком количестве будет появляться жидкость.

Принимаются во внимание следующие факторы:

  1. Внутренняя и наружная температуры.
  2. Влажность в доме и снаружи.
  3. Теплопроводность материалов ограждающей конструкции.
  4. Паропроницаемость стен.
  5. Их толщина.
Место расположения
Инженеру необходимо рассчитать положение точки образования росы.

При проектировании точку образования конденсата стремятся вынести подальше от внутренней поверхности ограждающей конструкции.

Наилучшим является вариант, в котором она находится за пределами капитальных элементов сооружения.

Вариации поведения точки росы

Положение плоскости с температурой насыщения зависит от наличия и способа применения утеплителя. Необходимо рассмотреть несколько случаев.

В неутепленных стенах

В этом варианте критическая точка всегда находится внутри конструкции.

Положение зависит от ее толщины и перепада между наружной и внутренней температурами:

  1. Ближе к наружной поверхности. В этом случае стена со стороны помещения всегда сухая. Но наружный слой может постепенно разрушаться по причине замерзания воды. Это зависит от того, какое ее количество достигает участка с температурой превращения пара в росу.
  2. Ближе к внутренней поверхности. При экстремальных похолоданиях стена внутри становится мокрой.
  3. На поверхности со стороны помещения. Внутренняя поверхность конструкции не высыхает всю зиму. На мокрой стене развиваются колонии плесени, отравляющие воздух своими спорами.
В неутепленных стенах
В неутепленных стенах точка росы находится внутри конструкции.

Сказанное не относится к каркасному дому, стены которого состоят из утеплителя и паронепроницаемой обшивки.

В утепленных снаружи стенах

В этом варианте критическая точка смещается в сторону улицы.

Она может располагаться:

  1. В утеплителе. Это наилучший вариант. Влага в стене не конденсируется, поэтому конструкция служит весь положенный срок. Условием выноса точки конденсации пара за пределы основного материала является большая толщина теплоизолятора.
  2. В стене. Данное положение наблюдается при недостаточной толщине утеплителя. Зона образования влаги может занимать любое положение (вплоть до внутренней поверхности).

Утеплитель должен превосходить основной материал стены по коэффициенту паропроницаемости. В противном случае влага будет накапливаться на границе между ними. Таким образом, нельзя утеплять пенопластом, коэффициент паропроницаемости которого составляет 0,05 мг/м*ч*Па, стены из кирпича (0,17) и газобетона (0,11-0,23).

В утепленных снаружи стенах
В утепленных снаружи стенах критическая точка смещается в сторону улицы.

В утепленных изнутри стенах

Критическая точка смещается в сторону помещения. Возможные варианты:

  1. В стене ближе к внутренней поверхности. Большую часть времени конструкция остается сухой, но в экстремальные холода намокает.
  2. На внутренней поверхности основного материала. Влага не высыхает всю зиму.
  3. В утеплителе. Конструкция всю зиму остается мокрой. В экстремальные холода намокает и теплоизолятор.

К внутреннему утеплению прибегают только в крайнем случае. Например, если наружной стороной стена выходит в шахту лифта. В других ситуациях теплоизолятор размещают извне, иначе срок службы конструкции сильно сокращается.

В утепленных изнутри стенах
В утепленных изнутри стенах точка смещается в сторону помещения.

В пластиковых окнах

Металлопластиковые окна представляют собой паронепроницаемые изделия.

Поэтому имеются только 2 варианта температуры поверхности со стороны помещения:

  1. Выше критической величины.
  2. Ниже этого параметра.

Во втором случае окна «потеют».

Как сместить точку росы в стене

Проблема решается 3 способами:

  1. Подсушиванием воздуха в доме.
  2. Подогревом помещения.
  3. Утеплением строения.
Сместить точку росы в стене
Сместить точку росы в стене можно подогревом помещения.

С целью подсушивания воздуха делают следующее:

  1. Устанавливают нагнетатели в каналах вентиляции для увеличения ее производительности.
  2. Применяют осушитель воздуха.

При относительной влажности ниже 40% люди чувствуют себя некомфортно. Пересыхают кожа и слизистые в дыхательных путях, становится трудно дышать. Деревянные предметы в таких условиях растрескиваются.

Повышение температуры в помещении требует увеличения затрат на отопление, поэтому данный метод является экономически невыгодным.

Целесообразнее утеплить строение.

Какие условия необходимо учитывать

Способ смещения зоны выпадения пара в осадок выбирают в зависимости от микроклимата в жилище.

О необходимости подсушить воздух свидетельствуют следующие признаки:

  1. Ощущение сырости в доме.
  2. Влажная одежда.
  3. Появление пятен плесени на стенах и потолке.
  4. Частые респираторные заболевания у жильцов.
Появление пятен плесени
Появление пятен плесени свидетельствует о необходимости подсушить воздух.

При отсутствии таких явлений следует заняться утеплением строения.

Возможные последствия

Наличие условий для конденсации влаги в толще стены может никак не сказаться на ее долговечности. Все зависит от количества проникающей влаги. Например, в наружные слои толстой бетонной стены пар поступает в мизерных объемах и потому не способен вызвать ощутимых разрушений.

В газобетонной конструкции, наоборот, его количество превышает допустимый минимум, поэтому выносу зоны конденсации пара за пределы кладки следует уделить особое внимание.

Таким образом, в каждом случае требуется выполнить индивидуальный расчет.

Некоторые факты

Вопрос положения критической точки в стене снимается, если оклеить ее изнутри пароизоляционным материалом. Такими свойствами обладают некоторые виды отделки, например виниловые обои. Пар в конструкцию не поступает, и та будет сухой независимо от распределения температур. Исключением является случай, когда стена промерзает насквозь, а критическая точка оказывается на внутренней поверхности.

Обшивку ограждающих элементов пароизоляцией практикуют в странах Западной Европы. Но у этого решения есть недостаток: для отвода избыточной влаги приходится увеличивать кратность воздухообмена, т.е. производительность вентиляции. Это влечет за собой рост теплопотерь и, как следствие, расходов на отопление. Дом с «дышащими», т.е. паропроницаемыми, стенами обходится дешевле.

Полезные рекомендации

Чтобы относительная влажность в жилище не превышала нормальных значений (40%-60%), следует обеспечить работу вентиляции. Для этого необходим приток воздуха извне. В домах и квартирах с естественной вентиляцией он, согласно проекту, должен поступать через щели в окнах.

Но в результате их замены на герметичные металлопластиковые изделия притока воздуха нет. Вентиляция не работает, даже если вытяжные каналы оборудовать вентиляторами. Проблему решают установкой оконных или стенных клапанов.

Также следует обеспечить наличие зазора под межкомнатными дверями.

Понравилась статья? Поделить с друзьями:
  • Закон меченого как найти скромного
  • Как найти человека по его email
  • Как найти клиентов для чопа
  • Как исправить форму носа картошкой
  • Как найти лексическое значение слова в тексте