Определение.
Середина отрезка — это точка, которая лежит на отрезке и находится на равном расстоянии от конечных точек.
В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, …
Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.
Формулы вычисления расстояния между двумя точками:
- Формула вычисления координат середины отрезка с концами A(xa, ya) и B(xb, yb) на плоскости:
xc = xa + xb yc = ya + yb 2 2 - Формула вычисления координат середины отрезка с концами A(xa, ya, za) и B(xb, yb, zb) в пространстве:
xc = xa + xb yc = ya + yb zc = za + zb 2 2 2
Примеры задач на вычисление середины отрезка
Примеры вычисления координат середины отрезка на плоскости
Пример 1.
Найти координаты точки С, середины отрезка AB заданного точками A(-1, 3) и B(6, 5).
Решение.
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
Ответ: С(2.5, 4).
Пример 2.
Найти координаты точки В, если известны координаты точки C(1; 5), середины отрезка AB и точки A(-1, 3).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
Ответ: B(3, 7).
Примеры вычисления координат середины отрезка в пространстве
Пример 3.
Найти координаты точки С середины отрезка AB заданного точками A(-1, 3, 1) и B(6, 5, -3).
Решение.
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
zc = | za + zb | = | 1 + (-3) | = | -2 | = -1 |
2 | 2 | 2 |
Ответ: С(2.5, 4, -1).
Пример 4.
Найти координаты точки В если известны координаты точки C(1, 5, 2), середины отрезка AB и точки A(-1, 3, 10).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
zc =
za + zb2
=> zb = 2zc — za = 2·2-10=4-10=-6
Ответ: B(3, 7, -6).
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Метод координат
- Простейшие задачи в координатах
Метод координат — это подход к изучению свойств геометрических фигур, используя методы алгебры.
Задачи
1. Координаты середины отрезка.
Дано: система координат , А(1; 1), В(2; 2), С середина отрезка АВ.
Выразить: координаты С(; ) через координаты концов отрезка АВ.
Решение:
С — середина отрезка АВ, поэтому . (1)
(Доказательство утверждения (1) приведено в разделе «Применение векторов к решению задач»).
Координаты векторов , и равны соответствующим координатам точек С, А и В:
, и .
Записывая равенство (1) в координатах, получим:
, следовательно, и .
Вывод:
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
2. Вычисление длины вектора по его координатам.
Дано: .
Доказать: .
Доказательство:
1. и .
Отложим от начала координат вектор и проведем через точку А перпендикуляры АА1 и АА2 к осям и .
Координаты точки А равны координатам вектора , т.е. (; ). Поэтому . По теореме Пифагора: .
Но , следовательно, . Что и требовалось доказать.
2. и .
Отложим от начала координат вектор , учитывая то, что .
.
Но , следовательно, . Что и требовалось доказать.
3. и .
Отложим от начала координат вектор , учитывая то, что .
.
Но , следовательно, . Что и требовалось доказать.
Вывод:
Длина вектора равна квадратному корню из суммы квадратов координат данного вектора.
3. Расстояние между двумя точками.
Дано: М1(1; 1), М2(2; 2), — расстояние между М1 и М2.
Выразить: через координаты М1 и М2.
Решение:
Рассмотрим вектор , каждая его координата равна разности соответствующих координат его конца и начала, т.е. . Следовательно, длина этого вектора: .
Но , значит, расстояние между точками М1(1; 1) и М2(2; 2) выражается формулой:
.
Вывод:
Расстояние между двумя данными точками равно корню квадратному из суммы квадратов разностей соответствующих координат данных точек.
Советуем посмотреть:
Разложение вектора по двум неколлинеарным векторам
Координаты вектора
Связь между координатами вектора его начала и конца
Уравнение линии на плоскости
Уравнение окружности
Уравнение прямой
Взаимное расположение двух окружностей
Метод координат
Правило встречается в следующих упражнениях:
7 класс
Задание 939,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 942,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 951,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 954,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 957,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 24,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 998,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1007,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1010,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1256,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Содержание:
Декартовы координаты на плоскости:
Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.
Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.
Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.
Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.
Расстояние между двумя точками с заданными координатами. Координаты середины отрезка
В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.
Договорились координатную плоскость с осью
Координаты точки на плоскости называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).
Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек (рис. 8.2) имеем:
Научимся находить расстояние между точками заданными на плоскости
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.3).
Через точки проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник в котором Отсюда
Тогда формулу расстояния между точками можно записать так:
Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок перпендикулярен одной из осей координат.
Пусть — точки плоскости Найдем координаты точки — середины отрезка
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что (случай, когда рассматривается аналогично). Через точки проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках По теореме Фалеса тогда Поскольку то можем записать: Отсюда Аналогично можно показать что
Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок перпендикулярен одной из осей координат. Докажите это самостоятельно.
Пример №1
Докажите, что треугольник с вершинами в точках является равнобедренным прямоугольным.
Решение:
Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:
Следовательно, то есть треугольник равнобедренный.
Поскольку то треугольник прямоугольный.
Пример №2
Точка — середина отрезка Найдите координаты точки
Решение:
Обозначим — координаты точки — координаты точки — координаты точки
Поскольку то получаем:
Аналогично
Ответ:
Пример №3
Докажите, что четырехугольник с вершинами в точках является прямоугольником.
Решение:
Пусть точка — середина диагонали Тогда
Следовательно,
Пусть точка — середина диагонали Тогда
Следовательно,
Таким образом, точки совпадают, то есть диагонали четырехугольника имеют общую середину. Отсюда следует, что четырехугольник — параллелограмм.
Найдем диагонали параллелограмма:
Следовательно, диагонали параллелограмма равны. Отсюда следует, что этот параллелограмм является прямоугольником.
Уравнение фигуры. Уравнение окружности
Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.
Координаты каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения И наоборот, каждое решение уравнения с двумя переменными является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид
Определение. Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
- если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
- любое решение данного уравнения является координатами точки, принадлежащей фигуре
Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Принято говорить, что, например, уравнения задают прямую и гиперболу соответственно.
Если данное уравнение является уравнением фигуры то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.
Пользуясь этими соображениями, выведем уравнение окружности радиуса с центром в точке
Пусть — произвольная точка данной окружности (рис. 9.4). Тогда Используя формулу расстояния между точками, получим:
Отсюда
Мы показали, что координаты произвольной точки данной окружности являются решением уравнения Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной окружности.
Пусть пара чисел — произвольное решение уравнения
Тогда Отсюда
Это равенство показывает, что точка удалена от центра окружности на расстояние, равное радиусу окружности, а следовательно, точка принадлежит данной окружности.
Итак, мы доказали следующую теорему.
Теорема 9.1. Уравнение окружности радиуса с центром в точке имеет вид
Верно и такое утверждение: любое уравнение вида где некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Если центром окружности является начало координат (рис. 9.5), то В этом случае уравнение окружности имеет вид
Пример №4
Составьте уравнение окружности, диаметром которой является отрезок если
Решение:
Поскольку центр окружности является серединой диаметра, то можем найти координаты центра окружности:
Следовательно,
Радиус окружности равен отрезку Тогда
Следовательно, искомое уравнение имеет вид
Ответ:
Пример №5
Докажите, что уравнение задает окружность. Найдите координаты центра и радиус этой окружности.
Решение:
Представим данное уравнение в виде
Следовательно, данное уравнение является уравнением окружности с центром в точке и радиусом
Ответ:
Пример №6
Докажите, что треугольник с вершинами в точках является прямоугольным, и составьте уравнение окружности, описанной около треугольника
Решение:
Найдем квадраты сторон данного треугольника:
Поскольку то данный треугольник является прямоугольным с прямым углом при вершине Центром описанной окружности является середина гипотенузы — точка радиус окружности Следовательно, искомое уравнение имеет вид
Ответ:
Уравнение прямой
В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.
Пусть — данная прямая. Выберем две точки и так, чтобы прямая была серединным перпендикуляром отрезка (рис. 10.1).
Пусть — произвольная точка прямой Тогда по свойству серединного перпендикуляра отрезка выполняется равенство то есть
Мы показали, что координаты произвольной точки прямой являются решением уравнения
Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной прямой
Пусть — произвольное решение уравнения Тогда Это равенство означает, что точка равноудалена от точек следовательно, точка принадлежит серединному перпендикуляру отрезка то есть прямой
Итак, мы доказали, что уравнение является уравнением данной прямой
Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: где и — некоторые числа, причем не равны нулю одновременно. Покажем, что уравнение можно преобразовать к такому виду. Возведем обе части уравнения в квадрат. Имеем:
Раскроем скобки и приведем подобные слагаемые. Получим:
Обозначив получим уравнение
Поскольку точки различны, то хотя бы одна из разностей не равна нулю. Следовательно, числа и не равны нулю одновременно.
Итак, мы доказали следующую теорему.
Теорема 10.1. Уравнение прямой имеет вид?
где — некоторые числа, причем не равны нулю одновременно.
Верно и такое утверждение: любое уравнение вида где — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то графиком уравнения является вся плоскость Если то уравнение не имеет решений.
Из курса алгебры 7 класса вы знаете, что уравнение вида называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.
на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции является прямая. Сейчас мы можем это доказать.
Перепишем уравнение Мы получили уравнение вида для случая, когда Поскольку в этом уравнении то мы получили уравнение прямой.
А любую ли прямую на плоскости можно задать уравнением вида Ответ на этот вопрос отрицательный.
Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида
Вместе с тем, если в уравнении прямой принять то его можно переписать так: Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.
Если то уравнение прямой можно записать так:
Обозначив получим уравнение
Следовательно, если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Уравнение невертикальной прямой удобно записывать в виде
Данная таблица подытоживает материал, рассмотренный в этом пункте.
Пример №7
Составьте уравнение прямой, проходящей через точки:
Решение:
1) Поскольку данные точки имеют равные абсциссы, то прямая является вертикальной. Ее уравнение имеет вид
2) Поскольку данные точки имеют разные абсциссы, то прямая не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде
Подставив координаты точек в уравнение получаем систему уравнений:
Решив эту систему уравнений, находим, что
Ответ:
Пример №8
Найдите периметр и площадь треугольника, ограниченного прямой и осями координат.
Решение:
Найдем точки пересечения данной прямой с осями координат.
С осью абсцисс: при получаем
С осью ординат: при получаем
Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник (рис. 10.3) с вершинами Найдем стороны треугольника:
Тогда искомые периметр и площадь соответственно равны
Ответ:
Угловой коэффициент прямой
Рассмотрим уравнение Оно задает невертикальную прямую, проходящую через начало координат.
Покажем, что прямые где параллельны.
Точки принадлежат прямой а точки и принадлежат прямой (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей четырехугольника совпадают. Следовательно, четырехугольник — параллелограмм. Отсюда
Теперь мы можем сделать такой вывод: если то прямые параллельны (1).
Пусть прямая пересекает единичную полуокружность в точке (рис. 11.2). Угол называют углом между данной прямой и положительным направлением оси абсцисс.
Если прямая совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным
Если прямая образует с положительным направлением оси абсцисс угол то считают, что и прямая параллельная прямой также образует угол с положительным направлением оси абсцисс (рис. 11.3).
Рассмотрим прямую уравнение которой имеет вид (рис. 11.2). Если Поскольку точка принадлежит прямой Отсюда Таким образом, для прямой получаем, что
где — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент называют угловым коэффициентом этой прямой.
Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,
если прямые параллельны, то (2).
Выводы (1) и (2) объединим в одну теорему.
Теорема 11.1. Прямые параллельны тогда и только тогда, когда
Пример №9
Составьте уравнение прямой, которая проходит через точку и параллельна прямой
Решение:
Пусть уравнение искомой прямой Поскольку эта прямая и прямая параллельны, то их угловые коэффициенты равны, то есть
Следовательно, искомое уравнение имеет вид Учитывая, что данная прямая проходит через точку получаем: Отсюда
Искомое уравнение имеет вид
Ответ:
Метод координат
Мы часто говорим: прямая парабола окружность тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.
Проиллюстрируем сказанное на таком примере.
Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.
Эта задача сводится к исследованию количества решений системы уравнений
где числа одновременно не равны нулю и
Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:
- система имеет два решения — прямая и окружность пересекаются в двух точках;
- система имеет одно решение — прямая касается окружности;
- система не имеет решений — прямая и окружность не имеют общих точек.
С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.
Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.
Отметим на плоскости две точки Вы хорошо знаете, какой фигурой является геометрическое место точек таких, что
Это серединный перпендикуляр отрезка Интересно выяснить, какую фигуру образуют все точки для которых Решим эту задачу для
Плоскость, на которой отмечены точки «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку в качестве единичного отрезка — отрезок ось абсцисс проведем так, чтобы точка имела координаты (рис. 11.6).
Пусть — произвольная точка искомой фигуры Тогда Отсюда
Следовательно, если точка принадлежит фигуре то ее координаты являются решением уравнения
Пусть — некоторое решение уравнения Тогда легко показать, что А это означает, что точка такова, что Тогда Следовательно, точка принадлежит фигуре
Таким образом, уравнением фигуры является уравнение то есть фигура — это окружность с центром в точке и радиусом
Мы решили задачу для частного случая, когда Можно показать, что искомой фигурой для любого положительного будет окружность. Эту окружность называют окружностью Аполлония
Как строили мост между геометрией и алгеброй
Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.
Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.
Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.
Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.
Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита а коэффициенты — первыми: Привычные нам обозначения степеней и т. д. также ввел Р. Декарт.
Справочный материал
Расстояние между двумя точками
Расстояние между точками можно найти по формуле
Координаты середины отрезка
Координаты середины отрезка с концами можно найти по формулам:
Уравнение фигуры
Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
1) если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
2) любое решение данного уравнения является координатами точки, принадлежащей фигуре
Уравнение окружности
Уравнение окружности радиуса с центром в точке имеет вид
Любое уравнение вида где — некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Уравнение прямой
Уравнение прямой имеет вид — некоторые числа, причем не равны нулю одновременно. Любое уравнение вида — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Угловой коэффициент прямой
Коэффициент в уравнении прямой называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.
Необходимое и достаточное условие параллельности невертикальных прямых
Прямые параллельны тогда и только тогда, когда
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Планиметрия — формулы, определение и вычисление
- Стереометрия — формулы, определение и вычисление
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Ортогональное проецирование
Определение длины отрезка по координатам. Нахождение координат середины отрезка: примеры, решения
Если вы хорошо заточенным карандашом прикоснетесь к тетрадному листу, то останется след, который дает представление о точке. (рис. 3
).
Отметим на листе бумаги две точки A
и B.
Эти точки можно соединить различными линиями (рис. 4
). А как соединить точки A
и B
самой короткой линией? Это можно сделать с помощь линейки (рис. 5
). Полученную линию называют отрезком
.
Точка и отрезок − примеры геометрических фигур
.
Точки A
и B
называют концами отрезка
.
Существует единственный отрезок, концами которого являются точки A
и B.
Поэтому отрезок обозначают, записывая точки, которые являются его концами. Например, отрезок на рисунке 5
обозначают одним из двух способов: AB
или BA.
Читают: «отрезок AB»
или «отрезок BA».
На рисунке 6
изображены три отрезка. Длина отрезка AB
равна 1
см. Он помещается в отрезке MN
ровно три раза, а в отрезке EF −
ровно 4
раза. Будем говорить, что длина отрезка
MN
равна 3
см, а длина отрезка EF −
4
см.
Также принято говорить: «отрезок MN
равен 3
см», «отрезок EF
равен 4
см». Пишут: MN =
3
см, EF =
4
см.
Длины отрезков MN
и EF
мы измерили единичным отрезком
, длина которого равна 1
см. Для измерения отрезков можно выбрать и другие единицы длины
, например: 1
мм, 1
дм, 1
км. На рисунке 7
длина отрезка равна 17
мм. Он измерен единичным отрезком, длина которого равна 1
мм, с помощью линейки с делениями. Также с помощью линейки можно построить (начертить) отрезок заданной длины (см. рис. 7
).
Вообще, измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается
.
Длина отрезка обладает следующим свойством.
Если на отрезке AB
отметить точку C,
то длина отрезка AB
равна сумме длин отрезков AC
и CB
(рис. 8
).
Пишут: AB = AC + CB.
На рисунке 9
изображены два отрезка AB
и CD.
Эти отрезки при наложении совпадут.
Два отрезка называют равными, если они совпадут при наложении.
Следовательно отрезки AB
и CD
равны. Пишут: AB = CD.
Равные отрезки имеют равные длины.
Из двух неравных отрезков бОльшим будем считать тот, у уоторого длина больше. Например, на рисунке 6
отрезок EF
больше отрезка MN.
Длину отрезка AB
называют расстоянием
между точками A
и B.
Если несколько отрезков расположить так, как показано на рисунке 10,
то получится геометрическая фигура, которую называют ломаная
. Заметим, что все отрезки на рисунке 11
ломаную не образуют. Считают, что отрезки, образуют ломаную, если конец первого отрезка совпадает с концом второго, а другой конец второго отрезка − с концом третьего и т. д.
Точки A, B, C, D, E −
вершины ломаной
ABCDE,
точки A
и E −
концы ломаной
, а отрезки AB, BC, CD, DE −
ее звенья
(см. рис. 10
).
Длиной ломаной
называют сумму длин всех ее звеньев.
На рисунке 12
изображены две ломаные, концы которых совпадают. Такие ломаные называют замкнутыми
.
Пример 1
. Отрезок BC
на 3
см меньше отрезка AB,
длина которого равна 8
см (рис. 13
). Найдите длину отрезка AC.
Решение. Имеем: BC =
8
− 3
= 5
(см).
Воспользовавшись свойством длины отрезка, можно записать AC = AB + BC.
Отсюда AC =
8
+ 5
= 13
(см).
Ответ: 13
см.
Пример 2
. Известно, что MK =
24
см, NP =
32
см, MP =
50
см (рис. 14
). Найдите длину отрезка NK.
Решение. Имеем: MN = MP − NP.
Отсюда MN =
50
− 32
= 18
(см).
Имеем: NK = MK − MN.
Отсюда NK =
24
− 18
= 6
(см).
Ответ: 6
см.
Определить длину отрезка возможно разными способами. Для того чтобы узнать, как найти длину отрезка, достаточно иметь в наличии линейку или знать специальные формулы для расчета.
Длина отрезка с помощью линейки
Для этого прикладываем к построенному на плоскости отрезку линейку с миллиметровыми делениями, причем начальную точку необходимо совместить с нулем шкалы линейки. Затем следует отметить на данной шкале расположение конечной точки данного отрезка. Полученное количество целых делений шкалы и будет являться длиной отрезка, выраженной в см. и мм.
Метод координат на плоскости
Если известны координаты отрезка (х1;у1) и (х2;у2), то следует рассчитать его длину следующим образом. Из координат на плоскости второй точки следует вычесть координаты первой точки. В итоге должно получиться два числа. Каждое из таких чисел необходимо возвести в квадрат, а потом найти сумму этих квадратов. Из полученного числа следует извлечь квадратный корень, который будет являться расстоянием между точками. Поскольку данные точки являются концами отрезка, то данное значение и будет его длиной.
Рассмотрим пример, как найти длину отрезка по координатам. Есть координаты двух точек (-1;2) и (4;7). При нахождении разности координат точек получаем следующие значения: х = 5, у =5. Полученные числа и будут являться координатами отрезка. Затем каждое число возводим в квадрат и находим сумму результатов, она равна 50. Из этого числа извлекаем квадратный корень. Результат таков: 5 корней из 2. Это длина отрезка.
Метод координат в пространстве
Для этого необходимо рассмотреть, как найти длину вектора. Именно он и будет являться отрезком в евклидовом пространстве. Находится он почти таким же образом, как длина отрезка на плоскости. Построение вектора происходит в разных плоскостях
. Как найти длину вектора?
- Найдите координаты вектора, для этого из координат его конечной точки нужно вычесть координаты его начальной точки.
- После этого нужно возвести каждую координату вектора в квадрат.
- Затем складываем квадраты координат.
- Чтобы найти длину вектора, нужно извлечь квадратный корень из суммы квадратов координат.
Рассмотрим алгоритм вычисления на примере. Необходимо найти координаты вектора АВ. Точки А и В имеют следующие координаты: А (1;6;3) и В (3;-1;7). Начало вектора лежит в точке А, конец расположен в точке В. Таким образом, чтобы найти его координаты, необходимо вычесть координаты точки А из координат точки В: (3 — 1; -1 — 6;7 — 3) = (2;-7;4).
Теперь возводим каждую координату в квадрат и складываем их: 4+49+16=69. И наконец, извлекает квадратный корень из данного числа. Его трудно извлечь, поэтому результат записываем таким образом: длина вектора равна корню из 69.
Если же вам не важно самому высчитывать длину отрезков и векторов, а нужен просто результат, то вы можете воспользоваться онлайн-калькулятором, например, этим .
Теперь, изучив данные способы и рассмотрев представленные примеры, вы без проблем сможете найти длину отрезка в любой задаче.
Длина, как уже отмечалось, обозначается знаком модуля.
Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле
Если даны две точки пространства и , то длину отрезка можно вычислить по формуле
Примечание:
Формулы останутся корректными, если переставить местами соответствующие координаты:
и
, но более стандартен первый вариант
Пример 3
Решение:
по соответствующей формуле:
Ответ:
Для наглядности выполню чертёж
Отрезок – это не вектор
, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.
Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:
Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».
Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:
Обратите внимание на важный технический приём
– вынесение множителя из-под корня
. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.
Вот другие распространенные случаи:
Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.
Вывод:
если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.
В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.
Давайте заодно повторим возведение корней в квадрат и другие степени:
Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.
Задание для самостоятельного решения с отрезком в пространстве:
Пример 4
Даны точки и . Найти длину отрезка .
Решение и ответ в конце урока.
Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат вся точка имеет три координаты. Зная координаты 2-х точек, дозволено определить расстояние между этими двумя точками.
Вам понадобится
- Декартовы, полярные и сферические координаты концов отрезка
Инструкция
1.
Разглядите для начала прямоугольную декартову систему координат. Расположение точки в пространстве в этой системе координат определяется координатами
x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами
этой точки.Пускай у вас сейчас есть две точки с координатами
x1,y1,z1 и x2,y2 и z2 соответственно. 2))
Видео по теме
Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).
Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой.
Большинству эти задания будут не интересны. Но изложить их считаю необходимым.
Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь н
емного теории.
Построим на координатной плоскости точку А с координатами х= 6, y=3.
Говорят, что абсцисса точки А равна шести, ордината точки А равна трём.
Если выразиться просто, то ось ох это ось абсцисс, ось оу это ость ординат.
То есть, абсцисса это точка на оси ох в которую проецируется точка заданная на координатной плоскости; ордината это точка на оси оу в которую проецируется оговоренная точка.
Длина отрезка на координатной плоскости
Формула для определения длины отрезка, если известны координаты его концов:
Как вы видите, длина отрезка — это длина гипотенузы в прямоугольными треугольнике с катетами равными
Х В – Х А и У В – У А
* * *
Середина отрезка. Её Координаты.
Формула для нахождения координат середины отрезка:
Уравнение прямой проходящей через две данные точки
Формула уравнения прямой походящей через две данные точки имеет вид:
где (х 1
;у 1
) и (х 2
;у 2
) координаты заданных точек.
Подставив значения координат в формулу, она приводится к виду:
y = kx + b
, где k — это угловой коэффициент прямой
Эта информация нам понадобиться при решении другой группы задач связанных с координатной плоскостью. Статья об этом будет, не пропустите!
Что ещё можно добавить?
Угол наклона прямой (или отрезка) это угол между осью оХ и этой прямой, лежит в пределах от 0 до 180 градусов.
Рассмотрим задачи.
Из точки (6;8) опущен перпендикуляр на ось ординат. Найдите ординату основания перпендикуляра.
Основание перпендикуляра опущенного на ось ординат будет иметь координаты (0;8). Ордината равна восьми.
Ответ: 8
Найдите расстояние от точки A
с координатами (6;8) до оси ординат.
Расстояние от точки А до оси ординат равно абсциссе точки А.
Ответ: 6.
A
(6;8) относительно оси Ox
.
Точка симметричная точке А относительно оси оХ имеет координаты (6;– 8).
Ордината равна минус восьми.
Ответ: – 8
Найдите ординату точки, симметричной точке A
(6;8) относительно начала координат.
Точка симметричная точке А относительно начала координат имеет координаты (– 6;– 8).
Её ордината равна – 8.
Ответ: –8
Найдите абсциссу середины отрезка, соединяющего точки
O
(0;0) и
A
(6;8).
Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (0;0) и (6;8).
Вычисляем по формуле:
Получили (3;4). Абсцисса равна трём.
Ответ: 3
*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку. Середину отрезка несложно будет определить по клеткам.
Найдите абсциссу середины отрезка, соединяющего точки A
(6;8) и B
(–2;2).
Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (–2;2) и (6;8).
Вычисляем по формуле:
Получили (2;5). Абсцисса равна двум.
Ответ: 2
*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку.
Найдите длину отрезка, соединяющего точки (0;0) и (6;8).
Длина отрезка при данных координатах его концов вычисляется по формуле:
в нашем случае имеем О(0;0) и А(6;8). Значит,
*Порядок координат при вычитании не имеет значения. Можно из абсциссы и ординаты точки О вычесть абсциссу и ординату точки А:
Ответ:10
Найдите косинус угла наклона отрезка, соединяющего точки O
(0;0) и A
(6;8), с осью абсцисс.
Угол наклона отрезка – это угол между этим отрезком и осью оХ.
Из точки А опустим перпендикуляр на ось оХ:
То есть, угол наклона отрезка это угол
ВОА
в прямоугольном треугольнике АВО.
Косинусом острого угла в прямоугольном треугольнике является
отношение прилежащего катета к гипотенузе
Необходимо найти гипотенузу
ОА.
По теореме Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Таким образом, косинус угла наклона равен 0,6
Ответ: 0,6
Из точки (6;8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.
Через точку (6;8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью оУ
.
Найдите расстояние от точки A
с координатами (6;8) до оси абсцисс.
Найдите расстояние от точки A
с координатами (6;8) до начала координат.
Как найти середину отрезка на координатной плоскости?
Как найти середину отрезка на координатной плоскости?
Расстояние между точками определяется модулем разницы их координат, т. е. Из первого равенства выведем формулу для координаты точки C : xC=xA+xB2 x C = x A + x B 2 (полусумма координат концов отрезка). Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.
Как найти точку в векторе?
Основное соотношение. Чтобы найти координаты вектора AB, зная координаты его начальной точек А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.
Как определить широту и долготу на карте?
Важно: Географическая долгота измеряется от 0 до 180° . Чтобы определить географическую широту, нужно от заданной точки провести воображаемую прямую вдоль ближайшей параллели. Это и будет географическая широта. Она будет указана сбоку на карте.
Как найти широту и долготу география?
Важно: Географическая долгота измеряется от 0 до 180° . Чтобы определить географическую широту, нужно от заданной точки провести воображаемую прямую вдоль ближайшей параллели. Это и будет географическая широта.
Как правильно писать географические координаты?
Как правильно вводить координаты
- Вместо d используйте символ градуса.
- Используйте в качестве десятичного разделителя точку, а не запятую. Неправильно: 2,17403 . …
- Указывайте сначала широту, а затем долготу.
- Для широты используйте значения в диапазоне от -90 до 90.
- Долготу указывайте в диапазоне от -180 до 180.
Как определить квадрат на топографической карте?
Квадрат, в котором находится цель (объект), указывают подписями (номерами) образующих его километровых линий, вначале нижней горизонтальной линии (абсциссы X), а затем левой вертикальной линии (ординаты У).
Что такое квадрат на карте?
Квадрат всегда указывается цифрами километровых линий, пересечением которых образован юго-западный (нижний левый) угол. При указании квадрата карты придерживаются правила: сначала называют две цифры, подписанные у горизонтальной линии (у западной стороны), т. е.
Что значит по улитке 8?
Во многих советских и российских военных фильмах, где по сюжету солдаты вынуждены прибегать к помощи артиллерии в ходя тяжёлого боя, вы могли слышать примерно следующую фразу: Требуется заградительный огонь по квадрату шестьдесят пять-двенадцать по улитке 8.
Как на топографических картах изображаются судоходные реки или судоходные участки рек?
Реки в зависимости от ширины русла изображаются масштабным или внемасштабным (в одну и две линии) условным знаком. … Судоходные реки (участки рек) и каналы выделяются на картах начертанием подписей их названий, которые в отличие от названий несудоходных рек пишутся без выделения заглавной буквы (приложение VII-4).
Каким цветом на топографических картах показаны горизонтали?
Горизонтали — это линии, соединяющие точки с одинаковой абсолютной высотой. Горизонтали обычно наносят коричневым цветом и указывают значения абсолютной высоты в метрах. В легенде карты указывают, через сколько метров высоты проведены горизонтали. Горизонтали помогают определять и крутизну склонов.
Что такое Ситуация на топографических картах и планах?
Ситуация — совокупность контуров и предметов местности. Рельеф — совокупность неровностей земной поверхности. Ситуация и рельеф местности изображаются на топографической карте условными знаками.
Что можно определить по топографической карте?
Топографическая карта содержит сведения об опорных геодезических пунктах, рельефе, гидрографии, растительности, грунтах, хозяйственных и культурных объектах, дорогах, коммуникациях, границах и других объектах местности. Полнота содержания и точность топографических карт позволяют решать технические задачи.
Чем географическая карта отличается от топографического плана?
Главное отличие топографической карты от географической — масштаб: на географической используют мелкий масштаб, на топографической — крупный. … Разное количество деталей — на топографической больше деталей и изображены маленькие объекты.
Для чего создаются топографические карты?
Назначение топографических карт — представить участок конкретной местности в объемном трехмерном изображении. При помощи, так называемых горизонталей изображается рельеф местности. Это линии, соединяющие одинаковые высоты над уровнем моря.
Где используются топографические карты?
Топографические карты необходимы во всех областях хозяйственной деятельности, когда требуется точное и подробное изображение местности: при строительстве, на транспорте, в сельском хозяйстве, промышленности, военном деле и т.
Что обозначают пунктиром на карте?
Пунктиром изображаются четко определяемые на местности контуры участков растительного покрова, грунтов и пашен. Контуры пашен особым условным знаком не заполняются.
Что называется топографической картой?
«Топографическими картами называются такие карты, на которых неровности земной поверхности и все местные предметы изображены настолько подробно, что по ним можно представить действительную местность со всеми ее подробностями.
Что такое план местности кратко?
Теория: Всю Землю и большие её участки наносят на глобус, географические карты, а при изображении небольших территорий используют план местности. План местности — это чертёж, на котором условными знаками подробно показана небольшая территория в уменьшенном виде. План местности необходим людям многих профессий.
Калькулятор конечной точки
Создано Maciej Kowalski, кандидатом наук
Отредактировано Bogna Szyk и Jack Bowater
Последнее обновление: 26 сентября 2022 г.
Содержание:
- Определение конечной точки в геометрии
- Как найти конечную точку?
- Формула конечной точки
- Пример: использование калькулятора отсутствующей конечной точки
- Часто задаваемые вопросы
Добро пожаловать в Omni калькулятор конечной точки , где мы узнаем как найти конечную точку сегмента линии , если мы знаем его другой конец и его середину. Как вы могли догадаться, эта тема связана с вычислением средней точки, поэтому формула конечной точки очень похожа на формулу калькулятора средней точки . Но, прежде чем мы углубимся в детали, мы медленно пройдемся по определению конечной точки в геометрии, чтобы лучше понять, с чем мы здесь имеем дело.
Итак, расслабьтесь, заварите себе чашку чая в дорогу, и приступим к делу !
Определение конечной точки в геометрии
В просторечии конечная точка — это точка, которая лежит на конце . Мы уверены, что это заявление было для вас таким же шоком, как и для нас, когда мы услышали его впервые. Но, с другой стороны, баклажан на вкус совсем не похож на яйцо, так что никогда нельзя быть слишком уверенным в угадывании значения слова , не так ли?
Однако бывают случаи, например, когда вы делите пиццу на несколько человек, когда вам нужно быть чуть точнее , а к кому еще обратиться за этим , как не к математикам ?
В своей простейшей форме определение конечной точки в геометрии фокусируется на отрезках , то есть прямых линиях, соединяющих две точки. Да, вы уже догадались — эти точки называются конечными точками . Обратите внимание, что в соответствии с этим определением каждый сегмент имеет две конечные точки (если только это не вырожденный случай, когда они являются одной и той же точкой, т. е. интервал представляет собой одну точку).
Для простоты расчетов назовем одну из них начальной точкой (как это сделано в калькуляторе конечных точек). Имейте в виду, однако, что начало может быть концом, если вы посмотрите на это с другой стороны .
Вот это прозвучало жутко философски , тебе не кажется? Но давайте оставим « Кто мы и куда мы идем?» вопросов на тот случай, когда мы не можем заснуть. Мы должны сосредоточиться на сегментах, которые мы упомянули, и на том, как найти конечные точки.0003
Как найти конечную точку?
Для того, чтобы получить конечную точку, нам нужно иметь некоторую точку отсчета для начала. Другими словами, поскольку мы имеем дело с сегментом линии и одним из его компонентов, , нам нужно знать, как выглядит остальная часть .
Простейшая и наиболее распространенная ситуация, когда нам не хватает конечной точки, хотя мы знаем начальную точку и середину . Последний — это просто, как следует из названия, точка, обозначающая середину сегмента. Это все, что нам нужно, чтобы найти конечную точку; в конце концов, он должен лежать на другом конце средней точки от начальной точки и находиться на таком же расстоянии.
Следовательно, интуитивно мы можем уже геометрически описать, как найти конечную точку .
- Имея начальную точку AAA и среднюю точку BBB, нарисуйте отрезок , соединяющий их.
- Нарисуйте линию , идущую дальше от BBB от AAA до бог знает куда.
- Измерьте расстояние от AAA до BBB и отметьте то же расстояние от BBB в обратном направлении.
- Приступайте к победному танцу .
Однако есть люди (и мы не утверждаем, что мы из тех людей), которым не очень нравится рисовать линии . Ведь для этого нужна линейка, а Лорд трудно найти… (Да, это была ужасная шутка, и мы склоняем головы от стыда. Но, тем не менее, с легким хихиканьем.)
🔎 Вместо рисования линий , вы можете использовать наш калькулятор расстояния для двух заданных точек.
Во всяком случае, для людей, предпочитающих числа и расчеты (и мы могли бы на самом деле предположить, что мы являемся этими людьми), мы сосредоточимся на том, как найти конечную точку алгебраически в следующем разделе. Пожалуйста, не бойтесь слова «алгебраически» — через секунду вы увидите, как оно переводится как « легко и без усилий » — девиз нашего недостающего калькулятора конечной точки .
Формула конечной точки
В координатной геометрии мы работаем с объектами, которые встроены в то, что мы называем евклидовым пространством . Сейчас не так важно понимать его математическое определение, но для наших целей достаточно знать, что это означает, что в таких пространствах точки , скажем, ААА или ВВВ, имеют две координаты : A=(x1 ,y1)A = (x_1, y_1)A=(x1,y1) и B=(x2,y2)B = (x_2, y_2)B=(x2,y2).
Числа x1x_1x1 и x2x_2x2 обозначают положение точек относительно горизонтальной оси (обычно обозначаются xxx), а y1y_1y1 и y2y_2y2 используются для вертикальной оси (чаще всего обозначаются yyy). Вместе такая пара чисел (x1,y1)(x_1, y_1)(x1,y1) определяет точку в пространстве . Более того, координаты помогают нам анализировать более сложные объекты в нашем евклидовом пространстве . Например, они появляются в формуле конечной точки .
Скажем, у вас есть отрезок, идущий от A=(x1,y1)A = (x_1, y_1)A=(x1,y1) к… ну, мы пока не знаем. Теперь мы объясним как найти конечную точку B=(x2,y2)B = (x_2, y_2)B=(x2,y2) если мы знаем середину M=(x,y)M = (х, у)М=(х,у).
Из определения средней точки мы знаем, что расстояние от AAA до MMM должно быть таким же, как расстояние от MMM до BBB. Просто B
находится с другой стороны. Это означает, что для нахождения ВВВ достаточно « сдвинуть » МММ по прямой, проходящей через ААА и МММ, на ту же длину, что и отрезок АМАМАМ. Или, если хотите пофантазировать, вектором АМАМАМ.
Другими словами, имеем:
x2=x+(x−x1)=2x−x1x_2 = x + (x — x_1) = 2x — x_1x2=x+(x−x1)=2x−x1, и
y2=y+(y−y1)=2y−y1y_2 = y + (y — y_1) = 2y — y_1y2=y+(y−y1)=2y−y1.
Подводя итог, если вам нравится иметь всю необходимую информацию в одном абзаце , то вот она.
💡 Конечная точка отрезка, идущего от A=(x1,y1)A = (x_1, y_1)A=(x1,y1) к средней точке M=(x,y)M = (x, y)M=(x,y) — это точка B=(2x−x1,2y−y1)B = (2x — x_1, 2y — y_1)B=(2x−x1,2y−y1).
Обратите внимание, что выше мы упомянули линию, проходящую через A
и М
. Такие линии весьма полезны при обучении нахождению конечной точки или средней точки . Ведь в этой строке содержится отрезок AB
. Если для вашего упражнения или задачи требуется дополнительная информация о них, ознакомьтесь с калькуляторами координатной геометрии Omni и найдите тот, который соответствует вашим потребностям !
Уф, сколько времени было потрачено на теорию! Как насчет того, чтобы оставить эту техническую чепуху и посмотреть числовой пример ? В конце концов, время – это деньги, по крайней мере, так говорит нам формула временной стоимости денег!
Пример: использование отсутствующего калькулятора конечной точки
Допустим, четыре месяца назад вы начали размещать видео на YouTube. Ничего особенного, просто несколько рецептов приготовления, которые являются традиционными для вашего региона. Это началось как хобби, но человек, похоже, наслаждаются шоу , и вы видите число зрителей, линейно увеличивающееся со временем . Почему бы нам не попытаться найти отсутствующую конечную точку с помощью нашего калькулятора, чтобы проверить сколько их должно быть через четыре месяца ?
Прежде всего, обратите внимание, что, хотя проблема вовсе не кажется геометрической, мы действительно можем найти ответ, используя определение конечной точки из геометрии . В конце концов, отправной точкой, то есть нулевым месяцем, было время, когда вы начали публиковать видео, так что на тот момент у нас было 90 157 0 90 158 зрителей. Сейчас мы находимся на четвертом месяце, который будет нашей средней точкой (поскольку мы хотим найти количество зрителей еще через четыре месяца). Другими словами, конечной точкой будет наш ответ .
Скажем, что на данный момент, у вас 54000
подписчиков , и давайте попробуем перевести все эти данные таким образом, чтобы калькулятор конечной точки понял, что мы от него хотим.
Согласно приведенному выше разделу, чтобы найти ответ, нам нужна начальная точка и средняя точка . Обозначим их A = (x₁, y₁)
и M = (x, y)
соответственно. Для нас x
будут обозначать количество месяцев в нас , а y
будет количество зрителей . Поскольку нашей отправной точкой был нулевой месяц, а сейчас прошло 4 месяца, у нас есть (и мы можем ввести в калькулятор конечной точки)
x₁ = 0
,
x = 4
.
Теперь пришло время для абонентов . Опять же, отправная точка была, когда у нас никого не было, а сейчас, спустя четыре месяца, мы на 54 000
. Следовательно, имеем
y₁ = 0
,
г = 54 000
.
Как только мы введем все эти данные в калькулятор конечной точки, он выдаст ответ . Но давайте пока не будем раскрывать это! Как насчет того, чтобы увидеть , как найти конечную точку самостоятельно, используя формулу конечной точки ?
Давайте возьмем лист бумаги и вспомним информацию, которую мы уже упоминали выше. Наша начальная точка была в нулевой месяц с нулевым количеством подписчиков , что означает, что наша начальная точка A = (0, 0)
. Сейчас , мы находимся на четвертом месяце с 54 000
подписчиков , что наполовину меньше того, что мы хотели бы рассчитать. Это означает, что наша средняя точка равна (4, 54,000)
.
Все, что нам нужно сделать сейчас, это использовать формулу конечной точки из предыдущего раздела. Если обозначить координаты конечной точки как B = (x₂, y₂)
, то
x₂ = 2*4 - 0 = 8
,
y₂ = 2*54 000 - 0 = 108 0080 .
Это означает, что если тренд продолжится, мы должны получить 108,000
подписчиков за четыре месяца . Теперь, это довольно много, если вы спросите нас! К счастью, все это делается онлайн, поэтому проблем с социальным дистанцированием быть не должно. А теперь иди и воплощай свои кулинарные мечты!
Часто задаваемые вопросы
Как найти отсутствующую конечную точку?
Предположим, что у вас есть конечная точка A = (x₁, y₁) и средняя точка M = (x, y) :
-
Двойной координаты средних точек: 2x , 2 года .
-
Вычтите координату x известной конечной точки из первого значения , чтобы получить координату x отсутствующей конечной точки: x₂ = 2x - x₁ .
-
Вычтите координату y известной конечной точки из второго значения , чтобы получить координату y отсутствующей конечной точки: y₂ = 2y - y₁ .
-
Отлично, вы нашли недостающую конечную точку: B = (x₂, y₂) .
Могут ли одна из конечных точек и средняя точка иметь одинаковые координаты?
№ . Если конечная точка и средняя точка имеют одинаковые координаты, расстояние между ними равно нулю. Следовательно, вторая конечная точка тоже должна иметь точные координаты, а все три представляют собой одну точку, а не отрезок .
Какова другая конечная точка отрезка с одной конечной точкой в (1,3) и средней точкой в (3,5)?
Чтобы найти вторую конечную точку:
-
Двойные координаты средних точек:
2x = 6
,2y = 10
. -
Вычтите первое значение и известную координату x конечной точки:
6 - 1 = 5
. -
Вычтите второе значение и известную координату y конечной точки:
10 - 3 = 7
. -
Результирующие разности представляют собой x- и y-координаты отсутствующей конечной точки соответственно:
Б = (5,7)
.
Какое расстояние между двумя конечными точками (3,5) и (6,6)?
Для оценки недостающего расстояния:
-
Найти разность между соответствующими координатами :
Δx = 6 - 3 = 3
,Δy = 6 - 5 = 1
. -
Возведение обеих разностей в квадрат :
(Δx)² = 3² = 9
,(Δy)² = 1² = 1
. -
Добавьте эти два значения:
(Δx)² + (Δy)² = 9 + 1 = 10
. -
Извлеките квадратный корень из суммы :
√((Δx)² + (Δy)²) = √10
. -
Хорошая работа! Искомое расстояние равно
√10
, что примерно равно3,16
.
Мацей Ковальский, кандидат наук
Координаты начальной точки
Координаты средней точки
Координаты конечной точки
Ознакомьтесь с 38 похожими калькуляторами координатной геометрии 📈
Средняя скорость измененияБилинейная интерполяцияКатенарная кривая… Еще 35
Середина | Superprof
Как следует из названия, формула средней точки находит середину отрезка. Неважно, какой длины линия или в каком направлении она идет, вы можете использовать эту формулу на любой прямой линии, которую хотите. Единственное условие - это должна быть линейная линия, вы не можете использовать эту формулу на кривой. Общее определение состоит в том, что середина — это точка на отрезке, которая делит отрезок на две равные части. Иногда она может стать точкой симметрии, но это другой разговор, и мы обсудим его позже в этом блоге.
В координатной геометрии существует множество формул, но есть что-то уникальное в формуле средней точки. Это единственная формула в координатной геометрии, которая может найти две координаты в одном решении. Ниже приведена формула для вычисления середины отрезка:
Представьте прямую, которая начинается в точке A и заканчивается в точке B. Чтобы вычислить середину этой линии, вам нужно знать координаты обеих точек.
Середина этой линии представлена как M на картинке выше. Поскольку у вас есть координаты обеих точек, теперь вы можете использовать формулу средней точки, чтобы найти координаты M. Либо вы можете использовать приведенную выше формулу напрямую, чтобы найти среднюю точку, либо разбить ее на два шага. Оба метода просты, но второй метод немного дольше, но вероятность ошибки меньше. Первый шаг состоит в том, чтобы добавить координату x обеих точек, а затем сделать то же самое с координатой y.
Второй шаг - разделить их оба на и вот как вы найдете середину, используя второй метод:
Примеры
Вычислить координаты середины отрезка AB.
Вычислите координаты точки C на отрезке AC, зная, что середина равна , а конечная точка .
Если и являются серединами сторон, составляющих треугольник, то каковы координаты вершин?
Если отрезок AB с концами и разделен на четыре равные части, каковы координаты точек деления?
Q is the midpoint of AB
P is the midpoint of AQ
R is the midpoint of QB
The best Maths tutors available
Поехали
Симметричная точка
Предположим, есть точка A и другая точка A'. Между обеими точками есть середина. Если обе точки равноудалены от средней точки и обе точки также совпадают друг с другом, если одна из них повернута, то можно с уверенностью сказать, что средняя точка является точкой симметрии. Проще говоря, если A' является симметричным A относительно M, , то M является серединой отрезка 9.0021 АА'.
Вычислить симметричную точку с серединой .
Вычислите симметричную точку средней точки.
Три коллинеарные точки
Слово «коллинеарность» означает, что два или более объекта или вещи лежат на одной линии. В мире координатной геометрии коллинеарные точки означают, что две или более точек, лежащих на одной линии, независимо от того, как далеко они находятся, будут коллинеарными точками.
Определить, являются ли и совмещенными точками.
Рассчитайте значение a в следующих выровненных точках.
Координаты центра тяжести
Каждый объект в этой вселенной имеет центральную точку. В области физики это очень важная вещь. На самом деле, у них есть отдельный поддомен для этого. Найти центр непросто, существуют разные методы нахождения центра для разных объектов. В случае треугольников мы используем понятие центроида. В координатной геометрии координаты центроида определяют центр треугольника. Его находят тремя линейными линиями, пересекающими центр каждой стороны треугольника. Точка, в которой пересекаются все три линии, является точкой центра, рассмотрим приведенную выше диаграмму в качестве примера. У каждой стороны есть линия, проходящая через центр каждой стороны соответственно. Точка G — это точка, где пересекаются все три линии, и это центр треугольника. Ниже приведена формула для нахождения координат центра треугольника.
Обратите внимание, что эта формула действительна только для треугольника, если вы попытаетесь использовать эту формулу для других форм или объектов, она не будет работать.
Учитывая вершины треугольника и , вычислить координаты центроида.
Если две вершины треугольника равны и , а центр тяжести равен , вычислите третью вершину.
Если вы можете найти середину отрезка, вы можете разделить его на две равные части. Нахождение середины каждой из двух равных частей позволяет найти точки, необходимые для разделения всего отрезка на четыре равные части. Нахождение середины каждого из этих сегментов дает вам восемь равных частей и так далее.
Разделение отрезка
Вы можете разделить отрезок на множество равных частей. Это зависит от того, сколько частей вы хотите, но одно можно сказать наверняка, что все эти части будут равными. Разделите отрезок на две части, найдя его середину. Теперь у вас есть две части: начало линии до середины и от середины до конечной точки.
No related posts.
План урока:
Взаимосвязь координат векторов и его начала и конца
Определение координат середины отрезка
Вычисление длины вектора и отрезка
Простейшие задачи с использованием координатного метода
Использование признака коллинеарности векторов
Деление отрезка в заданном отношении
Введение прямоугольной системы координат
Взаимосвязь координат векторов и его начала и конца
На координатной плоскости любые две точки можно соединить друг с другом. В результате получается отрезок. Если же дополнительно указано, какая из этих точек – начало отрезка, а какая – конец, то в итоге мы уже имеем вектор. Попробуем определить, есть ли связь между координатами вектора и координатами (можно использовать сокращение коор-ты) его граничных точек.
Пусть в прямоугольной системе координат отмечены точки А (хА;уА) и В(хB;уB).Тогда можно задать вектор АВ. Также построим ещё два вспомогательных вектора ОА и ОВ, начинающиеся в точке О – начале коор-т:
Вектора ОВ и ОА – это радиус-векторы (так как их начало находится в начале координат), поэтому их коор-ты ОВ и ОА совпадают с коор-тами их концов (В и А соответственно):
Итак, зная коор-ты граничных точек вектора, можно найти и координаты данного вектора:
Например, если вектор начинается в точке А (2; 1), а заканчивается в точке В (6; 3), то коор-ты вектора АВ можно определить так:
Задание. Начало вектора находится в точке М, а конец – в точке К. Определите его коор-ты, если:
а) М(2; 7) и К(6; 8);
б) М(5; 1) и К(2; 10);
в) М(0; и К(9; -5).
Решение. Из коор-т К мы просто вычитаем соответствующие коор-ты М, и в итоге определяем коор-ты вектора:
Задание. От точки H (8; 15) отложили вектор m{5; – 6}. Каковы координаты конца этого вектора?
Решение. Обозначим интересующие нас коор-ты как (хк; ук). Для вектора, начинающегося в точке (8; 15) и заканчивающегося в точке (хк; ук), коор-ты можно вычислить так:
x = xk — 8
y = yk — 15
Однако нам даны координаты вектора, то есть величины х и у, поэтому мы можем записать:
5 = xk — 8
-6 = yk — 15
Оба равенства представляет собой уравнения, которые можно решить:
5 = xk — 8
xk = 5 + 8 = 13
-6 = yk — 15
yk = -6 + 15 = 9
В итоге получили, что конец вектора находится в точке (13; 9).
Ответ:(13; 9).
Определение координат середины отрезка
Пусть построен вектор АВ, причем известны коор-ты его начала А (хА; уА) и его конца B (хB; уB). Обозначим буквой С середину отрезка АВ и попытаемся вычислить коор-ты С, которые мы обозначим как (хC; уC):
Рассмотрим вектора АС и СВ. Они имеют одинаковую длину, потому что С разбивает АВ пополам. Также АС и СВ коллинеарны, так как они лежат на одной прямой АВ. При этом они и сонаправлены, а значит, эти вектора равны:
Нам удалось выразить коор-ты С через координаты А и В. В итоге можно сформулировать правило:
Например, пусть необходимо найти координаты середины отрезка HK, при этом известны коор-ты его концов: Н(5; – 2) и К(3; 4). Сначала найдем полусумму коор-т х и получим эту же коор-ту у середины:
Итак, точка середины отрезка имеет коор-ты (4; 1). Для наглядности построим отрезок ОК и продемонстрируем, что его середина действительно находится в точке (4; 1):
Вычисление длины вектора и отрезка
Пусть есть произвольный вектор с коор-тами {x; у}. Отложим его от точки начала координат, после чего из его конца опустим перпендикуляры ОВ и ОС на координатные оси:
Для простоты рассмотрим случай, когда х и у – положительные числа, то есть точка А находится в первой четверти. Тогда длина ОВ будет равна х:
OB = x
Так как ОСАВ – прямоугольник, то стороны ОС и АВ одинаковы, причем ОС имеет длину, равную коор-те у:
AB = OC = y
Теперь изучим ∆ОВА. Он прямоугольный, и ОА в нем – гипотенуза, поэтому можно записать теорему Пифагора:
OA2 = OB2 + AB2
Теперь заменим отрезки ОВ и АВ на х и у:
OA2 = x2 + y2
Осталось извлечь квадратный корень:
Мы вывели формулу для вычисления длины вектора по его координатам. Можно рассмотреть и остальные случаи, когда точка А лежит в другой четверти координатной плоскости или на координатных осях, однако во всех случаях будет получаться одинаковая формула.
Задание. Определите длину вектора с коор-тами:
Решение. Во всех случаях просто возводим каждую коор-ту в квадрат, потом складываем полученные числа и извлекаем из полученной суммы квадратный корень:
Теперь предположим, что имеется две точки с коор-тами (х1; у1) и (х2; у2). Требуется найти длину отрезка, их соединяющего, то есть расстояние между этими двумя точками. Если принять одну из этих точек, например первую, за начало вектора, а вторую за его конец, то задача сведется к вычислению длины этого вектора. Его коор-ты можно будет высчитать так:
x = x2 — x1
y = y2 — y1
Тогда расстояние между точками (обозначим его как d) будет вычисляться по формуле:
Задание. Определите длину отрезка MP, если известны коор-ты его концов:
Простейшие задачи с использованием координатного метода
Выведенные нами формулы являются базовыми для расчетов, связанных с коор-тами. До этого мы решали лишь простейшие задачи на использование этих формул, однако в более сложных задачах надо использовать сразу несколько более сложных формул.
Задание. Известны коор-ты трех вершин параллелограмма АВСD: А(4; 1), В(1; 1), С(3; 5). Определите коор-ты четвертой вершины D.
Решение.
Сначала найдем коор-ты вектора ВС. Мы можем это сделать, так как нам известны коор-ты его начальной и конечной точки:
xBC = xC — xB = 3 — 1 = 2
yBC = yC — yB = 5 — 1 = 4
Так как в параллелограмме противоположные стороны имеют одинаковую длину и при этом параллельны, то вектора ВС и АD равны, то есть имеют одинаковые коор-ты:
Итак, D имеет коор-ты (6; 5).
Ответ (6; 5).
Задание. В – середина отрезка АС. Известны коор-ты точек: А(2; 4) и В(0; 18). Найдите коор-ты С.
Решение.
Для начала будем работать только с коор-той х. Так как В – середина АС, то их абсциссы (напомним, так называют координату х точек) связаны соотношением:
Задание. Отрезок MN имеет длину 13. Даны координаты концов отрезка: M(4; 6) и N (х; 1). Найдите величину переменной х.
Нам по условию известно это расстояние для точек M и N, а также известны 3 и 4 коор-т точек. Поэтому надо просто подставить все известные данные в формулу, получить уравнение и решить его:
Далее извлекаем корень из обеих частей, но при этом появляется два различных корня (так обычно и бывает при решении квадратных уравнений):
Ответ: – 8 или 16.
Задание. Расстояние от точки S(2x; – 2) до точки T (6; 4х) составляет 14. Определите величину х.
Решение. Задача во многом аналогично предыдущей, надо подставить в формулу расстояния между точками данные из условия и решить получившееся уравнение:
Решаем это квадратное уравнение через дискриминант:
Ответ: (– 2,6) или 3.
Задание. Найдите коор-ты точки M на рисунке, если точка А имеет коор-ты (4; 2).
Решение. По рисунку видно, что середина отрезка находится в точке О(0; 0). Коор-ты середины отрезка (то есть точки О) и его граничных точек связаны формулами:
Использование признака коллинеарности векторов
На прошлом уроке мы выяснили, что если вектора коллинеарны, то их коор-ты пропорциональны. Это позволяет определить, лежит ли та или иная точка на указанной прямой.
Задание. Даны точки А(1; 2), В(4; 7) и С (10; 17). Определите, лежит ли точка В на прямой АС.
Решение. Если А, В и С принадлежат одной прямой, то любые два вектора, проведенные через эти точки, окажутся коллинеарными друг другу. Если же они НЕ лежат на одной прямой, то наоборот, любые два таких вектора окажутся неколлинеарными. То есть надо составить два вектора, например, АВ и ВС, и проверить их коллинеарность.
Определим коор-ты АВ:
Напомним, что для проверки векторов на коллинеарность надо поделить их коор-ты друг на друга. Если получится одно и то же число, то вектора коллинеарны:
В обоих случаях получилось одинаковое число, значит, вектора коллинеарны.
Ответ: Да, точка B лежит на прямой AC.
Задание. Проверьте, лежат ли точки А(3; 7), В (8; 12) и С(6; 4) на одной прямой.
Решение. Снова вычисляем коор-ты векторов АВ и ВС:
Получились разные числа, следовательно, вектора АВ и ВС не коллинеарны, а потому точки А, В и С никак не могут лежать на одной прямой.
Ответ: Нет, точки A,B,C не лежат на одной прямой.
Задание. Проверьте, параллельны ли друг другу отрезки АВ и CD, если известны коор-ты: А(1; 1), В(5; 5), С(4; 2), D(6; 4).
Решение. Если отрезки параллельны, то и вектора АВ и CD должны быть коллинеарными. Проверим это также, как мы это делали в двух предыдущих задачах:
Итак, вектора коллинеарны. Означает ли это, что отрезки АВ и CD параллельны? Ещё нет. На самом деле возможно два случая:
1) АВ и CD действительно параллельны;
2) АВ и СD лежат на одной прямой, и тогда их параллельными считать нельзя.
Как же проверить, какой из двух случаев относится к этой задаче? Надо рассмотреть ещё один ВС. Если реализуется второй случай, то он окажется коллинеарен вектору АВ. В первом же случае он будет ему не коллинеарен.
Получили различные числа, значит, АВ и ВС не коллинеарны. Теперь мы можем точно утверждать, что АВ и СD параллельны.
Ответ: Да, отрезки AB и CD параллельны.
Деление отрезка в заданном отношении
Мы уже научились находить коор-ты середины отрезка. Можно сказать, что середина – это точка, которая разбивает отрезок в отношении 1:1, то есть на равные отрезки. А что делать в более сложном случае, если нужно найти точку, разбивающую отрезок в другом отношении, например, в отношении 2:1? Выведем для такого случая формулу.
Пусть точка С разбивает отрезок АВ в некотором отношении так, что отрезок АС в k больше отрезка СВ:
(Примечание. Если отрезок АС меньше СВ, то число k будет меньше единицы.)
Как и обычно, для обозначения коор-т точек используем индексы, совпадающие с обозначением точек: А(xА; уА), В(xВ; уВ) и С(xС; уС).
Нам также потребуются вектора АС{xАС; уАС} и СВ{xСВ; уСВ}. Так как эти вектора сонаправлены, и АС в k раз длиннее, то
Абсолютно аналогичные образования приведут к такому же выражению для коор-ты у:
Рассмотрим на примерах использование этой формулы.
Задание. На отрезке РM отложена точка K так, что она разбивает РM на отрезки РK и KM в отношении РK:KM = 2:1. Даны коор-ты точек: Р(6; 3) и К (18; 12). Вычислите коор-ты K.
Решение.
Отношение РК:КМ = 2:1 означает, что отрезок РК в 2 раза длиннее, чем КМ. Это означает, что в формуле
Задание. Точки B (5; – 16) и H(29; 24) соединены отрезком. Точка M на отрезке ВН отмечена так, что ВМ:МН = 3:5. Определите коор-ты точки М.
Решение. Из отношения ВМ:МН = 3:5 вытекает, что ВМ длиннее МН в
3/5 = 0,6 раз
то есть фактически ВМ короче МН. То есть при использовании формулы
Рассмотрим ещё несколько более усложненных задач с использованием коор-т.
Задание. Точка K лежит на оси Ох, при этом она равноудалена от точек Е(2; 2) и F(6; 10). Найдите коор-ты К.
Решение. У любой точки, лежащей на оси Ох, коор-та у будет равна нулю, в том числе и у точки К:
yk = 0
Будем обозначать неизвестную коор-ту К как х:
xk = x
Напомним расстояние между точками можно рассчитать, используя формулу:
Получили иррациональное уравнение. В данном случае можно просто приравнять подкоренные выражения, однако после получения корней надо проверить, нет ли среди них посторонних:
Проверяем, не является ли корень посторонним. Для этого просто подставляем его в уравнение:
Корень действительно подошел, поэтому коор-та х точки К равна 16.
Ответ: (16; 0).
Введение прямоугольной системы координат
Даже если в формулировке задачи коор-ты и вектора прямо не упоминаются, может быть полезным самостоятельно добавить в нее прямоугольную систему координат. Это позволит использовать формулы, используемые в методе коор-т, для решения задачи.
Задание. Докажите, что если в параллелограмме сложить квадраты всех его сторон, то получится то же число, что и при сложении квадратов диагоналей этого параллелограмма.
Решение. Расположим систему коор-т таким образом, одна из сторон параллелограмма находилась на оси Ох, причем одна ее вершина совпадала с началом коор-т, а другая имела положительную коор-ту х:
Пусть вершина А находится в начале коор-т, и тогда она имеет коор-ты (0; 0). Вершина D лежит на Ох, тогда ее ордината равна нулю, а абсциссу обозначим буквой а. Точка В имеет произвольные коор-ты (b; с), коор-ты же точки С можно рассчитать. Сначала заметим, что вектор коор-ты вектора АВ совпадают с коор-тами точки В, так как он является радиус-вектором:
Вектора АВ и DC равны, потому что они лежат на параллельных прямых и имеют одинаковую длину:
Итак, коор-ты С – это (а + b; с).
Теперь мы должны длину каждой стороны параллелограмма и возвести ее в квадрат. Обратите внимание, что если расстояние между точками рассчитывается по формуле
Равенство доказано.
Задание. В равнобедренном треугольнике длина основания составляет 80 см, а опущенная на нее медиана имеет длину 160 см. Вычислите длины двух других медиан.
Решение. Пусть АВС – рассматриваемый в задаче треугольник, причем АВ – его основание. Расположим систему коор-т так, чтобы ее начало совпадало с точкой, в которой медиана пересекается с основанием:
В этом случае вершина, из которой опущена медиана, будет иметь коор-ты (0; 160), а две другие вершины будут иметь коор-ты (– 40; 0) и (40; 0).
Нам надо найти длину двух других медиан АM и BN. Они одинаковы по длине, поэтому достаточно найти длину только одной из них, например, АМ. Для этого сначала найдем коор-ты М, которая является серединой ВС:
Сегодня мы познакомились с важнейшими формулами, используемыми в методе коор-т, и научились решать некоторые простейшие задачи. В будущем мы узнаем о более сложных задачах, в которых будут фигурировать не только отрезки и многоугольники, но и окружности.