Как найти точность измерений приборов

Содержание:

При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с  точностью до сантиметра, размеры дома, стадиона – с точностью до метра.

Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.

При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.

Пример:

Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).

Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением 
шкалы линейки совпадает второй край стола  (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.

Точность измерений и погрешности в физике - определение и формулы с примерами

Абсолютная погрешность измерения ∆ (ДЕЛЬТА)

Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Точность измерений и погрешности в физике - определение и формулы с примерами

Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.  

Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.

Относительная погрешность измерения ε (ЭПСИЛОН)

Иногда важно знать, какую часть составляет наша погрешность от значения 
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: Точность измерений и погрешности в физике - определение и формулы с примерами.  То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой  (эпсилон): 

Точность измерений и погрешности в физике - определение и формулы с примерами     (5.1)

Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения –  плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.

Стандартная запись результата измерений и выводы

Таким образом, абсолютная погрешность в примере 5.1. составляет ∆L = 0,5 мм, а результат измерений следует записать в стандартном виде: L = (706,0 Точность измерений и погрешности в физике - определение и формулы с примерами 0,5) мм — Опыт выполнен с относительной погрешностью 0,0007 или 0,07%.

На точность измерения влияет много факторов, в частности:

  1. При совмещении края стола с делением шкалы рулетки мы неминуемо допускаем погрешность, поскольку делаем это «на глаз» — смотреть можно под разными углами.
  2. Не вполне ровно установили рулетку.
  3. Наша рулетка является копией эталона и может несколько отличаться от оригинала.

Все это необходимо учитывать при проведении измерений.

Итоги:

  • Измерения в физике всегда неточны, и надо знать пределы погрешности измерений, чтобы понимать, насколько можно доверять результатам.
  • Абсолютную погрешность измерения можно определить как половину цены деления шкалы измерительного прибора. 
  • Относительная погрешность есть частное от деления абсолютной погрешности на значение измеряемой величины:  Точность измерений и погрешности в физике - определение и формулы с примерами и указывает на качество измерения. Ее можно выразить в процентах.

Измерительные приборы

Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.

Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.

Точность измерений и погрешности в физике - определение и формулы с примерами

Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.

Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.

Как определяют единицы длины и времени

В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.

Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).

Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.

Можно ли расстояние измерять годами

Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!

Что надо знать об измерительных приборах

Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?

Минимальное (нижний предел) и максимальное (верхний предел) значения шкалы прибора — это пределы измерения. Чаще всего предел измерения один, но может быть и два. Например, линейка имеет один предел — верхний. У линейки на рисунке 32 он равен 25 см. У термометра на рисунке 33 два предела: верхний предел измерения температуры равен +50 °С; нижний -40 °С.

Точность измерений и погрешности в физике - определение и формулы с примерами

На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления — это значение наименьшего деления шкалы прибора.

Как определить цену деления шкалы? Для этого необходимо:

  1. выбрать на шкале линейки два соседних значения, например 3 см и 4 см;
  2. подсчитать число делений (не штрихов!) между этими значениями; например, на линейке 1 (см. рис. 34) число делений между значениями 3 см и 4 см равно 10;
  3. вычесть из большего значения меньшее (4 см — 3 см = 1 см) и результат разделить на число делений.

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления шкалы мензурки 2: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Точность измерений и погрешности в физике - определение и формулы с примерами

А какими линейкой и мензуркой можно измерить точнее?

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.

Понятно, что точнее измерен объем воды мензуркой 2, цена деления которой меньше Точность измерений и погрешности в физике - определение и формулы с примерами Значит, чем меньше цена деления шкалы, тем точнее можно измерить данным прибором. Говорят: мензуркой 1 мы измерили объем с точностью до 5 мл (сравните с ценой деления шкалы Точность измерений и погрешности в физике - определение и формулы с примерами), мензуркой 2 — с точностью до 1 мл (сравните с ценой деления Точность измерений и погрешности в физике - определение и формулы с примерами). Точность измерения температуры термометрами 1 и 2 (рис. 36) определите самостоятельно.

Точность измерений и погрешности в физике - определение и формулы с примерами

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.

Главные выводы:

  1. Верхний и нижний пределы измерения — это максимальное и минимальное значения шкалы прибора.
  2. Цена деления шкалы равна значению наименьшего деления шкалы.
  3. Чем меньше цена деления шкалы, тем точнее будут проведены измерения данным прибором.

Для любознательных:

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.

  • Заказать решение задач по физике

Пример решения задачи

Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.

Точность измерений и погрешности в физике - определение и формулы с примерами

Решение:

1) Цена деления нижней шкалы:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления средней шкалы: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления верхней шкалы:

2) Определенный но нижней шкале с точностью до 10° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по средней шкале с точностью до 5° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по верхней шкале с точностью до 1° Точность измерений и погрешности в физике - определение и формулы с примерами

  • Определение площади и объема
  • Связь физики с другими науками
  • Макромир, мегамир и микромир в физике
  • Пространство и время
  • Как зарождалась физика 
  • Единая физическая картина мира
  • Физика и научно-технический прогресс
  • Физические величины и их единицы измерения

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе.

Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована (эталоны). 

Обрати внимание!

Процесс измерения физической величины состоит из:

1) поиска её значения с помощью опытов и средств измерения;

2) вычисления достоверности (точности измерений) полученного значения. 

Точность измерений зависит от многих причин:

  • расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;
  • деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;
  • несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;
  • физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой.

линейка.svg

Рис. (1). Линейка и брусок

Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

У нас есть два варианта определения длины этого бруска.

(1). Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм).

(2). Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного.

Погрешность измерительного прибора равна цене деления прибора.

Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см.

Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. В этом случае цена деления будет равна (1) мм, а длина бруска — (9,8) см.

images.jpg

Рис. (2). Деревянная линейка

Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм.

lin.png

Рис. (3). Штангенциркуль

На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений.

Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Результаты измерения записывают в виде

A=a±Δa

, где (A) — измеряемая величина, (a) — средний результат полученных измерений,

Δa

  — абсолютная погрешность измерений.

Источники:

Рис. 1. Линейка и брусок. © ЯКласс.

Смелое заявление: в экспериментальной науке неукоснительная точность измерений не достижима. Ну, с одной стороны, это действительно так. С другой стороны, точность все-таки — понятие относительное. Если учитывать погрешность измерений, то, оказывается, «приручаются» даже самые разбросанные величины. Научимся же приручать. Сегодня о том, что такое погрешность. Как найти погрешность, как выглядит формула погрешности — рассказываем и показываем.

Откуда берется погрешность измерений?

Одна из самых быстрых машин, которую можно встретить на городской дороге — BMW M8 Competition. Согласно тестированиям автопроизводителя способна разгоняться до 100 км/ч за впечатляющие 2.5 с. Иными словами, вы успеете моргнуть лишь единожды. Прежде, чем спидометр стильного немецкого купе выдаст отметку «100» и, озорно светя задними габаритными огнями, улетит в закат.

Рисунок 1. Панель приборов автомобиля. Спидометр располагается справа

Физические величины различного рода и их измерения так или иначе окружают нас везде. К примеру, та же вышеупомянутая динамика разгона. Время, за которое транспортное средство разгоняется до определенной скорости, является важным параметром для любого автомобилиста, приобретающего новенький спорткар в салоне.

В жару мы то и дело поглядываем на отметку термометра. И ужасаемся, когда температура на отметке безжалостно приближается к 40 °C. Если опаздываем, то обязательно держим под рукой часы и проверяем время по минутам.

Когда худеем, каждое утро начинаем со взвешивания и фиксируем массу своего тела в килограммах. Расстраиваемся, если набрали пару сотен лишних граммов.

Это — физические величины. Правда несмотря на то, что физика относится к наукам точным, как бы удивительно ни было, ни одна ее величина — ни время, ни длина, ни скорость, ни что-либо еще —  не может быть выражена с предельной точностью.

Ведь вряд ли вы весите, скажем, ровно 60 килограмм без единого лишнего миллиграмма. Или имеете рост ровно 170 сантиметров. Ровно так же, как и BMW M8 Competition не разгоняется до 100 км/ч абсолютно ровно за две с половиной секунды.

Что такое точность измерений?

Точность измерений характеризует близость результата измерения к фактическому значению измеряемой величины. Строго говоря, ни одна физическая величина не может быть измерена с абсолютной точностью. То есть так, чтобы данные измерительного прибора отображали истинное значение.

Мир и его явления, на самом деле, практически всегда имеют отношение к иррациональным числам. Таким, как, к примеру, результат деления десяти на три. Наберите, кстати, данную операцию на калькуляторе и посмотрите на то, как неэстетично в реальности выглядят данные — с кучей знаков после запятой, за которыми не угнаться.

Однако иррациональность чисел не удивляет, да и слишком абстрактна, дабы уловить суть. Что есть деление? Тогда, для конкретности, стоит покуситься на святое — на время. Казалось бы, что может быть точнее времени, показываемого самыми точными на свете часами — атомными часами?

И тем не менее, даже если вы зайдете на онлайн-ресурс, официально регистрирующий международное атомное время с точностью до миллисекунд, действительного точного измерения времени там вы не найдете.

Всегда есть условности: задержка передачи данных между сетевыми элементами; ваш мозг, регистрирующий и обрабатывающий информацию, поступающую через органы чувств и т. д. Все это отдаляет нас, хоть и несущественно, от фактического значения величины времени.

Именно поэтому в физике одним из важнейших понятий является понятие погрешность измерений.

Цена деления и точность измерений

Представьте, что вас отправили в магазин купить сахар, но вот незадача: фасованный в пачках как раз закончился и остался только на развес. Что делать, вы просите продавца тогда отмерить вам ровно килограмм. Продавец взял лопатку, наполнил пакет, положил его на весы, и они выдают значение — 1.000 кг.

Как удачно положили.

Вы рассчитываетесь и счастливым возвращаетесь домой. А теперь представим, что по необыкновенной случайности у вас дома имеются весы. Они показывают массу с точностью до миллиграмма. Вы решаете интереса ради перевесить пакет, чтобы посмотреть, действительно ли его масса равна строго килограмму.

И какого же удивление, когда более точные весы показывают массу не в 1.000 кг, а в 0.999990 кг. Иными словами, вас обсчитали. Обсчитали, между прочим, на десять миллиграмм!

Чем меньше цена деления прибора, тем точнее измерение.

Ваши весы с учетом массы до миллиграмма оказались точнее магазинных «граммовых» весов. Однако и это не предел, ведь существуют фармакологические весы, определяющие массу до микрограмма — одной миллиардной килограмма. Так можно продолжать до бесконечности, пока у нас не закончатся технологические возможности сконструировать еще более точные весы.

Однако все измерительные приборы, пусть и самые точные, несовершенны. Несовершенно даже само то, как мы видим, слышим и ощущаем мир вокруг. Это, наряду с прочими факторами, приводит к тому, что при измерении величины получается ее приближенное значение, не истинное.

Что такое погрешность измерений?

Мы готовы дать определение тому, что такое погрешность:

Погрешность — это разница между приближенным и истинным значениями.

В физике погрешность — обыденное явление, присутствующее внутри практически каждой величины, и мало что имеет общего с ошибкой в привычном понимании слова.

Все величины, которые, к примеру, вы видите в типовых физических задачах на вычисление, так или иначе содержат погрешность. Ее не обозначают для удобства. Поэтому помните о невозможности проводить эксперименты в идеальных условиях и о том, что ни один прибор чаще всего не сможет показать результат таким, каков он есть на самом деле.

Важно. Погрешность не равно ошибке. В обычном, бытовом языке мы привыкли к тому, что слово «погрешность» у нас ассоциируется с просчетом или упущением.

Как правило, при однократном проведении измерения определить значение погрешности крайне затруднительно: для ее выявления обычно проводят серию равноточных измерений — измерений, произведенных в одинаковых условиях.

После результаты сличаются, то есть сравниваются между собой и, при необходимости, сопоставляются с различными экспериментальными величинами. На основе данных, полученных в результате измерений и сличения, вычисляется погрешность.

Как найти погрешность: эксперимент с линейкой

Обнаружить явление погрешности можно самостоятельно вне строгой лабораторной обстановки: достаточно провести простой эксперимент измерения длины с обычной школьной линейкой. В качестве примера, возьмем карандаш и выполним с ним замеры.

Рисунок 2. Замер линейкой с ценой деления 1 см.

Во-первых, необходимо зафиксировать цену деления измерительного прибора. Цена деления определяется разностью двух ближайших отметок. В нашем случае она равна 1 см.

Примечание. На разметке измерительного прибора всегда указываются единицы измерения. К примеру, на стандартной линейке можно увидеть пометку «см», сантиметры.

Довольно часто используемые для измерений приборы не работают с основными единицами СИ — единицы величин либо являются производными, как сантиметр, либо, как миллиметр ртутного столба, являются внесистемными.

Когда вас просят привести ответ в СИ, не забывайте о переводе значений, если измерительный прибор работает с внесистемными или производными единицами. В случае с сантиметровой линейкой, при подобном требовании, обязательно выражение результата в метрах и т. п.  

Далее совмещаем конец карандаша с нулевой отметкой. Видим, что второй конец располагается между отметками 12 и 13.

Какой из этих результатов следует принять за длину нашего карандаша?

Очевидно, что тот, который будет ближе к истинному значению — 12 см. Если бы мы провели аналогичный опыт, использовав более точную линейку с ценой деления в миллиметр, мы получили бы значение 12.2 см.

Рисунок 3. Замер линейкой с ценой деления 1 мм

А какой из этих результатов лучше будет засчитать теперь? Какой правильный?

Оба результата фактически являются верными, их разница заключается лишь в том, что получены они были с разной точностью измерения: длина карандаша во втором варианте была дана с точностью до миллиметра, в первом — до сантиметра. Можно было бы воспользоваться микро́метром, еще более точным измерительными прибором, и получить результат с точностью до микроме́тра. Однако в случае с карандашом точности до миллиметра будет достаточно.

Наш ответ: 12.2 см.

Вычисление погрешности

Но что делать, если бы мы захотели учесть погрешность? Как ее вычислить и обозначить математически?

На самом деле, точно определить погрешность не так просто. Для этого необходимо владение методами математической статистики, для чего требуется уже знание высшей математики. Плюс немаловажно определение комплексных параметров вроде класса точности измерительного прибора.

Поэтому для простоты измерений с погрешностью считается, что обычно она равна половине цены деления прибора. В нашем эксперименте при цене деления линейки в сантиметр погрешность составила 0.5 см. При цене деления в миллиметр — 0.05 см.

Еще раз, внимание:

За погрешность измерений берется половина цены деления прибора.

Так, полученные замеры, где $l$ — длина карандаша, можно было бы записать в следующем виде:

$l$ = 12 ± 0.5 cм — в случае, когда цена деления составляла сантиметр;

$l$ =  12.2 ± 0.05 см — в случае, когда цена деления составляла миллиметр.

Математический символ плюс-минус (±) используется для обозначения интервала значений и расшифровывается следующим образом: истинное значение величины заключено в диапазоне «от-до». 

Формула погрешности

Таким образом, общая формула для записи величин с погрешностью выглядит следующим образом:

$X = x pm Delta x,$

где $X$ — измеряемая величина, $x$ — результат измерений, $Delta x$ — погрешность. 

Выходит, что истинное значение длины карандаша располагается в диапазоне значений от 11.5 см до 12.5 см.

При более точных замерах до миллиметра: от 12.15 см до 12.25 см.

Однако остается один последний интересный момент. Несмотря на то, что мы провели замеры и определили длину, философски говоря, вопрос остается вопросом: так какую же точную длину имеет карандаш?

Таковы погрешности. Где-то от, где-то до. 

А точно — никак.

Точность
измерения —
это
степень приближения результатов
измерения к
некоторому
действительному значению физической
величины. Чем меньше точность, тем больше
погрешность измерения и, соответственно,
чем меньше погрешность, тем выше точность.

Даже
самые точные приборы не могут показать
действительного значения измеряемой
величины. Обязательно существует
погрешность измерения, причинами которой
могут быть различные факторы.

Погрешности
могут быть:

систематические,
например,
если тензосопротивление плохо наклеено
на упругий элемент, то деформация его
решетки не будет соответствовать
деформации упругого элемента и датчик
будет постоянно неправильно реагировать;

случайные,
вызванные,
например, неправильным функционированием
механических или электрических элементов
измерительного устройства;

• грубые,
как правило, допускаются самим
исполнителем, который из-за неопытности
или усталости неправильно считывает
показания прибора или ошибается при
обработке информации. Их причиной могут
стать и неисправность средств измерений,
и резкое изменение условий измерения.

Полностью
исключить погрешности практически
невозможно, а вот установить пределы
возможных погрешностей измерения и,
следовательно, точность их выполнения
необходимо.

Погрешностью
измерения А(Х) называют отклонение
результата измерения (Х) от истинного
или действительного значения (Х„или
Х) измеряемой величины:

Погрешность
может быть абсолютной, относительной
и при- веденной.

Абсолютная
погрешность
измерения
(Л) представляет собой разность между
измеренной величиной и истинным или
действительным значением этой величины,

Относительная
погрешность
измерения
представляет собой отношение абсолютной
погрешности измерения к действительному
значению измеряемой величины. Относительная
погрешность может выражаться в долях,
тогда б = a или в процентах, тогда с = 2 —
100. Х.

Приведенная
погрешность
измерения
(у) представляет собой отношение
абсолютной погрешности к
нормированному
значению величины, например, ее
максимальному значению, т. е. у = А = + —
.100, где Х— нормированное значение
величины, XД — максимальное значение
измеряемой величины). При многократных
измерениях в качестве истинного значения,
как правило, используют среднее
арифметическое значение:

В
отличие от относительной и приведенной
абсолютная погрешность всегда имеет
ту же размерность, что и измеряемая
величина.

Величина
Х, полученная в одной серии измерений,
является случайным приближением к XД.
Для оценки ее возможных отклонений от
Х определяют среднее
квадратическое отклонение:

Для
оценки рассеяния отдельных результатов
измерения (Х) относительно среднего
арифметического значения Х, определяют
среднеквадратическое отклонение:

Применение
формул (1.3) правомерно при условии
постоянства измеряемой величины в
процессе измерения. Если при измерении
величина изменяется, как, например, при
измерении потенциала проводника через
равные отрезки длины, то в формулах
(1.3) в качестве Х, следует брать какую-то
постоянную величину, например, начало
отсчета.

Среднее
арифметическое значение из ряда измерений
всегда имеет меньшую погрешность, чем
погрешность каждого определенного
измерения. Это и отражает формула (1.4),
определяющая фундаментальный закон
теории погрешностей, из которого следует,
что если необходимо повысить точность
результата (при исключенной систематической
погрешности) в 2 раза, то число измерений
нужно увеличить в 4 раза; если требуется
точность в 3 раза, то число измерений
увеличивается в 9 раз и т. д.

Нужно
четко разграничивать применение и
величина а, используется при оценке
погрешностей окончательного результата,
— при оценке погрешности метода
измерения.

Случайная
(А)
и систематическая
(Л)
составляющие погрешности измерения
проявляются, как правило, одновременно.
Общая погрешность при их независимости
определяется их суммой Л=Л +А, или через
среднеквадратическое отклонение

Значение
случайной погрешности заранее неизвестно,
оно возникает из-за множества неутонченных
факторов.

Для
уменьшения случайной погрешности есть
два пути: или повышать точность измерений
(уменьшение a), или увеличивать числа
измерений (и).

Если
считать, что все возможности
совершенствования техники измерений
использованы, то остается только второй
путь. При этом отметим, что уменьшать
случайную составляющую погрешности
целесообразно лишь до тех пор, пока
общая погрешность измерений не будет
полностью определяться систематической
составляющей.

Если
систематическая погрешность определяется
классом точности средств измерения то
необходимо, чтобы доверительный интервал
где
коэффициент
был существенно меньше. Обычно принимают
при доверительной вероятности Р
=
0,95.
В случае невозможности выполнения этого
условия необходимо коренным образом
изменить методику измерения.

При
сравнении случайных погрешностей с
различными законами распределения
использование показателей, которые
сводят плотность распределения к одному
или нескольким числам, обязательно.
Такими числами могут быть среднеквадратическое
отклонение, доверительный интервал и
доверительная вероятность. Надежность
самого среднеквадратического отклонения
(о.) определяется по формуле Принято
считать, что если а.
<0,25
о, то оценка точности надежна. Это условие
выполняется уже при n
=
8.

На
практике важно уметь правильно
сформулировать требования к точности
измерений. Например, если за допустимую
погрешность измерения принять А = 3 а
то,
повышая требования к контролю, при
сохранении технологии изготовления
изделий увеличивается вероятность
брака.

Наиболее
вероятная погрешность (А) отдельного
измерения определяется по формуле

Таким
образом, с увеличением и
значение
вероятной погрешности Л, быстро
уменьшается, но лишь до и = 5. Следовательно,
увеличение числа измерений на одном
режиме больше 5 нецелесообразно, что
соответствует условию получения надежных
значений о.

Число
измерений определяют, используя одно
из выражений:

где
и— число отбрасываемых экспериментальных
результатов.

С
учетом коэффициентов Стьюдента можно
оценить относительную погрешность
отдельного измерения:

Считается,
что систематические погрешности могут
быть обнаружены и исключены. Однако в
реальных условиях полностью исключить
систематическую составляющую погрешности
невозможно. Всегда остаются какие-то
неисключенные факторы, которые нужно
учитывать, и которые будут систематической
погрешностью измерения. То есть,
систематическая погрешность тоже
случайна, и ее определение обусловлено
лишь установившимися традициями
обработки и представления результатов
измерения.

Необнаруженная
систематическая составляющая погрешности
опаснее случайной: если случайная
составляющая вариацию (разброс)
результатов, то систематическая —
устойчиво их искажает (смещает). g любом
случае отсутствие или незначительность
(пренебрежение) систематической
погрешности надо доказать.

Действительно,
если взять два ряда измерений одной и
той же величины, то средние результаты
этих рядов, как правило, будут различны.
Это расхождение может быть определено
случайной или систематической
составляющей.

Последовательность
выявления характера погрешности

1.
Из двух рядов независимых измерений
находят средние арифметические значения

2.
Определяют значение

4.
Является или нет разность

Таким
образом, для характеристики случайной
погрешности надо обязательно задать
два числа: величину самой погрешности
(или доверительный интервал от Х, — Л
до Х, + Л ) и доверительную вероятность.

В
отличие от случайной погрешности,
выявленной в целом вне зависимости от
ее источников, систематическая погрешность
рассматривается по составляющим в
зависимости от источников ее возникновения,
причем различают методическую,
инструментальную и субъективную
составляющие погрешности.

Субъективная
составляющая
погрешности связана с индивидуальными
особенностями оператора. Как правило,
она возникает из-за ошибок в отсчете
показаний (примерно 0,1 деления шкалы) и
неопытности оператора.

В
основном же систематические погрешности
возникают из-за методической и
инструментальной составляющих.

Методическая
составляющая
погрешности обусловлена несовершенством
метода измерения, приемами использования
средств измерения, некорректностью
расчетных формул и округления результатов.

Инструментальная
составляющая
погрешности возникает из-за собственной
погрешности средств измерения,
определяемой классом точности, влиянием
средств измерения на результат, и
ограниченной разрешающей способности
средств измерения.

Целесообразность
разделения систематической погрешности
на методическую и инструментальную
составляющие определяется следующим:

• для
повышения точности измерений можно
выделить лимитирующие факторы и принять
решение об усовершенствовании методики
или выборе более точных СИ;

• появляется
возможность определить составляющую
общей погрешности, увеличивающейся со
временем или под влиянием внешних
факторов, и целенаправленно осуществлять
периодические поверки и аттестации;

• инструментальная
составляющая может быть оценена до
разработки методики, а потенциальные
возможности точности определит только
методическая составляющая.

Таким
образом все виды составляющих погрешности
нужно анализировать и выявлять в
отдельности, а затем суммировать их в
зависимости от характера, что является
основной задачей при разработке и
аттестации методик выполнения измерений.

В
ряде случаев систематическая погрешность
может быть исключена путем устранения
источников погрешности до начала
измерений (профилактика погрешности),
а в процессе измерений — путем внесения
известных поправок в результаты
измерений.

Профилактика
— наиболее рациональный способ снижения
погрешности и заключается в устранении
влияния, например, температуры
(термостатированием и термоизоляцией),
магнитных полей (магнитными экранами),
вибраций и т. п. Сюда же относятся
регулировка, ремонт и поверка средств
измерений.

Исключение
постоянных систематических погрешностей
в процессе измерений осуществляют
методом сравнения (замещения,
противопоставления), компенсации по
знаку (предусматривают два наблюдения,
чтобы в результат каждого измерения
систематическая погрешность входила
с разным знаком), а исключение переменных
и прогрессирующих — способами симметричных
наблюдений или наблюдением четное число
раз через полупериоды.

Грубые
погрешности
измерений
могут сильно исказить и доверительный
интервал, поэтому их исключение
обязательно. Обычно они сразу видны в
ряду полученных результатов, но в каждом
конкретном случае это необходимо
доказать. Существует ряд критериев для
оценки промахов.

Критерий
В
этом случае считается, что результат,
возникающий с вероятностью Р
< 0,003,
малореален
и его можно квалифицировать промахом,
т. е. сомнительный результат Х отбрасывается

Величины
Х и а вычисляют без учета Х. Данный
критерий надежен при и=
20.

При
и
<
20, как правило, применяют критерий
Романовского.
В
этом случае используют уровень
значимости
Д,
который определяется равенством.
Полученное значение сравнивают со
значением, полученным теоретически
(З,) в зависимости от числа измерений
(и) и выбираемой вероятности (Р) (см. табл.
1.1).

Обычно
Р
находится
в пределах 0,01 — 0,05, и если p > (З„то
результат отбрасывают.

Если
число измерений невелико (до 10), то
используют критерий.
В
этом случае промахом считается результат
Х, при котором разность Х— Х, в зависимости
от числа измерений (и) превышает значения
k . а

Погрешность
измерений как характеристику точности
измерений нормируют в виде предела
допускаемых значений погрешности
средств измерений данного типа.

Основные
задачи нормирования погрешностей
заключаются в выборе показателей,
характеризующих погрешность, и
установлении допускаемых значений этих
показателей. Решение данных задач
определяется целью измерений и
использованием результатов. Например,
если результат измерения используется
наряду с другими при расчете какой-то
экспериментальной характеристики, то
необходимо учитывать погрешности
отдельных составляющих путем суммирования
их среднеквадратических отклонений.

Если
речь идет о контроле в пределах допуска
и нет информации о законах распределения
параметра и погрешности, то достаточно
ограничиться доверительным интервалом
с доверительной вероятностью. Эти
показатели должны сопровождать результаты
измерений тогда, когда дальнейшая
обработка результатов не предусмотрена.
Поэтому для оценки погрешностей измерений
необходимо установить вид модели
погрешности с ее характерными свойствами,
определить характеристики этой модели
и оценить показатели точности измерений
по характеристикам модели.

При
установлении модели погрешности
возникают типовые статистические
задачи: оценка параметров закона
распределения, проверка гипотез,
планирование эксперимента и др.

Точность
измерения может выражаться следующим:

• интервалом,
в котором с установленной вероятностью
находится суммарная погрешность
измерения;

• интервалом,
в котором с установленной вероятностью.
Находится систематическая составляющая
погрешности измерений;

• стандартной
аппроксимацией функции распределения
случайной составляющей погрешности
измерения и среднеквадратическим
отклонением случайной составляющей
погрешности измерения;

• стандартными
аппроксимациями функций распределения
систематической и случайной составляющих
погрешности измерения и их средними
квадратическим отклонениями и функциями
распределения систематической и
случайной составляющих погрешности
измерения.

На
практике применяется, как правило,
первый способ. Например, система допусков
построена на понятии предельной
погрешности
при
Р=
0
95,
т. е. максимальной погрешности, допускаемой
для данного измерения.

Числовое
значение результата измерения должно
оканчиваться цифрой того же разряда,
что и значение погрешности А.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Понравилась статья? Поделить с друзьями:
  • Как составить расписание в школе в эксель
  • Женатый любовник нашел другую любовницу как
  • Как найти среднюю численность за каждый квартал
  • Как найти мне путь в края
  • Как найти приложение microsoft store