Как найти ток срабатывания

Определяем ток срабатывания реле

I
с. р
= I
с. з.
* К с х
/ Ктт,

Где Ксх
коэффициент схемы. При схеме соединения
трансформаторов тока и реле в неполную
звезду Ксх= 1.

Ктт
— коэффициент трансформации
трансформаторов тока.

Ктт
= I
/ I,

Где
I
— первичный номинальный ток
трансформаторов тока равный 30 А.

I
— вторичный номинальный ток
трансформаторов тока равный 5 А.

Ктт
= 30 / 5 = 6

I
c.р.
= 43,59 * 1 / 6 = 7,26 А.

Принимаем
реле тока РТ – 40 / 10 с током уставки
равным 10 А

Определяем
действительное значение токов
срабатывания защиты

I
с.з.д.
= I у.
* Ктт

I
с.з.д.
= 10 * 6 =
60 А

Определяем
чувствительность защиты

К
ч
= I
к. з. min
/ I
с.з.д.>
1,5,

Где
I
к.з min
— двухфазный ток короткого замыкания
в конце ЛЭП

I
к.з min
= 1387.1 А

К
ч
= 1387,1 / 60 = 23,1

К
ч
> 1,5

Вывод:
чувствительность защиты будет
обеспечена.

Для
защиты ЛЭП от максимальных токов
короткого замыкания предусматриваем
максимальную токовую отсечку. Отсечка
защищает лишь часть линии. Выполняем
отсечку на реле РТ – 40, действующих
без выдержки времени. Отсечкой быстро
отключается повреждённый участок.

Селективность
максимальной токовой отсечки
обеспечивается благодаря тому, что
ток срабатывания отсечки выбирают
больше максимального тока короткого
замыкания в месте установки предыдущей
защиты.

Определяем
ток срабатывания отсечки.

I
c
= Кн
* I
к.з max.

Где
Кн — коэффициент надёжности, принимаемый
для реле РТ – 40 равным 1,4 ( Кн
= 1,4)

I
к.з. max
— максимальный ток трёхфазного
короткого замыкания в месте установки
смежной, более удалённой от источника
питания защиты

I
к.з
max

= 1594.38 А

I
с.о.
= 1,4 *
1594,38 = 2232,1 А

Определяем
ток срабатывания реле

I
с.р.
= I
с.о.
* Ксх
/ Ктт
,

I
с.р.
= 2232,1 * 1 / 6 = 372 А

Принимаем
реле РТ – 40 / 400 с I
у
= 400 А

Уточняем
значение тока срабатывания защиты
МТО ( максимальной токовой отсечки
)

I
с. о
= I
у * Ктт /
Ксх
,

I
с. о
= 400 * 6 / 1 = 2400 А

Целесообразность
применения защиты без выдержки
времени проверяем по условию:

I
с. о
< I
к.з. min
/ 1.8

Где
I
к.з. min
— минимальное значение тока короткого
замыкания в начале линии

I
к.з.
min

= 2718 A

2718 /
1.8 = 1510 A

I
с.
о.
=2400 А >
1510 А

Условие
не выполняется, поэтому отсечка не
целесообразна.

В
ЛЭП напряжением 35 кВ наиболее часто
происходит однофазное замыкание на
землю, которое приводит к ненормальному
режиму работы ЛЭП, но не влияет на
функционирование потребителей. Поэтому
согласно ПУЭ режим замыкания на
землю допустим в течение времени,
необходимого для отыскания и устранения
неисправностей. Это время должно
быть минимальным.

При
замыкании на землю напряжение
повреждённой фазы относительно земли
становится равным нулю, а здоровых
фаз повышается в

√ 3
и становится равным междуфазному.

Провода
воздушной линии обладают ёмкостью
по отношению к земле, и через неё
течёт ток замыкания на землю. Сила
этого тока невелика, она составляет
единицы или десятки ампер, но при
некоторых условиях может вызвать
отрицательные последствия. Поэтому
необходимо знать силу тока замыкания
на землю, чтобы оценить возможную
опасность от его прохождения в сети.

Определяем
ток замыкания на землю в ЛЭП – 35 кВ.

I
з.н.з.
= U
* L
/ 350 .

Где
U
— линейное напряжение, кВ;

L
— общая длина ЛЭП, км.

I
з. н.з
= 35 * 15,9 = 1,59 А

В
ЛЭП – 35 кВ , имеющих железобетонные
опоры , ток замыкания на землю во
всех случаях не должен превышать 10
А.

При
токе однофазного короткого замыкания
равным 1,59 А нет необходимости
немедленно отключать линию, и она
может работать до тех пор , пока не
будет найден и отключен для ремонта
повреждённый участок. Обычно это
рекомендуется выполнить в течение
не более 2 ( двух ) часов.

Для
нахождения повреждённого участка
применяют неселективную и селективную
сигнализацию о замыкании на землю
с помощью устройства УСЗ – 2 и УСЗ –
М, селективную защиту ЗЗП – 1М, а также
переносные устройства для измерения
расстояния до точки ЗЗ ( замыкания
на землю ).

Возникающие
в ЛЭП – 35 короткие замыкания могут
быть устойчивыми или неустойчивыми.
В любом случае ЛЭП отключается
релейной защитой, и электроснабжение
потребителей на некоторое время
прерывается. Чем быстрее восстанавливается
электроснабжение, тем меньший ущерб
будет причинён потребителям.

Для
этого предназначено автоматическое
повторное включение ( АПВ ).

Для
ЛЭП – 35 кВ предусматриваем трёхфазное
однократное АПВ. По способу воздействия
на привод выключателя – электрическое
( релейное ).

Согласно
ПУЭ устройства АПВ должны удовлетворять
следующим требованиям:

АПВ
должно происходить при отключении
выключателя релейной защитой, за
исключением срабатывания релейной
защиты сразу после оперативного
включения выключателя. Это необходимо
во избежание включения при устойчивом
коротком замыкании;

АПВ
не должно осуществляться при
оперативном отключении выключателя
дистанционно или по каналам
телеуправления;

Необходим
автоматический возврат, т. е . готовность
к новому действию через небольшой
интервал времени после успешного
срабатывания;

Должна
быть обеспечена достаточная длительность
импульса для надёжного включения
выключателя.

При
быстром отключении повреждённого
элемента менее существенны последствия
неисправности. Поэтому целесообразно
ускоренное включение после неуспешного
АПВ

К
основным требованиям к АПВ можно
отнести следующие:

  • интервал
    времени между аварийным отключением
    и подачей импульса на действие АПВ
    должен быть по возможности наименьшим,
    но при этом большим, чем время
    необходимое для деионизации дугового
    промежутка в месте повреждения, а
    при АПВ, выполняемом на выключателях
    с гасительными камерами, — больше
    времени, необходимого для заполнения
    гасительной камеры маслом. Для ЛЭП
    – 35 кВ и ниже время деионизации
    дугового промежутка t
    д
    ≤ 0,1с
    и практически не влияет на выбор
    времени действия АПВ. Время,
    необходимое для заполнения маслом
    гасительной камеры, принимают равным
    1 с

В
соответствии с ПУЭ время подачи
первого импульса на АПВ составляет
0,3…2 с

АПВ
должно действовать с установленной
для него кратностью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Категория: М.А. Шабад «Максимальные токовые защиты»

Расчет параметров срабатывания максимальных токовых защит главным образом состоит из выбора тока срабатывания измерительных органов защиты и выдержки времени логического элемента задержки, т.е. уставок по току и по времени. Для токовых отсечек чаще всего выбирается только уставка по току, но иногда — и уставка по времени.

Выбранные уставки по току и по времени должны обеспечивать правильную работу защиты, отвечающую требованиям селективности, чувствительности, быстродействия и надежности [1].

При выборе уставок может выявиться непригодность предварительно принятой схемы и даже типа релейной защиты. Например, при недостаточной чувствительности максимальной токовой защиты трансформатора или линии к удаленным КЗ может потребоваться дополнительная установка пускового органа напряжения или вообще замена этого типа защиты на другой — дистанционный. Возможны случаи, когда в результате выбора уставок максимальной токовой защиты выявляются возможности обеспечения ее чувствительности только при условии преднамеренного ограничения сверхтоков перегрузки, например недопущения одновременного включения большого числа асинхронных двигателей, предусмотрев их поочередный пуск с помощью специальной автоматики.

Таким образом, выбор уставок защиты является очень ответственным делом. И чем проще устройство защиты, тем более сложным и трудоемким может оказаться выбор ее параметров срабатывания. Поэтому при расчетах релейной защиты интенсивно используются современные электронно-вычислительные машины (ЭВМ).

В распределительных электрических сетях простой конфигурации напряжением до 35 кВ, а иногда и 110 кВ, где в основном и применяются простые максимальные токовые защиты, для расчета уставок можно использовать как правило, персональные ЭВМ, называемые микро-ЭВМ, а в настоящее время — персональными ЭВМ (ПЭВМ).

В диалоге с ЭВМ можно быстро произвести расчеты токов короткого замыкания для различных режимов работы электроустановки, выполнить несколько вариантов выбора параметров срабатывания какой-либо защиты, при необходимости усложняя ее схему, заменяя дешевые электромеханические реле более дорогими полупроводниковыми реле с лучшими характеристиками. Практически одновременно решаются вопросы пуска и самозапуска электродвигателей нагрузки, производится выбор электродвигателей, которые предварительно, перед действием устройства АВР, должны отключаться, а также выбираются параметры срабатывания устройств АВР, определяющие очередность их действий. Далее производится расчетная проверка измерительных трансформаторов тока, которая также может оказаться многовариантной и привести к необходимости замены трансформаторов тока и изменения ранее выбранных типов и параметров срабатывания устройств защиты.

Для составления прикладных программ ЭВМ, так же как и для обычных расчетов параметров срабатывания максимальных токовых защит и токовых отсечек, используются известные, проверенные много летней практикой расчетные условия [1-5]. В этом параграфе они приводятся в общем виде, а конкретизируются — в следующих применительно к особенностям защищаемых элементов.

Выбор тока срабатывания максимальной токовой защиты.

Ток срабатывания максимальной токовой защиты выбирается в амперах по условию (7) несрабатывания защиты при сверхтоках послеаварийных перегрузок, по условию (8) согласования чувствительности защит защищаемого последующего и предыдущих элементов, а также по условию (2) обеспечения необходимой чувствительности защиты ко всем видам КЗ в основной зоне и в зонах дальнего резервирования (рис. 1).

По первому из этих условий ток срабатывания максимальной токовой защиты Iс.з выбирается по выражениям:

                                                                                                                  (7)

или

                                                                                                                           (7а)

где kн — коэффициент надежности отстройки (табл. 7); kв — коэффициент возврата максимальных реле тока или комплектных устройств того же назначения (табл. 7); kсзп — коэффициент самозапуска, равный отношению максимального значения тока при самозапуске нагрузки Iсзп к максимальному реальному значению рабочего тока защищаемого элемента Iраб.max т. е. .

Таблица 7

Значения коэффициентов в Выражениях (7) и (8) выбора тока срабатывания максимальной токовой защиты

Тип (серия) реле тока

kн

kв

kн.с

РТВ

1,2 – 1,4

0,65

1,4 – 1,5

РТВ-40

1,1 – 1,2

0,8

1,2 – 1,4

РТ-80

1,1 – 1,2

0,8

1,3 – 1,4

РСТ 11, РСТ 13

1,15

0,9

1,1 – 1,3

ТЗВР

1,15

0,98

1,1 – 1,3

Максимальные значения тока самозапуска и коэффициента самозапуска при значительной доле электродвигательной (моторной) нагрузки определяются расчетом для конкретных условий, но обязательно при наиболее тяжелом условии пуска полностью заторможенных электродвигателей. Для нагрузок жилищно-коммунального (бытового) сектора, а также для большинства нагрузок в сельской местности, где преобладают осветительные и электронагревательные устройства при относительно небольшой доле мелкомоторной нагрузки, коэффициент самозапуска, как правило, не рассчитывается, а принимается в пре делах 1,2—1,5.

Максимальное значение рабочего тока защищаемого элемента Iраб.max определяется с учетом его максимально допустимой перегрузки. Например, для трансформаторов 10 и 6 кВ мощностью до 630 кВ*А допускается длительная перегрузка до 1,6—1,8 номинального тока, для трансформаторов двухтрансформаторных подстанций 110 кВ — до 1,4—1,6 номинального тока. Для некоторых элементов перегрузка вообще не допускается (кабели напряжением выше 10 кВ, реакторы). Значения допустимых максимальных нагрузок определяют диспетчерские службы.

По условию согласования чувствительности защит последующего (защищаемого) и предыдущих элементов ток срабатывания после дующей защиты выбирается по выражению

,                                            (8)

где kн.с — коэффициент надежности согласования, значения которого приведены в табл. 7, причем большие из них относятся к тем случаям, когда защиты предыдущих элементов выполнены на реле прямого действия типа РТВ; kр — коэффициент токораспределения, который учитывается только при наличии нескольких источников питания, а при одном источнике питания равен 1 (рис. 26); — наибольшая из геометрических сумм токов срабатывания максимальных токовых защит параллельно работающих предыдущих элементов (n); при разнице между углами фазового сдвига напряжения и тока для всех предыдущих элементов n не более 50° допустимо арифметическое сложение вместо геометрического; — геометрическая сумма максимальных значений рабочих токов всех предыдущих элементов (N), за исключением тех, с защитами которых производится согласование (n); при примерно однородной нагрузке допустимо арифметическое сложение вместо геометрического, что создает некоторый расчетный запас.

            Например, для каждой из предыдущих линий 2—7 (рис. 26) значения рабочего тока Iраб.max = 100 А; ток срабатывания у защит линий 5—7, работающих параллельно (n = 3), одинаков: Iс.з = 300 А. Тогда ток срабатывания максимальной токовой защиты последующей линии 1 по условию (8) при kн.с = 1,3 должен быть

            Установив такой ток срабатывания защиты последующей линии 1, можно быть уверенным в том, что ее измерительные органы сработают лишь при таких значениях тока КЗ, при которых обеспечивается срабатывание защит предыдущих элементов. При этом учитывается возможность распределения тока К3 по двум или трем параллельно работающим предыдущим линиям или трансформаторам. Параллельная работа более чем трех элементов осуществляется очень редко.

Рис. 26. Схема электрической сети с параллельно работающими предыдущими элементами 3, 4 и 5—7, поясняющая условие (8) согласования чувствительности максимальных токовых защит последующих и предыдущих элементов.

            Правила [1] требуют выполнять согласование чувствительности защит во всех случаях, когда возможно действие защиты последующего элемента (линия 1 на рис. 26) из-за отказа вследствие недостаточной чувствительности защиты предыдущего элемента. Надо отметить, что в распределительных электрических сетях, где в основном и применяются максимальные токовые защиты, весьма вероятны отказы защит из-за недостаточной чувствительности при К3 в зонах дальнего резервирования. Например, при удаленных КЗ на линиях при отказе собственной защиты или выключателя (линия 8 на рис. 26) или при этих же условиях при КЗ в трансформаторах, в электродвигателях, за реакторами и т. п., когда значения токов КЗ невелики и близки к токам срабатывания защит последующих элементов (линий 5—7 на рис. 26) и эти защиты находятся на грани срабатывания.

Наиболее тяжелыми условия согласования чувствительности максимальных токовых защит оказываются при параллельно работающих предыдущих элементах, при разнотипных времятоковых характеристиках согласуемых защит (в том числе и плавких предохранителей), а также при выполнении на предыдущих элементах дистанционных защит [5].

Из полученных по выражениям (7) и (8) значений токов срабатывания защиты выбирается наибольшее, а затем по выражению (1) определяется ток срабатывания реле. Для защит, выполненных на токовых реле с плавной регулировкой тока срабатывания (например, РТ-40), полученное значение Iср принимается за уставку по току. Для защит и реле со ступенчатой регулировкой тока срабатывания (4) подбирается ближайшее большее значение уставки по току.

Чувствительность защиты определяется по выражению (2). Минимальные значения тока в реле Iр minвыбираются при самых неблагоприятных условиях: наибольшем сопротивлении питающей энергосистемы (минимальный режим) и наибольшем сопротивлении до места КЗ на защищаемом элементе (основная зона на рис. 1) и в зонах дальнего резервирования.

Для выбора минимального значения тока в реле рассматриваются все виды КЗ. Например, для двухфазной схемы максимальной токовой защиты (рис. 5) из табл. 1 видно, что при КЗ на защищаемых линиях минимальное значение тока в реле следует рассчитывать при двухфазных КЗ. А при тех же видах КЗ за трансформаторами со схемами соединения обмоток Y/∆-11 или ∆/Y0-11 важно учесть схему выполнения защиты: для двухрелейной схемы (реле РТ1, РТ2 на рис. 5) расчетное значение , а для трехрелейной — и, следовательно, чувствительность защиты повышается в 2 раза и получается одинаковой при трехфазном и всех видах двухфазных КЗ. Здесь надо отметить, что чувствительность защиты оценивается по наибольшему из вторичных токов, проходящих в измерительных реле защиты, хотя бы и в одном из трех реле, поскольку все реле самостоятельно действуют на логическую часть защиты (включены по схеме ИЛИ, рис. 5,8).

Ток срабатывания реле в выражении (2) рассчитывается по выражению (1). Значения коэффициента схемы указаны ранее при рассмотрении различных схем выполнения максимальных токовых защит. Для защит линий, выполненных по схеме неполной или полной звезды (рис. 5 и 7), с включением реле на фазные токи расчет коэффициента чувствительности защиты может производиться по первичным токам КЗ и срабатывания защиты (первичному):

                                                                                                                                        (9)

Для оценки чувствительности защит трансформаторов лучше пользоваться выражением (1).

Для защит, выполненных на реле прямого действия типа РТМ и РТВ (рис. 11), необходимо оценивать чувствительность с учетом действительного значения токовой погрешности f измерительных трансформаторов тока (если f ≥10%). Примеры расчета приведены в работе [5].

Для защит, выполненных по схеме с дешунтированием электромагнитов отключения ЭО (рис. 12, 13), дополнительно проверяются чувствительность ЭО и невозможность возврата защиты после дешунтирования ЭО при действительных значениях токовой погрешности в этом режиме, если они превышают 10%. Примеры расчета приведены в работе [5].

Увеличение чувствительности максимальной токовой защиты может быть достигнуто применением более совершенных реле (табл. 7) и уменьшением значений тока самозапуска моторной нагрузки. Используется также автоматическое секционирование линий электропередачи

с помощью выключателей с защитой с целью уменьшения длины защищаемых зон [5].

Выбор времени срабатывания и времятоковой характеристики максимальной токовой защиты.

Выдержка времени максимальных токовых защит вводится для замедления действия защиты с целью обеспечения селективности действия защиты последующего элемента по отношению к защитам предыдущих элементов. Для этого выдержка времени (или время срабатывания) защиты tс.з последующей линии Л2 (рис. 1) выбирается большей, чем у защит предыдущих элементов: линии Л1 и трансформатора подстанции В.

В свою очередь, выдержка защиты линии Л3 должна быть больше, чем у защит линии Л2 и трансформатора подстанции Б. При этом выборе выдержек времени обеспечивается селективное (избирательное) отключение в первую очередь ближайшего к месту КЗ выключателя. Тем самым предотвращаются дополнительные излишние отключения неповрежденных элементов.

Недостатками максимальных токовых защит является накопление выдержек времени, особенно существенное для головных элементов в многоступенчатых электрических сетях (рис. 1). Для преодоления этого недостатка используются реле времени с повышенной точностью работы (электронные), максимальные реле тока с обратнозависимыми времятоковыми характеристиками различной формы, сочетание максимальных токовых защит и токовых отсечек.

После выбора выдержек времени максимальных токовых защит по условию селективности необходимо в ряде случаев проверять термическую стойкость защищаемого элемента, т.е. допустимость прохождения максимального тока КЗ в течение выбранного времени действия защиты. Это объясняется тем, что термическое воздействие электрического тока прямо пропорционально времени его прохождения. При недопустимо длительном прохождении большого сверхтока может произойти опасный перегрев токоведущих частей и изоляции и разрушение защищаемого элемента, например перегорание проводов воздушных линий электропередачи малого сечения, повреждение электрических кабелей и т. п. Следует учитывать и дополнительное время прохождения тока КЗ после АПВ линии на устойчивое неустранившееся повреждение [5].

Выбор времени срабатывания максимальных токовых защит с независимой от тока выдержки времени.

По условию селективности время срабатывания (уставка по времени) защиты последующего элемента выбирается в секундах, по выражению

,                                                                                                              (10)

где tc.з.посл — время срабатывания максимальной токовой защиты предыдущего элемента, т. е. более удаленного от источника питания (рис. 27, а); ∆t — ступень селективности.

Значения ступени селективности для защит с независимой от тока выдержкой времени определяются в основном точностью реле времени [2]. У электромеханических реле времени с часовым механизмом серий РВ-100 и РВ-200 точность работы снижается с увеличением диапазона уставок по шкале [7]. Поэтому для максимальных токовых защит следует использовать реле времени со шкалой 0,25—3,5 с, а при возможности — со шкалой 0,1—1,3 с (§ 5). При этом значение ступени селективности можно уменьшить до 0,4 с. При использовании реле времени этих серий с более широкой шкалой (до 9 с) ступень селективности увеличивается до 0,5—0,6 с. Такая же ступень селективности принимается при установке реле времени типов РВМ-12 и РВМ-13.

При выполнении защиты с электронными реле времени РВ-01 минимальная ступень селективности может быть принята равной 0,3 с.

Рис. 27. Схема электрической сети (а) и карты селективности (б, в), поясняющие условия выбора ступеней селективности между защитами последующего и предыдущего элементов.

Выбор времятоковых характеристик максимальных токовых защит с реле РТ-80, РТВ и им подобных.

Времятоковые характеристики защит последующего и предыдущего элементов выбираются такими, чтобы была обеспечена ступень селективности ∆t при одном из следующих значений тока КЗ:

а) при максимальном значении тока КЗ в начале предыдущего элемента, если и на последующем 2 и на предыдущем 1 элементах выполнены защиты с обратнозависимым от тока времятоковыми характеристиками (рис. 27, 6)

б) при токе КЗ, равном току срабатывания защиты 2 последующего элемента, если эта защита выполнена с независимым от тока временем срабатывания, а защита 1 предыдущего элемента имеет обратнозависимую от тока времятоковую характеристику (рис. 27, в).

Значения ступеней селективности в первом случае (рис. 27, б) принимаются примерно равными 0,7 с для реле РТВ и примерно равными 0,6 с для реле РТ-80, если при максимальном значении тока К3 в начале защищаемого элемента реле обеих защит работают в независимой части характеристики или близко к ней. При согласовании характеристик защит с реле РТВ в зависимой части, т.е. при малых кратностях токов КЗ, рекомендуется увеличивать значение ступени селективности до 1 с.

Во втором случае (рис. 27, в) значение ступени селективности можно несколько уменьшить.

Опыт использования полупроводниковых реле и защит с обратно зависимой от тока времятоковой характеристикой еще невелик. Рекомендуемые ступени селективности находятся в пределах 0,4—0,5 с. При больших кратностях тока КЗ значение ступени селективности может быть снижено до 0,3 с, а при малых (2—З) — должно быть увеличено до 0,6 с.

Выбор характеристик максимальных токовых защит с обратно зависимой времятоковой характеристикой производится аналитическим или графическим способом [5].

Выбранное по условию селективности время срабатывания защиты проверяется по условию обеспечения термической стойкости защищаемого элемента, особенно в тех случаях, когда защищается понижающий трансформатор, кабельная линия или воздушная линия с про водами малых сечений. Примеры проверки приведены в работе [5].

Содержание:

  1. Введение
  2. Условия и значения ВТХ
  3. Графики ВТХ
  4. Условия испытания. Поправочные коэффициенты
  1. Введение

Как известно автоматические выключатели могут иметь следующие виды расцепителей обеспечивающих защиту электрической цепи от сверхтоков: электромагнитный — защищающий сеть от коротких замыканий, тепловой — обеспечивающий защиту от токов перегрузки и комбинированный представляющий собой совокупность электромагнитного и теплового расцепителя (подробнее читайте статью «автоматические выключатели«).

Примечание: Современные автоматические выключатели предназначенные для защиты электрических сетей до 1000 Вольт имеют, как правило, комбинированные расцепители.

Расцепители автоматических выключателей — это исполнительные механизмы которые обеспечивают отключение (расцепление) электрической цепи при возникновении в ней тока выше допустимого, причем чем больше это превышение тем быстрее должно произойти расцепление.

Зависимость времени расцепления автоматического выключателя от величины проходящего через него тока и называется время-токовой характеристикой или сокращенно — ВТХ.

  1. Условия и значения ВТХ

ВТХ автоматов определяются следующими значениями:

1) Ток мгновенного расцепления — минимальное значение тока, вызывающее автоматическое срабатывание выключателя без преднамеренной выдержки времени. (ГОСТ Р 50345-2010, п. 3.5.17)

Примечание: срабатывание без преднамеренной выдержки времени обеспечивается электромагнитным расцепителем автомата.

Ток мгновенного расцепления определяется так называемой «характеристикой расцепления»  или как ее еще называют — характеристика срабатывания.

Согласно ГОСТ Р 50345-2010 существуют следующие типы характеристик срабатывания автоматических выключателей:

стандартные характеристики срабатывания (расцепления) автоматов

Примечание: существуют так же и другие, нестандартные типы характеристик, о них мы говорили в статье «автоматические выключатели«.

Как видно из таблицы выше ток мгновенного расцепления указывается в виде диапазона значений, например характеристика «B» предполагает, что автомат обеспечит мгновенное расцепление при протекании через него тока в 3 — 5 раз превышающего его номинальный ток, т.е. если автоматический выключатель с данной характеристикой имеет номинальный ток 16 Ампер, то он обеспечит мгновенное расцепление при токе от 48 до 80 Ампер.

Определить характеристику срабатывания автоматического выключателя, как правило, можно по маркировке нанесенной на его корпусе:

маркировка характеристики срабатывания на автоматическом выключателе

2) Условный ток нерасцепления — установленное значение тока, который автоматический выключатель способен проводить, не срабатывая, в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.15) Согласно пункту 8.6.2.2 ГОСТ Р 50345-2010 условный ток нерасцепления равен 1,13 номинального тока автомата.
3) Условный ток расцепления — установленное значение тока, которое вызывает срабатывание автоматического выключателя в течение заданного (условного) времени*. (ГОСТ Р 50345-2010, п. 3.5.16) Согласно пункту 8.6.2.3 ГОСТ Р 50345-2010 условный ток расцепления равен 1,45 номинального тока автомата.

* Условное время равно 1 ч для выключателей с номинальным током до 63 А включительно и 2 ч с номинальным током свыше 63 А. (ГОСТ Р 50345-2010, п.8.6.2.1)

Время-токовая характеристика автоматического выключателя определяется условиями и значениями приведенными в таблице 7 ГОСТ Р 50345-2010:

значения ВТХ автоматов таблица 7 ГОСТ Р 50345-2010

Примечание: Таблица действительна для автоматов, смонтированных в соответствии с условиями испытаний приведенными ниже работающих при температуре 30+5 °С

  1. Графики ВТХ

Для удобства производителями в паспортах на автоматические выключатели время-токовые характеристики указываются в виде графика где по оси X откладывается кратность тока электрической цепи к номинальному току автомата (I/In), а по оси Y время срабатывания расцепителя.

Для подробного рассмотрения в качестве примера возьмем график ВТХ для автоматического выключателя с характеристикой «B»

ПРИМЕЧАНИЕ: Все приведенные ниже графики предоставлены в качестве примера. У различных производителей графики ВТХ могут отличаться (смотрите в паспорте автомата), однако они в любом случае должны соответствовать требованиям ГОСТ Р 50345-2010 и в частности значениям указанным в таблице 7 приведенной выше.

расшифровка графика ВТХ автомата

Как видно график ВТХ представлен двумя кривыми: первая кривая (красная) — это характеристика автомата в так называемом «горячем» состоянии, т.е. автомата находящегося в работе, вторая (синяя) — характеристика автомата в «холодном» состоянии, т.е. автомата через который только начал протекать электрический ток.

При этом синяя кривая имеет дополнительно штриховую линию, эта линия показывает характеристику автомата (его теплового расцепителя) с номинальным током до 32 Ампер, это различие в характеристиках автоматов с номиналами до и выше 32 Ампер обусловлено тем, что в автоматах с большим номинальным током биметаллическая пластина теплового расцепителя имеет большее сечение и соответственно ей необходимо больше времени что бы разогреться.

Кроме того каждая кривая имеет два участка: первый — показывающий плавное изменение времени срабатывания в зависимости от тока электрической цепи является характеристикой теплового расцепителя, второй  — показывающий резкое снижение времени срабатывания (при токе от 3 In в горячем состоянии и от 5 In в холодном состоянии ), является характеристикой электромагнитного расцепителя автоматического выключателя.

чтение графика ВТХ автомата

Как видно, на графике ВТХ отмечены основные значения характеристик автомата согласно ГОСТ Р 50345-2010 при 1.13In (Условный ток нерасцепления) автомат не сработает в течении 1-2 часов, а при токе в 1,45 In (Условный ток расцепления) автомат отключит цепь за время менее 50 секунд (из горячего состояния).

Как уже было сказано выше ток мгновенного расцепления определяется характеристикой срабатывания автомата, у автоматических выключателей с характеристикой «B» он составляет от 3In до 5In, при этом согласно вышеуказанному ГОСТу (таблице 7) при 3In автомат не должен сработать за время менее 0,1 секунды из холодного состояния, но должен отключиться за время менее 0,1 секунды из холодного состояния при токе в цепи 5In и как мы можем увидеть из графика выше данное условие выполняется.

Так же по время-токовой характеристике можно определить время срабатывания автомата при любых других значениях тока, например: в цепи установлен автомат с характеристикой «B» и номинальным током 16 Ампер, при работе в данной цепи произошла перегрузка и ток вырос до 32 ампер, определяем время срабатывания автомата следующим образом:

  1. Делим ток протекающий в цепи на номинальный ток автомата

32А/16А=2

Определив что ток в цепи в два раза больше номинала автомата, т.е. составляет 2In откладываем данное значение по оси X графика и поднимая от нее условную линию вверх смотрим где она пересекается с кривыми графика:

срабатывание автомата при двукратном токе в цепи

Как мы видим из графика при токе 32 Ампера автомат с номинальным током 16 Ампер разомкнет цепь за время менее 10 секунд — из горячего состояния и за время менее 5 минут — из холодного состояния.

Приведем примеры ВТХ автоматических выключателей всех стандартных характеристик срабатывания (B, C, D):

время-токовая характеристика автомата типа B

время-токовая характеристика автомата типа C

время-токовая характеристика автомата типа D

ПРИМЕЧАНИЕ: Время-токовые характеристики согласно ГОСТ Р 50345-2010 указываются для автоматов работающих при температуре +30+5 оC смонтированных в соответствии с определенными условиями:

  1. Условия испытания. Поправочные коэффициенты.

Согласно ГОСТ Р 50345-2010 При испытаниях выключатели устанавливают отдельно, вертикально, на открытом воздухе в месте, защищенном от чрезмерного внешнего нагрева или охлаждения.

испытания автоматических выключателей проводят при любой температуре воздуха, а результаты корректируют по температуре +30 °С на основании поправочных коэффициентов, предоставленных изготовителем.

При этом в любом случае отклонение испытательного тока от указанного в таблице 7 не должно превышать 1,2% на 1 °С изменения температуры калибровки.

Изготовитель должен подготовить данные по изменению характеристики расцепления для температур калибровки, отличных от контрольного значения.

Таким образом, что бы точно узнать время отключения автоматических выключателей, эксплуатируемых при условиях отличающихся от условий испытания необходимо воспользоваться поправочными коэффициентами которые должен предоставить изготовитель данных выключателей.

Приведем пример таких поправочных коэффициентов (обычно их всего 2):

  • Температурный коэффициент (Кt)

Температурный коэффициент учитывает отличие температуры окружающей среды при которой автоматический выключатель испытывался от фактической температуры окружающей среды при которой он эксплуатируется:

поправочный температурный коэффициент автоматического выключателя

Как видно из графика, чем ниже температура окружающей среды тем выше данный коэффициент. Объясняется это просто — чем ниже температура окружающей среды, тем больший ток должен протекать через автоматический выключатель что бы нагреть расцепитель до температуры необходимой для его срабатывания.

  • Коэффициент, учитывающий количество установленных рядом автоматов (Кn)

Как было сказано выше, автоматические выключатели при их испытании устанавливаются отдельно, однако на практике они устанавливаются в электрических щитах в один ряд с другими автоматами, что соответственно ухудшает их охлаждение за счет ухудшения циркуляции воздуха и тепла от установленных рядом выключателей:

поправочный коэффициент учитывающий количество автоматических выключателей

Соответственно, как и можно увидеть из графика, чем больше рядом установлено автоматов, тем меньше данный коэффициент.

Зная поправочные коэффициенты можно скорректировать номинальный ток автомата в зависимости от условий его эксплуатации.

Например: имеется автоматический выключатель с номинальным током 16 Ампер установленный в щитке с 5 другими автоматами при температуре окружающего воздуха +10оC.

  1. По графикам выше найдем поправочные коэффициенты:
  • Кt=1,05
  • Кn=0,8
  1. Зная поправочные коэффициенты скорректируем номинальный ток автомата:

In/= In* Кt* Кn=16*1.05*0.8=13.44 Ампер

Соответственно при эксплуатации автоматического выключателя в вышеуказанных условиях для определения времени его срабатывания необходимо принимать ток не 16 Ампер, а 13,44 Ампера.



Была ли Вам полезна данная статья? Или может быть у Вас остались вопросыПишите в комментариях!

Не нашли на сайте ответа на интересующий Вас вопросЗадайте его на форуме! Наши специалисты обязательно Вам ответят.

↑ Наверх

Релейная защита: чувствительность и её коэффициент.

9 декабря 2013 в 10:00

Релейная защита: чувствительность и её коэффициент.

В отечественной практике термином «чувствительность» принято обозначать свойство релейной защиты, позволяющее выявлять расчётные виды повреждений и ненормальных режимов энергосистемы в зоне действия релейной защиты.

В ПУЭ [1] понятие, обозначаемое термином «чувствительность» [2] используют для характеристики любых защит, независимо от напряжения электроустановки, но определение понятия, обозначаемого этим термином в данном документе нет.

Если чувствительность некоторых изделий можно определить непосредственно [1], то в релейной защите эту характеристику оценивают косвенно, причем способ оценки зависит от напряжения электроустановки [1].

Здесь необходимо отметить, что во многих других странах оценку чувствительности не производят [3].

Согласно ПУЭ для оценки чувствительности защит в электроустановках напряжением свыше 1000 В применяют коэффициент чувствительности [4, 5, 6].

Значение коэффициента чувствительности для защит, реагирующих на возрастание контролируемой величины, находят как отношение их расчетных значений в пределах защищаемой зоны к уставке срабатывания.

Для токовых защит линии коэффициент чувствительности в общем случае находят по формуле:

где  — минимальный ток короткого замыкания для защищаемой линии (обычно – в конце защищаемого участка);

 — ток срабатывания защиты.

Принято считать, что в общем случае такая защита будет работать правильно, если выполняется соотношение:

Найденное по этой формуле (1) значение коэффициента чувствительности должно быть не меньше нормированного значения, установленного в [1], и которое в зависимости от вида защиты может изменяться от 1,5 до 2,0.

В [3] показано, что при изменении значения коэффициента чувствительности от 1,2 до 1,4 вероятность срабатывания защиты изменяется незначительно, от 0,998 до 1,000.

Рассмотрим теперь, как рекомендуют определять коэффициент чувствительности токовой отсечки в одной из методик расчета уставок (см. [4], пример 2.1).

Для экономии места исходные данные для расчета приведены в экспликациях к формулам.

Расчет начинают с определения пускового тока электродвигателя I пуск эд по формуле :

I пуск эд = k пуск · I ном = 5,7 · 113,2 = 645 А

Где k пуск – каталожное значение пускового тока, равное 5,7 для асинхронного электродвигателя серии А4;

I ном – номинальный ток электродвигателя, определенный по известным значениям номинальной мощности, номинального напряжения, коэффициентв полезного действия и мощности или взятый из каталожных данных.

Пусковой ток может быть определен и по приведенному в каталожных данных номинальному току электродвигателя.

Наименьшее значение тока двухфазного КЗ на выводах электродвигателя  находим по формуле:

где  – = 3500 — значение тока трехфазного КЗ на вводах питания асинхронного электродвигателя в минимальном режиме работы системы (приведено в исходных данных для расчета).

Ток срабатывания токовой отсечки рассчитывают по формуле:

Коэффициент чувствительности защиты при двухфазном КЗ находим по формуле (1), подставив в неё найденные значения:

На основании выполнений расчетов в методике [4] сделан вывод: «коэффициент чувствительности ТО получился меньше двух».

Можно ли говорить, что уменьшение коэффициента чувствительности всего на 7% (2,00-1,86=0,14; 0,14/2,00=0,07) по сравнению со значением, указанным в ПУЭ, делает данную защиту непригодной?

Отметим, что если в формуле (5) будет использовано расчетное значение = 3031 А, вместо округленного (3000) расчетное значение коэффициента чувствительности будет всего на 6% (3031/1612 = 1,88) меньше значения, рекомендованного ПУЭ.

Приблизительность такого подхода видна и в том, что в формуле (4) условием несрабатывания ТО при пуске электродвигателя служит выбор множителя, равного 2,5, что и приводит к увеличению расчетного тока и, в конечном итоге, уменьшению коэффициента чувствительности.

Если предположить, а потом опытным путем доказать, что токовая отсечка не будет срабатывать при выборе уставки, равной 2,35 пускового тока электродвигателя, то значение коэффициента чувствительности и при пусковом токе 645 А будет удовлетворять требованиям ПУЭ.

В рассматриваемой методике вместо уменьшения множителя в формуле (4) предложено аналогичное по своей сути действие – уменьшение второго сомножителя путем «уточнения» пускового тока электродвигателя [2].

Отметим, что в любом случае реальный пусковой ток электродвигателя останется неизвестным, а все выводы будут основаны на расчетах, выполненных по каталожным данным электродвигателя.

В методике предложено использовать известную формулу (6) для нахождения пускового тока электродвигателя по найденным расчетным путем сопротивления питающей системы  = 0,92 Ом и пускового сопротивления электродвигателя = 5,37 Ом :

Ток срабатывания токовой отсечки при таком значении пускового тока составит

В этом случае значение коэффициента чувствительности возрастает до

Если в исходную формулу (5) поставить расчетное значение тока А, то значение коэффициента чувствительности возрастет ещё больше и станет равным 2,18.

После получения искомого результата в методике [4] сделан вывод: «Коэффициент чувствительности ТО получился больше двух, поэтому применять дифференциальную защиту не требуется»

Заключение о таком выводе читатель может сделать самостоятельно.

В электроустановках напряжением до 1000 В для оценки чувствительности токовых защит вместо «коэффициента чувствительности» ПУЭ предусматривает другую характеристику – кратность тока короткого замыкания, задаваемую в процентах по отношению к:

  • номинальному току плавкой вставки предохранителя;
  • току уставки автоматического выключателя с максимальным расцепителем мгновенного действия;
  • номинальному току расцепителя с нерегулируемой обратнозависимой от тока характеристикой;
  • току трогания расцепителя с регулируемой обратнозависимой от тока характеристикой.

Значения кратности тока согласно [1] в зависимости от типа аппарата защиты может находится в диапазоне

Разделив правую и левую часть неравенства на 100%, можно убедиться, что по своей сути это немного видоизмененный способ задания коэффициента чувствительности.

Сказанное выше позволяет сделать такие выводы:

  1. Использование термина «чувствительность релейной защиты», прежде всего является данью традиции, а понятие, обозначаемое этим термином, не имеет стандартизированного определения.
  2. Оценка чувствительности релейной защиты по-разному, в зависимости от напряжения электроустановки, создает ложное впечатление о различии понятий, обозначаемых разными терминами:
    • «кратность тока короткого замыкания» (используют в электроустановках напряжением до 1000В);
    • «коэффициент чувствительности» (применяют в электроустановках напряжением свыше 1000 В).
  3. Нормирование «коэффициента чувствительности», а тем более проверка этого коэффициента при расчетах уставок защит, во многом обусловлено свойствами применявшихся ранее реле защиты и перенесено на цифровые устройства без достаточных технических обоснований.

Литература:

  1. Правила устройства электроустановок. М.: Главгосэнергонадзор России, 1998, 608 с.
  2. Чувствительность // [Электронный ресурс «Всё о релейной защите], Режим доступа:http://www.rza.org.ua/glossary/read/ChUVSTVITELNOST.html (Материал первоначально был размещен здесь: http://maximarsenev.narod.ru/slovar2/chuvst.htm).
  3. Шалин А.И. Надежность и диагностика релейной защиты энергосистем. Новосибирск, издательство НГТУ, 2002, 384 с.
  4. Гондуров С.А., С.В. Михалев, М.Г. Пирогов, А.Л. Соловьев. Релейная защита электродвигателей напряжением 6-10 кВ терминалами БМРЗ. Методика расчета. С-Петербург, ПЭИПК, 2013, 60 с.
  5. Чернобровов Н.В., Семенов В.А. Релейная защита энергетических систем. М.: Энергоатомиздат, 1998, 800 м.
  6. Коэффициент чувствительности // [Электронный ресурс «Всё о релейной защите], Режим доступа: http://rza.org.ua/glossary/read/KOEFFICIENT-ChUVSTVITELNOSTI.html
  7. Что такое коэффициент чувствительности защиты?//[Электронный ресурс], Режим доступа: http://www.energomir.net/releinaya/174-2010-01-30-16-08-25.html.

[1] Например, в метрологии чувствительности средства измерения находят как отношение изменения выходного сигнала к изменению измеряемой величины.

[2] Для получения требуемого значения коэффициента чувствительности пусковой ток не должен превышать 600 А.



4 июня 2012 в 11:00



260674



12 июля 2011 в 08:56



57908



28 ноября 2011 в 10:00



49821



16 августа 2012 в 16:00



31371



21 июля 2011 в 10:00



24677



29 февраля 2012 в 10:00



22402



24 мая 2017 в 10:00



21328



7 января 2012 в 10:00



17922



24 ноября 2011 в 14:00



15880



7 октября 2011 в 10:00



15631

Понравилась статья? Поделить с друзьями:
  • Как найти мне таблетку белую
  • Как найти степень окисления меди
  • Как по вин коду найти страховку
  • Dying light вне диапазона как исправить
  • Как найти работу в профессиональном образовании