Как найти ток трансформатора зная мощность

  • Печать

Номинальный ток трансформатора

Номинальный ток трансформатора — значения тока в обмотках, указанные в заводском паспорте, при которых допускается нормальная длительная работа прибора.

Некоторые характеристики показателя.

Номинальные токи на обмотках высшего напряжения (ВН) и обмотках низшего напряжения (НН) относятся к основным параметрам данного вида оборудования.

Обозначается ток символом I, единица измерения – Ампер (А).

Вычисление значений номинального тока.

Для однофазного трансформатора, мощность которого определяется по формуле S = UI, номинальные токи будут следующими:

Iном.ВН= (Sном.)/(Uном.ВН)

Iном.НН= (Sном.)/(Uном.НН)

Для трехфазного при равномерной нагрузке фаз (S=√3*UI):

Iном.ВН= (Sном.)/(√3*Uном.ВН)

Iном.НН= (Sном.)/(√3*Uном.НН)

Iном.ВН= (Sном.)/(Uном.ВН)

Iном.НН= (Sном.)/(Uном.НН)

Для трехфазного при равномерной нагрузке фаз (S=√3*UI):

Iном.ВН= (Sном.)/(√3*Uном.ВН)

Iном.НН= (Sном.)/(√3*Uном.НН)

Таким образом, по значениям мощности (Sном.) и напря¬жений обмоток ВН и НН (Uном.), указанным в паспорте объекта, можно рассчитать показатели номинальных токов трансформатора (Iном.).

Во время работы величина рабочих токов в обмотках не должна превышать номинальную, т.е. трансформатор не должен перегружаться. Лишь изредка допускаются кратковременные перегрузки в определенных пределах значений.

Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами.  Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи.

Содержание

  1. Принцип работы
  2. Конструкция
  3. Особенности
  4. Формулы расчета силового трансформатора
  5. Мощность вторичной обмотки
  6. Общая мощность
  7. Сечение сердечника
  8. Количество витков
  9. Выбор пластин для сердечника
  10. Определение толщины набора сердечника
  11. Как рассчитать габаритную мощность
  12. Правильный расчет по сечению сердечника
  13. Как определить число витков обмотки
  14. Упрощенный расчет 220/36 Вольт
  15. 1 этап
  16. 2 этап
  17. 3 этап
  18. 4 этап
  19. 5 этап
  20. 6 этап
  21. Как рассчитать Ш-образный трансформатор
  22. Определение параметров ТТ
  23. Особенности расчета сетевого трансформатора
  24. Выбор магнитопровода
  25. Технология изготовления
  26. Формы серденичков
  27. Варианты размещения катушек
  28. Краткая справка о материалах магнитопровода
  29. Исходные данные
  30. Как посчитать магнитопровод
  31. 1 шаг
  32. 2 шаг
  33. 3 шаг
  34. Определение параметров обмоток
  35. Мощность потерь
  36. Особенности расчета автотрансформатора
  37. Как посчитать пленочный трансформатор
  38. Обзор онлайн сервисов
  39. Примеры расчета
  40. Расчет силового трансформатора, который должен запитывать N-оборудование
  41. Условия и исходные данные для расчета
  42. Расчет силового трансформатора пошагово

Принцип работы

Любая энергосистема, установка, особенно в сети трехфазного (3ф) тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор. В высоковольтных сетях он производит повышение напряжения, получая его непосредственного из недр генератора и направляя в высоковольтные линии электропередач. На том конце линий тоже стоят трансформаторы высокого напряжения, которые уже производят процесс понижения его величины для подачи на объекты, которыми являются обычные потребители.

Трансформатор

Трансформаторы тока в тех же мощных электроустановках производят преобразования первоначальной токовой величины в номинальные его значения, допустимые для питания контрольных и измерительных приборов, защит, учетных систем и прочих энергетических элементов.

В бытовых нуждах, однофазного тока и напряжения широко используют различные трансформаторы, которые преобразуя электрические величины обеспечивают питанием многие бытовые приборы, являются источником различного освещения, питают системы электроники и мультимедиа. В целом, без таких преобразователей в электричестве никуда.

Трансформатор тока

Конструкция

На примере простейшего однофазного трансформатора возможно подробно рассмотреть его основные конструктивные элементы и узнать основы принципа его работы. Конструктивно такой трансформатор состоит из трех главных элементов:

  1. Первичная обмотка – катушка с изолированными проводниками, намотанная в определенном порядке, выводы которой являются принимающим определенную величину электроэнергии. Проводники первичной обмотки передают электроэнергию дальше, для проведения ее трансформации;
  2. Магнитопровод или сердечник – выполненный из специальной шихтованной (слоенной) электротехнической стали, различной конструкции и формы. На его части с одной и другой стороны наматываются проводники обмоток и именно в нем происходит бесконтактное явление трансформации величины электроэнергии;
  3. Вторичная обмотка – изолированные проводники, с намоткой на вторую часть сердечника в определенном количестве, с конкретной толщиной. Выводы вторичных проводников передают выходную величину энергии к потребителю или другому энерго устройству, в цепь которого был установлен преобразователь.

первичная и вторичная обмотка трансформатора

Особенности

Принцип работы любого трансформатора основан на явлении электромагнитной индукции, в замкнутом контуре магнитопровода, сквозь намотанные на него проводники первичной и вторичной обмотки. Подключенная к сети переменного тока первичная обмотка создает в замкнутом контуре магнитное поле с движущимся по кольцу магнитопровода магнитным потоком. Его движение проходит, через обе намотки обмоток и согласно закону индукции, создает в них электродвижущую силу (ЭДС).

Величина ЭДС напрямую зависит от количества витков в обмотках, сечения проводников и отличительными особенностями между первичной и вторичной обмотками. ЭДС, в системе трансформатора, это и есть выходное напряжение на выводах преобразователя. Чтобы ее величина стала меньше входного сигнала – количество витков вторичной обмотки должно быть меньше первичной катушки трансформатора.

Проектирование функций устройств преобразования, точное определение способности преобразования электровеличины – мощности трансформатора, количества витков обмоток, формы их намотки, выбор материала магнитопровода, его форма и размеры как раз и определяется в процессе расчета трансформатора.

расчет трансформатора в программе

Формулы расчета силового трансформатора

В силовой энерго установки при проектировании модели и типа трансформатора применяются основные формулы расчета его главных параметров и конструктивных величин. Как выполнить в некоторых подробностях стоит разобрать ниже.

Мощность вторичной обмотки

В зависимости от того, в какой сети (однофазной или трехфазной) участвует трансформатор, какой по типу трансформации – повышающей или понижающей, будет являться его вторичная обмотка, а так же при наличии конкретных данных указанных величин возможно произвести расчет мощности вторичной обмотки, согласно известной формулы электротехники.

Формула 1. Мощность вторичной обмотки трансформатора:

P2 = U2 X I2, где

P2 – величина электрической мощности вторичной обмотки, единицы измерения – Вт;

U2 – напряжение сети вторичной обмотки, на выходе трансформатора, единицы измерения – В;

I2 – ток вторичной обмотки, возникшей на выходе трансформатора, и предназначенный для питания подключенного к нему потребителя и другого энергоустройства.

Общая мощность

Для силовых трансформаторов, особенно повышающего типа, всегда стоит учитывать потери, возникающие в проводниках обмоток, стали магнитопровода, которые влияют на коэффициент полезного действия устройства. Поданная мощность на первичную обмотку трансформатора, за счет электрических потерь в устройстве преобразователя всегда будет больше ее вторичного выходного сигнала. Отсюда КПД силового трансформатора будет равен 0,8-0,85 от ее величины.

При расчете общей мощности трансформатора потери и оставшееся полезное действие на выходе электроагрегата стоит учитывать в виде произведения полученной мощности вторичной обмотки P2 и КПД устройства.

Формула 2. Полная мощность с учетом КПД:

Pрасч2 = P2 х КПД

Силовой трансформатор

Это будет более реальная величина мощности выходной обмотки трансформатора. Остальные параметры в расчетных формулах будут зависеть от количества витков первичной и вторичной обмоток, их сечения, материала проводников. Строение, материал и форма сердечников в свою очередь тоже имеет немаловажное значение в проведении точных и верных расчетов силовых трансформаторов.

Понятие полной мощности трансформатора так же включает в себя более широкое понятие мощностных характеристик в зависимости от типа устройства. Если трансформатор имеет несколько вторичных обмоток, то его полная мощность (Sполн.) будет равна сумме активных мощностей этих обмоток (P2.1+P2.2+….+P2.N), умноженных на коэффициент мощности (Км).

Формула 3. Полная мощность с коэффициентом мощности:

Sполн. = (P2.1+P2.2+…. +P2.N) * Км

В любом случае в ее расчет всегда закладывают величины активной мощности – энергии, которая продуктивно потратится на питание электро потребителей или других электро систем в составе установки, а так же реактивную составляющую мощности, выраженную в простейших расчетах в виде КПД трансформатора, а боле детальных формулах представляющих собой коэффициент мощности. Так в общей мощности участвуют активная и реактивные составляющие трансформатора, единицы измерения ее представлены в вольтамперном произведении – ВА.

Это значение реактивной составляющей является справочным табличным значением в зависимости от трансформатора, строения, сечения и материала его сердечника.

Трансформатор силовой

Сечение сердечника

Строение сердечника в любом трансформаторе в зависимости от его назначения имеет несколько основных видовых особенностей. Магнитопроводы преобразователей электро энергетических величин всегда выполняются из прессованных (шихтованных) железных или стальных пластин. Отказ в применении монолитного сердечника в трансформаторе, выбор в пользу пластинчато-прессованного его строения связан, с уменьшением потерь выходных величин трансформатора, уменьшением вихревых токов в магнитопроводе, а значит повышением его КПД.

От того, где преимущественно будет использован трансформатор, применяют три основных конструктивных формы строения его сердечника:

  • броневые – на Рис. 1 модели «1» и «4»;
  • стержневые – на Рис. 1 модели «2» и «5»;
  • кольцевые. – на Рис. 1 модели «3» и «6»;

Методы изготовления каждого из них в зависимости от детальных форм и различий выполняют производственными процессами типа штамповки или навивания стальной проволоки.

Типы сердечников и параметры расчета сечения магнитопровода

Рисунок 1. Типы сердечников и параметры расчета сечения магнитопровода

На Рис. 1 подробно представлены формы каждого из строений сердечника, обозначены два параметра (A и B), измеряемые в сантиметрах, посредством которых производят расчет сечение конкретного магнитопровода.

Формула 4. Площадь сечения сердечника трансформатора:

S = A x B

Единицы измерения – сантиметры в квадрате см2  

Произведением этих двух величин можно получить значение сечения магнитопровода, которое будет крайне необходимо для проведения остальных расчетов трансформатора.

Количество витков

Первоначальный этап расчета трансформатора электроэнергии. От значения зависят величины трансформации энергии оборудования, а также изменения выходных номиналов на клеммах вторичных обмоток.

Вычисления количества витков в намотке первичной и вторичной обмотки тесно связаны с предыдущем понятием – сечения магнитопровода. Производится по двум формулам: начальной и конечной. В состав расчета начальной формулы входит выяснения расчетного значения витков обмоток трансформаторов на единицу напряжения, равную 1В. Формула в составе имеет справочный коэффициент сердечника.

Формула 5. Количество витков в обмотке на 1В:

N1v = K / S, где

N1v – количество витков обмотки на единицу напряжения равную 1 В;

K – технический коэффициент формы магнитопровода: для Ш-образного сердечника значение принято – 60; П-образного из пластин – 50; кольцевого – 40.

S – сечение сердечника, полученного из расчета, выполненного ранее и описанного выше.

Конечная формула расчета сводится к применению следующей формулы, из которой можно получить значение количества витков в полном объеме.

Формула 6. Количество витков обмоток трансформаторов:

Wv = N х U, где

Wv -значение количества витков в обмотке;

N – количество витков на 1В полученное в начальной формуле;

U – величина напряжения обмотки без нагрузки (на холостом ходу).

После применения подобного расчета количества витков в обмотках, особенно в проектировании трансформаторов минимальной мощности, применяют 5% компенсационный коэффициент падений напряжения на обмотках. Тем самым расчетные значения увеличивают на 5% от их расчетной величины.

Расчет трансформатора по сердечнику формула

Выбор пластин для сердечника

Зависимость применения различных материалов самих магнитопроводов, их форм, конструкции и производству пластин сердечника трансформаторов, строится на уменьшении потерь различного рода в результате преобразовательных процессов работы устройства, уменьшении значения вихревых токов на сердечнике, по средствам увеличения электрического сопротивления сердечника.

Для производства, создания сердечников силовых трансформаторов применяются разнообразные типы электротехнической стали. Из нее производят пластины, которые после изолировании между собой производят сборку определенных форм магнитопровода. Самые распространенные виды сердечников выполняются из:

  1. Ш-образных стальных пластин – тип сердечника трансформатора, выполненного по технологии штамповки пластин между собой, предварительно качественно изолировав их друг от друга. Имеют два отличия соединения стержней с ярмом сердечника. Могут собираться встык или вперемешку. По форме пластины такого рода напоминают букву «Ш», от которой и получили свое название.
  2. П – образных пластин – так же штампованный тип сердечника, по форме напоминающий букву «П». Несколько мене распространен в производстве магнитопровода, так как имеет хуже магнитные характеристики.
  3. «Торро» или кольцевая форма – сердечник выполнен не штамповкой, а навиванием стальной проволоки. По магнитным характеристикам имеют самые лучшие показатели, но на практике не смогли получить широкого распространения в связи с сложным процессом их производства и включения в состав трансформатора, как готового устройства.

Оценивая при расчете параметры напряжения, тока, мощности в значениях активной и реактивной энергии, выяснив количество витков обмотки и сечение магнитопровода стоит обратится к детальному выбору пластин сердечника и его оптимальной формы в конкретике расчетного проекта конкретного преобразователя.

Сердечник трансформатора

Определение толщины набора сердечника

Один из окончательных расчетов геометрии сердечника, который выполняется в большинстве случаев, обращаясь к справочной технической литературе, где указаны табличные значения геометрии шаблонных форматов сердечников разного вида пластин и их материала.

Формулы расчета этого параметра существуют, исходят из показателей диаметра стержня магнитопровода, толщины листа пластин при их сборке, специальных коэффициентов заполнения в зависимости от толщины листа и прочих технически сложных параметров.

ш образный сердечник трансформатора

Формула 7. Площадь сечения Ш-образного сердечника:

S ш = 1,2 , где

S ш – значение площади сечение Ш-образного магнитопровода;

Полная мощность трансформатора, если имеет место двух катушечный тип устройства рассчитывается по Формуле 2, если вторичных обмоток много – рассчитывается по Формуле 3.

А уже после возможно определить значение толщины пластин сердечника по формуле.

Формула 8. Толщина пластин Ш-образного сердечника:

Tш = 100 х S ш / А, где

Tш – толщина пластин сердечника, мм;

S ш – площадь сечения Ш-образного сердечника, см2;

A – ширина среднего лепестка Ш-образного сердечника, мм.

Для сборки в заводских условиях подобные расчеты имеют автоматизированный характер, если значения необходимы радиолюбителям или начинающим электронщикам – проще обратится к стандартным базовым шаблонам того или иного сердечника. Получить такие параметры из справочника возможно, зная значение диаметр стержня сердечника.

ш образный сердечник трансформатора

Как рассчитать габаритную мощность

Окончательный геометрический параметр трансформатора зависит от комплекса всех ранее рассчитанных величин магнитопровода, добавляя к ним электромагнитные справочные значения, а также значения проводников первичной и вторичной обмоток, их сечения, материал и остальное.

Существует вариант определения мощности, на которую максимально рассчитан трансформаторный материал сердечника, его сталь, по величине сечения магнитопровода. Такой вариант расчета мощности магнитопровода является крайне наглядным. Ошибки в нем могут составлять до 50%. Поэтому лучше, воспользовавшись несколькими основными геометрическими величинами и справочными данными произвести расчет геометрической мощности по формуле.

Формула 9. Габаритная мощность трансформатора:

Pгеом. = B x S2 / 1.69, где

Pгеом. – величина геометрической мощности для понижающего или повышающего типа трансформатора;

B – справочное значение и параметр индукции, наводящейся в конкретном магнитопроводе, измеряется в Тесла;

S – сечение магнитопровода, расчет которой по Формуле 4;

1,69 – постоянный поправочный коэффициент из технических справочников.

Зная параметры геометрии проектируемого трансформатора, используя приведенную формулу достаточно легко рассчитать геометрическую мощность трансформаторного изделия, с целью понимания его максимальных значений и возможностей в размерном эквиваленте.

Главный фактор в расчете параметра мощности геометрии трансформатора – превышение ее расчетной величины над значением электрической мощности.

Этот электромеханический параметр очень важный при дальнейшем определении параметров проводников в обмотках. Зная геометрическую мощность проекта преобразователя, уже точно нельзя будет ошибиться с диаметром проводника в расчетах обмоточных данных устройства.

Правильный расчет по сечению сердечника

Из электротехнических научных опытов, практики работы с трансформаторами известно, что стержневые сердечники в преобразователях энергии целиком носят обе обмотки на стержнях конструкций магнитопроводов, броневые конструкции лишь частично охватываются намоткой первичных и вторичных проводников катушек, и наиболее равномерное распределение, а значит и самые лучшие магнитные свойства устройства имеют кольцевые сердечники энергоагрегатов преобразования энергии, но они в связи со многими  сложными пунктами своего строения, а главное тяжести сборки все меньше и меньше участвуют в реальной работе.

Электротехническая сталь тонкими пластинами, изолированными между друг другом различными диэлектриками образуют строение наиболее популярных сердечников стержневого и броневого типа. Площадь поперечного сечения для таких сердечников оказывает громадное влияние на электрическую мощность трансформатора.

Рассматривая стандартный Ш-образный магнитопровод, зная, что сечение его сердечника рассчитывается по Формула 4, и не имея других электрических параметров, таких как допустимый ток первичной или вторичной обмотки, напряжение на обоих выводах, вполне точно и правильно возможно вычислить электрическую мощность устройства.

Формула 10. Расчет электрической мощности по сечению сердечника:

Pтр-р = (S)2, где

Pтр-р – электрическая мощность расчетного сердечника, Вт;

S – площадь сечения магнитопровода оборудования, см2.

Зависимость двух мощностей в расчетном проекте преобразователя энергии видно из формулы достаточно наглядно.

Сердечники трансформатора

Учет площади сечения сердечника к тому же еще необходим для недопущения попадания стали магнитопровода в большую зону магнитного насыщения. Неправильный расчет площади может привезти именно к этому. Создать режим трансформатора от микроволновки, но обеспечения кратковременного режима работы. А это значит получение режима перегрузки в работе, износ, потери на выходе вторичной обмотки.

Окончательный показатель, оценивающий важность верного расчета площади сечения сердечника, называется коэффициентом заполняемости окна сердечника проводниковой медью первичной и вторичных обмоток. Если сравнивать по этому параметру кольцевой трансформатор с броневым или стержневым – значения конечно же сильно будут разница в пользу тороидального трансформатора, но для двух последних этот коэффициент как раз можно улучшить вышеприведенным расчетом.

Сердечник

Как определить число витков обмотки

В Формула 5 и Формула 6 приведены расчетные способы  в начальной и конечной технологии, для математического определения необходимого количества витков на вторичной обмотке трансформатора.

Первичная намотка проводников оборудования тоже имеет определенное количество витков в своем номинале. Чем больше витков на этой обмотке – тем больше электрическое сопротивление ввода, а значит меньше нагрев. Определить количество витков обоих обмоток в процессе проекта расчета трансформатора возможно по отношению следующих равенств.

Формула 11. Расчет количества витков первичной обмотки:

N1 / U1 = N2 / U2, где

N1, N2 – количество витков намотки первичной и вторичной катушек трансформатора;

U1, U2 – номинальные напряжение обмоток трансформатора.

Из такого равенства отношений, особенно, когда уже успешно посчитано количество витков вторичной обмотки, используя математику, можно вывести формулу расчета витков обмотки на вводе трансформатора.

Формула 12. Количество витков в намотке первичной обмотки:

N1 = U1 x N2 / U2

Если проект имеет не только теоретическое обоснование, но и практическую составляющую в виде реального трансформатора, то с помощью медного проводника в изоляции (если позволяет конструкция устройства) и мультиметра возможно измерениями получить это же значение витков трансформатора на вводной обмотке, отталкиваясь от количества витков на 1В, и разматывая старую или наматывая новую первичную обмотку.

Упрощенный расчет 220/36 Вольт

Всю теорию легко показывать и пояснять на практическом примере ведения расчета трансформаторного устройства.

Итак, в качестве примера поставлена следующая задача: необходимо рассчитать самый простой понижающий трансформатор двухкатушечного типа с номинальным значением напряжений 220/36В.

Трансформатор будет использоваться в качестве источника слаботочного освещения мощностью 75Вт, напряжения 36В:

1 этап

По Формуле 1 известно, что электрическая мощность вторичной цепи: P2 = 75Вт;

Отсюда, воспользовавшись справочником по трансформаторам возьмем значение КПД, исходя из значения до 100 Вт, которое равно 0,8;

Следовательно, можем определить электрическую мощность P1 вводной обмотки трансформатора по формуле.

Формула 13. Расчет мощности первичной обмотки:

P1 = P2 / КПД

P1 = 75Вт / 0,8 = 94 Вт

Упрощенный расчет 220/36 Вольт

2 этап

Теперь рассмотрим электромеханические характеристики, исходя из того, что сердечник расчетного трансформатора имеет Ш-образную форму. На его поверхности с двух сторон будут располагаться первичная и вторичные обмотки оборудования.

Поэтому расчет площади сечения магнитопровода Sсерд. необходимы в обязательном порядке. Ее значение имеет квадратичную зависимость от мощности первичной обмотки , исходя из принципа работы трансформатора, как электротехнического устройства.

Формула 14. Расчет площади сечения исходя из мощности первичной обмотки:

Sсерд. = 1,2 х

Sсерд. = 1,2 х  = 1,2 х 9,7 = 11.63 см2

3 этап

Следующий шаг так же направлен на просчет параметров первичной обмотки – количество витков в ней на единицу напряжения 1В по Формуле 5:

N1v = 60 / 11,63 = 5,16 витка

На единицу напряжения количество витков получено. Используя его значение по Формула 6 найдем значение витков на вводной обмотке оборудования преобразования всего:

Wv1 = 5.16 x 220 = 1135 витков – первичная обмотка посчитана по количеству витков, аналогичные действия проведем для вторички, используя тоже количество витков на 1В и Формуле 6:

Wv2 = 5.16 x 36 = 186 витков – намотка вторичной обмотки по виткам тоже стала известна.

Расчет площади сечения исходя из мощности первичной обмотки

4 этап

Номинальные токи нагрузки трансформатора тоже необходимо узнать, чтобы провести проверку трансформатора согласно методике испытаний. Исходя из Форм. 1 можно вывести формулу токового значения.

Формула 15. Расчет номинального тока обмоток трансформатора:

I1 = P1 / U1

I2 = P2 / U2, где

I1, I2 – номинальные токи трансформаторных обмоток;

P1, P2 – электрические мощности ввода и вывода устройства;

U1, U2 – номинальные напряжения первичной и вторичной стороны трансформатора.

I1 = 94 / 220 = 0,43А;

I2 = 75 / 36 = 2,08А.

5 этап

Новые параметр, которые не рассматривался ранее – это диаметр проводника обмоток трансформатора (зависит от номинального тока на каждой обмотке).

Формула 16. Расчет диаметра проводника обмоток трансформатора:

D1 = 0,8

D2 = 0,8 , где

D1, D2 – диаметр проводника первичной и вторичной обмоток;

I1, I2 – номинальные токи обмоток первичной и вторичной намотки;

0,8 – постоянный поправочный коэффициент расчетов диаметров.

D1 = 0,8  = 0,8*0,66 = 0,5 мм.

Для проводников первичной и для проводника вторичной обмоток:

D2 = 0,8  = 0,8*1,44 = 1,15 мм.

6 этап

В электротехнике кабельно-проводниковая продукция всегда представлена в значения площади поперечного сечения жилы, а значит, чтобы не возникало проблем с реальным подбором проводника требуется перевести полученные диаметры в площадь поперечного сечения с помощью электронных конвекторов по Формуле 17. Перевод из диаметра в сечение провода:

SКПП= D2 * 0.8

Отсюда для каждого из диаметров получаем:

  • SКПП1= (0,5)2 * 0.8 = 0,2 мм2 – провод для первичной обмотки;
  • SКПП2= (1,15)2 * 0.8 = 1,0 мм2 – провод для вторичной обмотки.

Далее получив все расчетные значения по трансформатору из примера, приступают к практической части намотки витков с обеих сторон одновременно, коммутации их выводов и другим работам.

Расчет диаметра проводника обмоток трансформатора

Как рассчитать Ш-образный трансформатор

Универсальность конструкции Ш-образного магнитопровода позволяет одинаково эффективно использовать, закладывать форму сердечника в проекты расчета, как импульсных– современных трансформаторов, участвующих в процессах обеспечения питания электронной бытовой и мультимедийной техники, так и проводить серьезные проектные расчеты силовых трансформаторов напряжения, находящийся в составе высоковольтных подстанций, основного и аварийного питания значительного количества потребителей (в случае двух трансформаторной структуры энергоснабжения).

Расчеты Ш-образного трансформатора по своим характеристикам ничем особенным не может отличаться от основных пунктов упрощенного или детального расчета преобразователей энергии. Для него могут использоваться формулы нахождения параметрических величин или применяться расчеты онлайн автоматизации проектов. Второй метод несколько универсален и быстротечен, в том плане, что для его использования достаточно знать исходную геометрию и номинальные значения выходных величин, что авто программа расчетов смогла предоставить необходимые значения для оборудования.

Единственным нюансом для Ш-образного магнитопровода может быть расчет номинальной мощности вторичных обмоток, если у него она не одна, тогда расчет мощности можно выполнить по Формуле 3. И расчет толщины набора сердечника будет зависеть от расчетов и данных Ш-образного магнитопровода по Формула 8

В остальном в зависимости от параметров можно применять все вышеуказанные формулы, исходя из конкретных электрических величин Ш-образного сердечника.

Ш-образный трансформатор

Определение параметров ТТ

Измерительный преобразователь тока, в основном принципе своей работы имеет некоторые важные отличительные особенности по сравнению с силовыми трансформаторами питания электропотребителей или трансформаторов напряжения.

Отличия заключаются в токовой величине его вторичной обмотки. Ток «вторички» ТТ независим от нагрузки цепей в ней, и имеет сопротивление, которое всегда соответствует количеству витков первичной обмотки с минимальным значением по величине в сравнении с сопротивлением силовых цепей первичного подключения.

Принципиальная схема трансформатора тока

Рисунок 2. Принципиальная схема трансформатора тока.

К тому же протекающий ток I2 через цепь вторичной обмотки имеет постоянное направление, при помощи которого производится размагничивание сердечника данного устройства. I1 обозначено направление тока первичной обмотки ТТ.

В связи с условием что верхний конец первичной обмотки находится там же, где и  верхний конец первичной обмотки, учитывая из физики равенства магнитных потоков его обмоток можно составить определенный алгоритм расчета такого оборудования преобразования тока с учетом нюансов изделия:

  1. Определяется номинальное напряжение первичного обмотки ТТ – величина выбор которой производится из стандартных паспортных значений таблиц и измеряется в киловольтах: 0,66/ 3/6/10/15/20/24/ 27/ 35/ 110/ 150/ 220/ 330/ 750.
  2. Второй важный параметр токового устройство – определение номинального тока первичной обмотки – учитывая перегрузочные способности, данная величина рассчитывается большей или равной (> =) номинального тока первичной цепи электроустановки. Его токовый ряд первичной обмотки выбирается из ГОСТ значений: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. Измеряется в амперах и кило амперах. В случае выбора ТТ на пусковое, генераторное оборудование к его номинальному току прибавляется 10% значение и от полученной суммы выбирается первичный ток ТТ.
  3. Ведут проверки преобразователя по термической и электродинамической стойкости согласно формулам из паспортных формуляров проверок.
  4. Выбирается и проверяется ТТ по мощности вторичных нагрузок – учитывая формулу 18:

Sном2 > Sнагр2, где

Sном2 – номинальная мощность вторичной обмотки;

Sнагр2 – мощность вторичной нагрузки, где будет установлен ТТ.

Кроме основных параметров выбора ТТ – это измерительное оборудование, учитывая значение номинала класса точности выбирается для питания и защиты цепей РЗиА, а так же преобразователи с завышенным коэффициентом трансформации и повышенным классом точности подбирают для питания токовых обмоток энергоучета.

Трансформаторы тока подключаются по каждому изделию на каждую фазу для включения в состав защитных, измерительных или учетных цепей.

Важное для расчета ТТ должно выполняться равенство по форм. 19:

(I1*N1) – (I2*N2) = 0, где

I1, I2 – значения токов первичной и вторичной обмотки;

N1, N2 – количество витков в обмотках ТТ.

Отсюда для вычисления количество витков в обмотке вторичного подключения определяется его токовое значение, совместно с основными понятиями магнитных характеристик:

  • Lind – значения индуктивности ТТ;
  • XLreac – сопротивления реактивной мощности ТТ;
  • Rc – сопротивления нагрузки вторичной цепи.

Значение равенства произведений токов для ТТ

Вычисления значений по формулам достаточно трудоемкий факт работы, поэтому в большинстве случаев, чтобы получить понимание выбора определенного трансформатора тока пользуются или целиком справочно-паспортными значениями их выбора или калькуляторами расчета параметров устройств.

Сердечники трансформаторов могут изготавливаться из ферромагнитных материалов или пластин Ш-образной формы электротехнической стали. Возможны кольцевые магнитопроводы из ленточно-проволочных материалов производства.

Особенности расчета сетевого трансформатора

Трансформаторы типа сетевой являют собой преобразователи напряжения, участвующие в цепях питания различных маломощных, относительно электроустановок силовых трансформаторов, энергопотребителей, приборов и устройств автоматики, контроля, телемеханики. Они очень популярны и широко распространены в мире подобного оборудования.

В связи с этим их выбор должен обладать определенными критериями по мимо основных номинальных электрических величин:

  • номинальные токи первичной и вторичной обмотки;
  • номинальные напряжения первичной и вторичной обмотки;
  • мощности первичной и вторичной обмотки;
  • полной мощности трансформатора;

Их выбор может варьироваться от отличий параметров конструкции и их различных типов. Главные из которых выделено рассматриваются ниже.

Выбор магнитопровода

Этот центральный элемент устройства обладает сразу несколькими характеристиками выбора.

Прежде всего, в зависимости от места установки и сферы применения сердечник трансформатора должен отвечать параметрам прочности, износостойкости, электрической прочности, экономичности.

Технология изготовления

Следующий параметр выбора зависит от его электромагнитных свойств. Технология изготовления делит магнитопроводы на два типа:

  1. Пластинчатые – выполненные из пластин электротехнической стали, изолированных и спрессованных между собой в определенные формы, габаритные размеры.
  2. Ленточные – выполнение из навивки стальной проволоки (менее распространены).

Пластинчатые магнитопроводы

Формы серденичков

Каждый из двух видов в свою очередь подразделяется на формы и конструктивные различия стержней, окон для намотки проводников обмоток, диаметры которых зависят от электрических параметров оборудования. Формы сердечников бывают:

  1. Стержневые – в пластинчатом исполнении производятся из пластин П-образной формы одинаковой ширины. Имеют одно окно с определенным размером прохода намотки обмоток. Замыкаются прямоугольными пластинами.
  2. Броневые – Ш-образные пластины собираются в двух оконный магнитопровод, который замыкается прямоугольными пластинами из стали. Набираются переплетом для уменьшения магнитного сопротивления в местах стыка. С целью уменьшения вихревых токов производятся методом прессования.

Что касается таких же форм ленточных сердечников – набираются прямоугольной формы с разрезами вдоль и поперек. Для уменьшения магнитного сопротивления их сердечники подвергаются шлифовки.

Существуют еще кольцевые формы сердечников, которые обладают отличными магнитными свойствами в работе, но трудоемки в своем изготовлении. Некоторое время их производили в виде трансформаторов для питания освещения, но в настоящее время используют редко.

Самыми популярными в зависимости от токовых и мощностных характеристик выступают Ш-образные и П-образные сердечники при изготовлении сетевых трансформаторов. Для вторичных цепей много катушечного характера используют стержневой тип сердечников. Броневое исполнение содержит на каждой стороне только по одной катушке, что является его ограничительным фактором применения.

Стержневые магнитопровода

Варианты размещения катушек

С учетом конструктивных исполнений магнитопровода, электромагнитных характеристик устройства, его механики, следует различать несколько основных типов размещения обмоток:

  • прямоугольный провод класс «Цилиндр – 1-2слоя» – преимущества – имеет хорошее охлаждение при эксплуатации, простота изготовления. К недостаткам относится малая прочность;
  • прямоугольный провод класс «Цилиндр – многослой» – достоинства имеет в отличных магнитных свойствах системы, простоте изготовления. Минусы вида обмотки в плохом охлаждении в момент работы;
  • круглый провод класс «Цилиндр – многослой» – плюсы варианта в простоте изготовления, минусы в плохой теплоотдаче, возможности перегрева;
  • прямоугольный провод класс «Винтовая на 1-2 или многоход» – достоинства состоят в высокой прочности отличной изоляции, хорошем охлаждении. Минус в дороговизне при производстве;
  • прямоугольный провод класс «Непрерывный» – механическая и электрическая прочность, хорошее охлаждение придают этому варианту положительных характеристик, но неудобство при обслуживании относят к недостаткам;
  • алюминиевая фольга класс «Катушечный многослой или цилиндр» – достоинства в механической прочности, магнитных свойствах. Минус в сложности изготовления.

Так же есть катушки в виде дискового формата. Соединяемые между собой. В целом тип катушки и форма обмотки выбирается от электрических параметров необходимых в конкретном применении с учетом экономичной стороны и технологий.

Краткая справка о материалах магнитопровода

Для изготовления сердечников трансформаторов в обязательном порядке отбирают материалы, имеющие высокую магнитную проницаемость, малую площадь петли гистерезиса, минимальные энергетические потери при возникновении в них вихревых токов.

Сталь низкоуглеродистого состава – основа для производства сердечников. Мощные трансформаторы, которые имеют сложные структуры магнитопроводов, в генераторных системах и подобных им имеют сердечники, изготовленные из малоуглеродистых стальных материалов.

Для эксплуатации в высокочастотных режимах работы преобразователей энергии, их сердечник выполняют из ферритов или подобных им композитов (прессованные порошки с свойствами магнитной мягкости по типу магнетитов или карбонильного железа). Такие системы связывают с диэлектрической структурой в виде эпоксидных смол. В итоге получается собрание мелкозернистого порошка ферромагнитного (вещества в твердом состоянии, кристаллах, обладающих свойством намагниченности) состава, изолированного друг друга токопроводящей смолой.

Распространенная технология сердечников связана с набором отдельных пластин в пакетную стальную структуру с малым содержанием углерода

Магнитопровод

Исходные данные

Для выполнения проектных расчетов силовых агрегатов преобразования энергии, сетевых трансформаторов напряжения, импульсных энергетических преобразователей необходимо иметь часть справочно-табличных данных, исходя из составов материалов проводов обмоток, изоляции, стали сердечников, таких как:

  1. Величина максимальной индуктивности – для точного расчета габаритной мощности.
  2. Значение плотности тока – аналогичное участие справочного значения в расчете размерной мощности изделия.
  3. Коэффициенты мощности конкретного устройства – для расчета мощностного параметра.
  4. Сопротивления материалов сердечников и значение в проводниках обмоток для возможности расчета полной мощности.

Необходимы номинально-заданные параметры оборудования исходя из конкретного применения, нагрузки, которая будет использоваться в расчетном преобразователи:

  • габаритные размеры сердечника и материалы из чего он изготовлен, тип и форма – размеры окна магнитопровода по длине и ширине особенно важны, т.к. связаны с площадью сечения магнитопровода, от которой идут дальнейшие расчеты;
  • номинальные токи обмоток первичной и вторичной стороны устройства;
  • номинальные напряжения в сети со стороны первичной и вторичной обмотки;
  • значение и функционал трансформатора, на который направлен расчет;
  • мощность по активной составляющей (первичной или вторичной обмотки)
  • количество обмоток со стороны нагрузок;
  • прочие детали или возможные подробности по изделию и функционалу его применения.

На основании исходных данных номинального и справочного характера вполне реально произвести ручной расчет трансформатора согласно формулам или воспользоваться автоматизированным сервисам в сети Интернет.

Как посчитать магнитопровод

В совокупности справочных и расчетных материалов, параметрических значений расчета трансформатора достаточно несложно произвести расчет его магнитопровода.

1 шаг

Расчету подвергается произведение площади сечения стержня Sст на площадь сердечника Sсер согласно равенству форм. 20:

Sст x Sсер   = Pгаб x 102 / (2,22F х B х j x КПД x Nster x Kc x Km), где:

  • Pгаб – габаритная мощность рассчитываемого трансформатора;
  • F – частота переменного тока 50Гц
  • B – максимальная индукция трансформатора, Тл;
  • J – значение плотности тока А/м2;
  • КПД – базовый коэффициент полезного действия устройства;
  • NsterЧисло стержней сердечника;
  • Kc – коэффициент заполнения сечения сердечника магнитной сталью;
  • Km – коэффициент заполнения окна стержня магнитной сталью;

Частично данные берутся из исходных номинальных значений оборудования, но большая часть вытекает из технической справочной литературы и табличных параметров и величин согласно указанному сердечнику изделия. В них входят: индукция, КПД оборудования, плотность тока, А/м2, коэффициенты заполнения сердечника и его окна.

Как посчитать магнитопровод

2 шаг

Следующий шаг в расчете предполагает получение значения толщины сечения сердечника по Формуле 8, опубликованной в обзоре выше.

3 шаг

Последним шагом для расчета магнитопровода необходимо посчитать еще одно равенство значений узнав ширину ленты сердечника по форм. 21:

Bline= Sст x Sсер   / (A x С x H), где

  • Bline – ширина ленты сердечника для расчета, мм;
  • Sст x Sсер -площади сечения стержня и самого сердечника, см2;
  • A x С x H – размеры сторон сердечника, мм.

После чего, имея на руках три основных параметра магнитопровода с помощью литературы подбора, методом сравнительного анализа полученного значения с ближайшим стандартом производится выбор марки, размеров и всех данных магнитопровода трансформатора.

Простейший расчет трансформатора

Определение параметров обмоток

Параметрические составляющие в обмотках в расчете ручных формул начинаются с определения ЭДС одного витка обмотки Е по формуле 22:

Е = 4,44 x F x В х Sст x Kc x 10-4, где

  • F -частота переменного тока, ГЦ;
  • В – максимум индукции, ТЛ;
  • Sст –площадь сечения стержня;
  • Kc– коэффициент заполнения стержня.

Следующим расчетным показателем требуется получить падения напряжения на каждой обмотке трансформатора по формуле 23:

^U1 = 1,5*U1 *J*A*10-3

^U2 = 1,5*U2 *J*A*10-3

А от падения напряжения рассчитываются количество витков первичной и вторичной обмотки по новым формулам.

Формула 24. Расчет количества витков на основе падения напряжения:

N1= (U1- ^U1) / E

N2= (U2- ^U2) / E

Получив количество витков возможно узнать диаметры проводников (форм. 25):

D1 = 1.13

D2 = 1.13

Обычно при этом расчет обмоток завершается по проектному трансформатору, однако в его содержании возможно еще высчитывать средние длины витка обмоток, длины витков каждой обмотки и их массы. Допустимо вывести расчет и массы магнитопровода, для более детальных и точных вычислений.

Диаметр проводника по падениям напряжения

Мощность потерь

Их зависимость просматривается от воздействия силы магнитного поля на сердечник. Деление по виду потерь сердечника происходит в двух формациях:

  • Статические потери Pstat – перемагничивание магнитопровода. Они прямо пропорциональны длине петли магнитного потока Sпетли, частоте переменного тока F и весу магнитопровода G:

Pstat = Sпетли х F х G (форм. 26)

Еще их называют потерями на гистерезисе. При уменьшении толщины ленты начинает рост таких потерь, аналогично при росте петли, частоты сети или весу сердечника.

Второй тип потерь:

  • Динамические потери – потери, которые происходят при возникновении в сердечники вихревых токов.

Постоянный ток имеет нулевую частоту петли гистерезиса, как только частота начинает расти – идет возникновение динамических потерь в сердечнике.

Статические потери магнитопровода

Особенности расчета автотрансформатора

Автотрансформатор – преобразователь напряжений, имеющий в отличии от обычного трансформатора, единую и единственную обмотку с одним или несколькими промежуточными выводами.

Внешний вид автотрансформатора

Рисунок 3. Внешний вид автотрансформатора.

Если коэффициент трансформации нагруженного электротехнического устройства малого значения – автотрансформатор становится более экономически выгодным обычного преобразователя напряжения, т.к. расход медного провода его катушки  заметно меньше, чем у двух обмоточного обычного трансформатора.

Принципиальная схема автотрансформатор

Рисунок 4. Принципиальная схема автотрансформатора.

В общей точке обмотки судя по схеме на Рисунок 4 обмотки устройства протекает ток с определенным значением дельты:

дельта трансформатора

Важно! Вход и Выход изделия напрямую связаны. Это означает опасность и запрет в проведении защитного заземления схемы, в которую включен нагруженный автотрансформатор.

Устройство автотрансформатора в нагруженном состоянии или в режиме холостого хода имеет дополнительную обмотку, без какой-либо связи с основной. И как только значение мощности дополнительной катушки больше мощности основной обмотки – экономическая и выгода автотрансформатора падает с критической скоростью.

Для расчета мощности во вторичной обмотке устройства представляет собой сумму двух значений:

Preborn = Uii x I               +           Pprox= Uii x I1, где

  • Ppreborn – преобразовательная мощность, величина проходящая в зону вторичной обмотки по средствам магнитной связи;
  • Pproxпроходящая мощность во вторичную обмотку посредством электрической связи
  • Uii, I – напряжение, ток автотрансформатора.

Расчет автотрансформатора похож систему расчета силового преобразователя напряжения с одной поправкой – магнитопровод автотрансформатора рассчитывается на единицу значения преобразовательной мощности:

Ppreborn = 1,1*Pa * , где

Pa – мощность автотрансформатора, общая, Вт;

коэффициент трансформации оборудования.

автотрансформатор

Автотрансформаторы, как бы парадоксальны их свойства и устройства не были, в однофазных и трехфазных сетях низковольтного и высоковольтного напряжения достаточно популярны за счет своих характеристик и возможности изменять выходную электрическую величину, низкой стоимости и коэффициентом полезного действия около 99%.

Мощные автотрансформаторы, начиная с напряжения 110 кВ используются в регулировочных ступенчатых узлах распределительных установок.

Слабые устройства, небольшой мощности, внешнего вида, как на Рисунок 3 стали очень популярны в научно-исследовательских организациях, как стендовое оборудование, позволяющее проводить многие тесты. Это касается и учебных заведениях. В них используются лабораторные автотрансформаторы (ЛАТР) для проведения работ и испытаний с целью обучения молодых специалистов.

Как посчитать пленочный трансформатор

Инновация в разработках сверхпроводников, в области криоэлектроники представлена в виде криогенного устройства на сверхпроводниках. Схематически его основные элементы представлены ниже на Рисунке 5  Это и есть – пленочный трансформатор магнитного потока.

пленочный трансформатор магнитного потока.

Рисунок 5. Схематика пленочного трансформатора.

Квадратообразный обруч с активной полоской, изолирующей пленку, помещается между активной полосой трансформатора магнитного потока и магниточувствительным элементом.

С помощью преобразовательного устройства на сверхпроводниках происходит повышение умножение трансформатора магнитного потока.

Сверхпроводниковый трансформатор магнитного потока – пленочный трансформатор – устройство разработанная в научно-исследовательских институтах, имеет определенные свойства и преимущества:

  • увеличение чувствительности датчиков;
  • расширение динамического диапазона;
  • увеличение помехозащищенности.

Пленочные трансформаторы сверхпроводимости нашли широкое применение в медицине в магнита-резонансных установках, позволяющих снять информацию сразу по всему организму и телу человека.

Схематика пленочного трансформатора с движением потока

Рисунок 6. Схематика пленочного трансформатора с движением потока.

Однородность магнитного поля в активной полосе трансформатора увеличивается как показано на Рис. 7.

Рисунок 7

Рисунок 7. Схемы активных пластин.

Концентрация магнитного поля имеет определенный темп увеличения эффективности, рассчитываемый по формуле:

формула для трансформатора

Наконец-то на последней схематике приведен эскиз активной полосы и приведены ее основные параметры для расчета:

Параметры

В настоящее время на сверхпроводниках реализованы лишь пленочные трансформаторы способные увеличивая магнитный поток воздействовать на магниточувствительным элемент для проведения определенной работы. Если сверхпроводимость войдет в нашу жизнь для любого материала изменится не только конкретный преобразователь энергии, но и весь человеческий мир.

Обзор онлайн сервисов

Произвести расчеты трансформаторов любого типа, их составных частей или комплектующих помимо технических справок и таблиц, научной литературы в настоящее время довольно много качественных онлайн сервисов расчет электротехнических параметров или оборудования по конкретному запросу.

Если брать расчет трансформаторов – онлайн площадки в богатом остатке предлагают различные онлайн калькуляторы, расчетам которых вполне можно доверять.

Они не требуют никаких сложных значений или данных – достаточно иметь несколько основных исходных параметров электрических величин и знания геометрии оборудования.

Несколько вариантов онлайн площадок расчета трансформаторов предлагается в обзоре статьи на справедливую оценку и тестирование любым радиолюбителем или бывалым специалистом электронщиком:

  1. Интересная программа онлайн доступа и расчета с возможностью провести расчет как по стержневому виду, так и броневому виду сердечника, что увеличивает функционал и улучшает поддержку: Калькулятор расчета трансформатора №1.
  2. Помощь в расчете «Пуш-Пулл» трансформатора – простота и умение наращивать мощность являются основными преимуществами трансформаторов «Push-Pull», что в переводе с английского языка означает – двухтактный – трансформатор напряжения использующий импульсный трансформатор и становится трансформатор с двунаправленным возбуждением. Расчет такого устройства по формулам в ручном режиме может занять весомую часть времени. Помочь в этом может автоматизация расчета программой «ExcellentIT».
  3. Любые расчеты преобразователей электрической энергии, блоков питания, сложных устройств, которые так хочется собрать многими радиолюбителями и электронщиками-самоучками, но не хватает технической базы и формул, теперь возможно производить с помощью «Сборника Расчетных программ».

расчет трансформатора программа

Но не стоит автоматизированные, онлайн сервисы делать панацеей в расчетах и проектировании преобразующих, питающих энергоустройств и систем электроники. Нужно помнить, что любая автоматика или компьютеризация без человека – оператора не стоит и не может ничего.

Примеры расчета

Для получения практических навыков расчета преобразователей напряжения упрощенными формулами в ручном режиме произведем:

Расчет силового трансформатора, который должен запитывать N-оборудование

Условия и исходные данные для расчета

  • Тип оборудования: трансформатор напряжения силовой;
  • Напряжение обмотки ВН: 660В;
  • Ток обмотки ВН: 60mA;
  • Напряжение обмотки НН: 12В;
  • Ток обмотки НН: 6А;
  • Тип сердечника: П-образный / коэффициентом количества витков на 1В = 50;
  • Размеры окна сердечника: А = 10 см, И = 3 см.

трансформатор напряжения силовой

Расчет силового трансформатора пошагово

  • Т.к. обмотки ВН и НН в единственном экземпляре определить общую мощность трансформатора можно по формуле:

Pобщ = (Uвн * Iвн) + (Uнн * Iнн);

Pобщ = (660 * 0,06) + (12 * 6) = 39,6 + 72 = 111,6 Вт;

  • Следующий шаг определение мощности первичной цепи обмотки по формуле:

P1 = 1,25 * Pобщ;
P1 = 1,25 * 111,6 = 139,5 Вт;

  • Третий шаг определить площадь сечения сердечника из формулы:

площадь сечения сердечника

  • Определение количества витков на 1В и номинальный ток первичной обмотки можно:

N1v = K / Sсеч = 50 / 11,8 = 4,2;

I1 = P1 / Uнн = 139,5 / 220 = 0,63А;

  • Остается найти число витков и диаметр проводников для первичной и вторичной обмотки:
  1. N1 = N1v * Uнн = 4,2 * 220 = 924 витков;
  2. D1 = 0,8 * = 0,8 * = 0,8 * 0,79 = 0,63 mm;
  3. N2 = N1v * Uвн = 4,2 * 660 = 2772 витка;
  4. D2 = 0,8 * = 0,8 * = 0,8 * 0,24 = 0,2 mm;
  • С учетом того, что в исходных данных у нас есть размеры окна сердечника найдем ее площадь поперечного сечения, через который проверим войдут ли проводники в заданную площадь:

Sser = A * В = 10 * 3 = 30 см2 = 3000 мм2

Зная параметры диаметра проводников на каждой обмотке, можно вычислить опытную площадь проводников, которая должна быть меньше расчетной окна сердечника.

Этот расчет является защитным и проверочным предохранителем от ненужной траты сил и материалов по заранее ошибочным расчетным данным:

  • S1 Первичная: 0,8 * D1 * N1 = 0,8 * 0,63 * 924 = 465 мм2;
  • S2 Вторичная: 0,8 * D2 * N2 = 0,8 * 0,2 * 2772 = 444 мм2;
  • Sser> (S1 + S2) – Необходимое условие

«Что и требовалось доказать»

3000> (444 + 465) – условие правильности расчета выполняется.

Остальные расчеты трансформаторов напряжения проводятся примерно в таком же формате, что и пример выше. Если позволяется – используют калькуляторы расчета в сети интернет.

Оборудование преобразования других величин электрической энергии проверяется расчетными методами по своим правилам и формулам или в тех же сервисах компьютерных программ.

Расчет
трансформатора начинается с определения
основных электрических величин — мощности
на одну фазу и стержень, номинальных
токов на стороне ВН и НН, фазных токов
и напряжений.

Мощность
одной фазы трансформатора, кВ·А,

Sф= S/m (3.1)

мощность
на одном стержне

S’ = S/c (3.2)

где с
— число активных (несущих обмотки)
стержней трансформатора; S — номинальная
мощность трансформатора, кВ·А.

Для
трехобмоточного трансформатора под
мощностью S следует понимать наибольшее
из трех значений номинальной мощности
для обмоток ВН, СН и НН.

Номинальный
(линейный) ток обмотки ВН, СН и НН
трехфазного трансформатора, А,

I = S·103/(U)
(3.3)

где S
— мощность трансформатора, кВ·А; для
трехобмоточного трансформатора S —
мощность соответствующей обмотки ВН,
СН или НН; U — номинальное линейное
напряжение соответствующей обмотки,
В.

Для
расщепленных обмоток S — мощность
соответствующей части обмотки. В
трансформаторах классов напряжения
35—500 кВ, отвечающих требованиям
современных стандартов, расщепление
обмотки производится на две части,
равные по мощности.

Номинальный
ток однофазного трансформатора, А,

I = S·103/U
(3.4)

Фазный
ток обмотки одного стержня трехфазного
трансформатора, А:

 при
соединении обмоток в звезду или зигзаг

Iф= I (3.5)

при
соединении обмоток в треугольник

Iф= I /(3.6)

где
номинальный ток I определяется по (3.3).

Фазное
напряжение трехфазного трансформатора,
В:

 при
соединении в звезду или зигзаг

Uф= U/(3.7)

здесь
U — номинальное линейное напряжение
соответствующей обмотки, В.

 при
соединении в треугольник

Uф= U (3.8)

При
соединении в зигзаг результирующее
фазное напряжение образуется геометрическим
сложением напряжений двух частей
обмотки, находящихся на разных стержнях
(рис. 3.1). В силовых трансформаторах
общего назначения обе части обмотки на
каждом стержне имеют равное число
витков. В этом случае фазное напряжение
образуется суммой равных напряжений
двух частей обмотки, сдвинутых на 60°.
Напряжение одной части обмотки фазы
при этом может быть получено из формулы

U’ = Uф/ (2
cos30o) = Uф/

Общее
число витков такой обмотки на одном
стержне будет определяться не Uф,
как при соединении в звезду, а 2Uф
/,
т, е. увеличится в 1,155 раза.

Рис.
3.1. Схема соединения в зигзаг:

а
— общая схема; б — диаграмма фазных и
линейных напряжений при разделении
фазных обмоток на две равные части; в —
то же, когда обмотки делятся на неравные
части

При
соединении в зигзаг обмотка фазы может
разделяться на две неравные части. В
этом случае может быть получен поворот
системы фазных и линейных напряжений
схемы на любой угол в зависимости от
того, в каком отношении находятся числа
витков двух частей обмотки фазы (рис.
3.1,в ). При заданном угле β обмотка каждой
фазы должна быть разделена в отношении

ω1/( ω1+
ω2) = 2tgβ/(tgβ +).

Если
ω1=
ω2
и ω1/(
ω1+
ω2)
=1/2, то β=30o.

Фазный
ток и напряжение однофазного трансформатора
равны его номинальным току и напряжению.
Ток и напряжение обмотки одного стержня
в однофазном трансформаторе зависят
от соединения обмоток стержней —
последовательного или параллельного.
При последовательном соединении обмоток
двух стержней ток обмотки одного стержня
равен номинальному току, а напряжение
— половине номинального напряжения. При
параллельном соединении обмоток двух
стержней ток обмотки одного стержня
равен половине номинального тока, а
напряжение — номинальному напряжению.
В обоих случаях предполагается, что
числа витков обмоток обоих стержней
равны.

Для
определения изоляционных промежутков
между обмотками и другими токоведущими
частями и заземленными деталями
трансформатора существенное значение
имеют испытательные напряжения, при
которых проверяется электрическая
прочность* изоляции трансформатора.
Эти испытательные напряжения определяются
по табл. 4.1 для каждой обмотки трансформатора
по ее классу напряжения.

Потери
короткого замыкания, указанные в задании,
дают возможность определить активную
составляющую напряжения короткого
замыкания, %:

uа=
100=
(3.9)

 где
Рк—в
Вт; S—в кВ·А.

Реактивная
составляющая при заданном ик
определяется по формуле

uр=
(3.10)

 Расчет
основных электрических величин для
автотрансформатора имеет некоторые
особенности. Типовая или расчетная
мощность однофазного автотрансформатора

Sтип=
U1I1·10-3= U2I2·10-3(3.11)

может
быть определена по заданным проходной
мощности Sпрох
и номинальным напряжениям U и U’:

Рис.
3.2. Схема соединения обмоток однофазного
двухобмоточного повышающего
автотрансформатора

Рис.
3.2. Схема соединения обмоток однофазного
двухобмоточного понижающего
автотрансформатора

для
повышающего автотрансформатора (рис.
3.2)

Sтип=
Sпрох=
kвSпрох(3.12)

для
понижающего автотрансформатора (рис.
3.3)

Sтип=
Sпрох=
kвSпрох

Коэффициент
kв=(U’-U)/U’
для повышающего или kв=(U-U’)/U
для понижающего автотрансформатора,
показывающий, какую долю составляют
типовая (расчетная) мощность Sтип
от проходной мощности Sпрох,
иногда называют коэффициентом выгодности
автотрансформатора (<1).

—————

*
Здесь и далее электрическая прочность
понимается как способность изоляции
трансформатора и его частей выдерживать
без повреждений те воздействия
электрического напряжения, которые
возникают при проведении испытаний,
установленных нормативными документами
(ГОСТ, технические условия), и в
эксплуатации.

Для
трехфазного автотрансформатора (рис.
3.4) с обмотками, соединенными в звезду,
под U и U’ в (3.12) следует понимать линейные
напряжения. Соединение обмоток в
треугольник для силовых автотрансформаторов
обычно не применяется.

Рис.
3.4. Схема соединения обмоток трехфазного
двухобмоточного повышающего трансформатора

Коэффициент
kв
всегда меньше единицы и Sтип<Sпрох,
т.е. автотрансформаторная схема требует
меньшей расчетной мощности и, следовательно,
меньшего расхода материалов, а также
обладает более высоким КПД, чем
трансформаторная. Применение
автотрансформаторов в этом отношении
тем выгоднее, чем ближе отношение U’/U к
единице, т.е. чем меньше изменяется
напряжение сети при помощи автотрансформатора.

Номинальные
линейные токи для трехфазных и однофазных
автотрансформаторов рассчитываются,
так же как и для трансформаторов, по
(3.3) и (3.4). Расчет токов отдельных обмоток
со схемами по рис. 3.2 и 3.3 производится
по формулам:

для
повышающего однофазного автотрансформатора
(рис. 3.2)

I2= I’; I1=
I — I2= I — I’,

для
понижающего однофазного автотрансформатора
(рис. 3.3)

I2= I; I1=
I — I2= I’ — I.

 Для
трехфазного автотрансформатора с
соединением обмоток в звезду токи
обмоток находятся также по этим формулам.
В том и другом случае I и I’ — номинальные
линейные токи автотрансформаторов,
найденные по (3.3) и (3.4).

Напряжения
отдельных обмоток U1
и U2,
В, для однофазного автотрансформатора:

 повышающего
(рис. 3.2)

U1=U; U2=U’
— U,

 понижающего
(рис. 3.3)

U1= U’; U2=U
— U’,

Для
трехфазного автотрансформатора с
соединением обмоток в звезду под U и U’
в этих формулах следует понимать фазные
напряжения автотрансформатора:

U= Uл/и U’= U’л/,

где
Uл
и U’л
— номинальные линейные напряжения
автотрансформатора по заданию.

Напряжение
короткого замыкания ик
для автотрансформатора обычно задается
как сетевое ик,с
т. е. относительно большего из двух
сетевых напряжений U и U’. При расчете
основных размеров автотрансформатора
необходимо знать расчетное напряжение
ик,p
т. е. отнесенное к напряжению одной из
обмоток U1
или U2.
Для понижающего и повышающего
автотрансформатора ик,р
может
быть найдено по формуле

ик,р = ик,с/
kв.

После
определения расчетной мощности, токов
и напряжений обмоток и расчетного
напряжения короткого замыкания между
обмотками ВН и СН расчет автотрансформатора
производится по этим данным так же, как
и обычного трансформатора.

Пример.
Рассчитать основные электрические
величины для понижающего трехфазного
трехобмоточного автотрансформатора с
автотрансформаторной связью обмоток
ВН и СН и трансформаторной связью обмоток
ВН и НН, СН и НН по рис. 2.9, б.

Проходная
мощность Sпрох
= 100000 кВ·А, мощности обмоток ВН и СН при
автотрансформаторной связи Sпрох;
мощность обмотки НН 0,5Sпрох.
Номинальное напряжение: ВН 231 кВ; СН 121
кВ±8·1,5%; НН 38,5 кВ. Схемы соединения
обмоток: ВН и СН — У, НН — Д. Напряжения
короткого замыкания ик,с,
приведенные к проходной мощности и
отнесенные к сетевым напряжениям: ВН—СН
11 %; ВН—НН 31 %; СН—НН 19%.

Коэффициент
выгодности

kв= (Uл— U’л)/ Uл= (231-121)/231 = 0,476.

Типовая
мощность Sтип
= kвSпрох=0,476.100000=47
600 кВ·А; мощность обмотки НН SНН=50000
кВ·А. Расчетная мощность обмотки одного
стержня для обмотки ВН и СН

S’ = Sтип/c =
47600/3 = 15867 кВ·А;

для
обмотки НН

S =Sпрох/c =
0,5·100000 /3 = 16667 кВ·А.

Линейные
токи

I = Sпрох·103/(U)
= 100000·103/(·231000)
= 250 А;

I’ = Sпрох·103/(U’)
= 100000·103/(·121000)
= 480 А;

Iл3=
Sпрох·103/(UНН)
= 50000·103/(·38500)
= 750 А;

Токи
обмоток

I2= I = 250А;
I1= I’- I=480-250 = 230 А;

I3= Iл3/= 750/= 432 А.

Фазовые
напряжения

U= Uл/=231000/=
133000 В;

U’= U’л/=
121000/=69700
В.

Напряжения
обмоток

U1= U’=69700 В;
U2=U-U’=133000-69700 = 63300 В;

U3= UНН= 385000 В.

Расчетное
напряжение короткого замыкания между
обмотками ВН и СН

ик,р = ик,с/
kв= 11/0,476 = 23,1 %.

Напряжения
короткого замыкания между обмотками
ВН и НН, СН и НН, имеющими трансформаторную
связь, не пересчитываются, но при реально
возможной нагрузке на обмотках ВН—НН
или СН—НН, равной 0,5, Sпрох
будут равны: для ВН — НН 0,5·31 = 15,5% и для
СН— НН 0,5·19 = 9,5%.

Соседние файлы в папке ІПЕМтаТ_Коцур

  • #
  • #
  • #
  • #
  • #
  • #

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора — указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания — дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник — Электрооборудование станций и подстанций

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Определим ток из формулы определения полной мощности:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x — искомое сопротивление в именованных единицах, Ом
  • xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном — номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Источник

Расчет основных электрических величин и главной изоляции обмоток трансформатора

Расчет трансформатора начинается с определения основных электрических величин: мощности на одну фазу и стержень; номинальных токов на стороне ВН и НН; фазных токов и напряжений.

¨ Мощность одной фазы трансформатора, кВ*А,

= ,
где S – мощность трансформатора; m – число фаз.

¨ Мощность на одном стержне, кВ*А,

S` = ,
где C– число активных (несущих обмотки) стержней.
Обычно для 3-фазных трансформаторов число фаз равно числу стержней.

¨ Номинальный (линейный) ток, А,

на стороне НН I1 = ;
на стороне ВН I2 = ,
где S – мощность трансформатора, кВ*А; U1и U2 – соответствующие значения напряжений обмоток, кВ.
Для однофазного трансформатора номинальный ток, А, определяется по формуле
I = .
При определении токов мощность подставляется в киловатт-амперах (кВ*А), а напряжение в киловольтах (кВ).

¨ Фазные токи, А, трехфазных трансформаторов

при соединении в звезду или зигзаг:
Iф = Iл;
при соединении обмотки в треугольник
Iф = ,
где IЛ – номинальный линейный ток трансформатора.
Схема соединения и группа обмоток обычно задается.

¨ Фазные напряжения, В, трансформатора

при соединении обмотки в звезду или зигзаг:
=,
при соединении обмотки в треугольник:
Uф = Uл,
где Uл – номинальное линейное напряжение соответствующих обмоток.

¨ Испытательное напряжение трансформатора

Необходимо для определения основных изоляционных промежутков, между обмотками и другими токоведущими деталями.
Это напряжение, при котором проводится испытание трансформатора, а именно электрическая прочность изоляции.
Испытательное напряжение для каждой обмотки трансформатора определяется по табл. 1 или 2 в зависимости от класса напряжения соответствующей обмотки.

Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Источник

Как определить характеристики трансформатора без маркировки.

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в интернете, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов.

Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?

Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора. Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.

Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток.

Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.

Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.

Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.

Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.

Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.

В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.

На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.

Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.

Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки.

Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.

Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.

Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.

Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.

Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.

Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Источник

Как определить параметры неизвестного трансформатора

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги.

В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр.

Также для некоторых опытов нам понадобится лампа накаливания с патроном.

Как определить параметры неизвестного трансформатора

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники.

А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали.

На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

Как определить параметры неизвестного трансформатора

При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле.

Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС.

При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.

Как определить параметры неизвестного трансформатора

Как определить параметры неизвестного трансформатора

Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

E ~ w.

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

  • Так как
  • E1 > E2,
  • то
  • w1 > w2.
  • Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
  • S1 = S2.
  • А так как мощность – это произведение тока i на напряжение u
  • S = u∙i,
  • то
  • S1 = u1∙i1; S2 = u2∙i2.
  • Откуда получаем простое уравнение:
  • u1∙i1 = u2∙i2.

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток.

Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция.

Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

  1. Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
  2. kт = w1 / w2 = E1 / E2.
  3. Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков.

Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины.

Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

  • Как определить параметры неизвестного трансформатора
  • Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
  • Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

Как определить параметры неизвестного трансформатора

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В.

Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно.

Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

  1. Как определить параметры неизвестного трансформатора
  2. Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.
  3. Как определить параметры неизвестного трансформатора

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Как определить параметры неизвестного трансформатора

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток.

При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей.

Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.

Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.

Как узнать мощность трансформатора

Меня неоднократно спрашивали о том, как определить мощность 50Гц трансформатора не имеющего маркировки, попробую рассказать и показать на паре примеров.Вообще способов определения мощности 50Гц трансформатора есть довольно много, я перечислю лишь некоторые из них.

1. Маркировка.

Иногда на трансформаторе можно найти явное указание мощности, но при этом данное указание может быть незаметно с первого взгляда.Вариант конечно ну очень банальный, но следует сначала поискать.

Как определить параметры неизвестного трансформатора

2. Габаритная мощность сердечника.

Есть таблицы, по которым можно найти габаритную мощность определенных сердечников, но так как сердечники выпускались весьма разнообразных конфигураций размеров, а кроме того отличались по качеству изготовления, то таблица не всегда может быть корректна.Да и найти их не всегда можно быстро. Впрочем косвенно можно использовать таблицы из описаний унифицированных трансформаторов.

3. Унифицированные трансформаторы.

Еще при союзе, да и впрочем после него, было произведено огромное количество унифицированных трансформаторов, их вы можете распознать по маркировке начинающейся на ТПП, ТН, ТА.Если ТА распространены меньше, то ТПП и ТН встречаются весьма часто.

Как определить параметры неизвестного трансформатора

Например берем трансформатор ТПП270.

Как определить параметры неизвестного трансформатора

Находим описание маркировки данной серии и в описании находим наш трансформатор, там будет и напряжения, и токи и мощность.

В раздел документация я выложил это описание в виде PDF файла.

Кстати там же можно посмотреть размеры сердечников трансформаторов и определить мощность по его габаритам, сравнив со своим.

Если ваш трансформатор имеет немного больший размер, то вполне можно пересчитать, так как мощность трансформатора прямо пропорциональна его размеру.

Как определить параметры неизвестного трансформатораНа трансформаторе ТН61 маркировка почти не видна, но она есть 🙂

Как определить параметры неизвестного трансформатора

Для него есть отдельное описание, я его также выложил у себя в блоге.

Как определить параметры неизвестного трансформатораИногда трансформатор имеет маркировку, но найти по ней что либо вразумительное невозможно, увы, таблицы для таких трансформаторов большая редкость.

Как определить параметры неизвестного трансформатора

4. Расчет мощности по диаметру провода.

Если никаких данных нет, то можно определить мощность исходя из диаметра проводов обмоток.Можно измерить первичную обмотку, но иногда она бывает недоступна.

Как определить параметры неизвестного трансформатора

В таком случае измеряем диаметр провода вторичной обмотки.В примере диаметр составляет 1.5мм.Дальше все просто, сначала узнаем сечение провода. 1.5 делим на 2, получаем 0.75, это радиус.0.75 умножаем на 0.75, а получившийся результат умножаем на 3.14 (число пи), получаем сечение провода = 1.76мм.

квЗначение плотности тока принято принимать равным 2.5 Ампера на 1мм.кв. В нашем случае 1.76 умножаем на 2.5 и получаем 4.4 Ампера.

Так как трансформатор рассчитан на выходное напряжение 12 Вольт, это мы знаем, а если не знаем, то можем измерить тестером, то 4.4 умножаем на 12, получаем 52.

8 Ватта.

На бумажке указана мощность 60 Ватт, но сейчас часто мотают трансформаторы с заниженным сечением обмоток, потому по ольшому счету все сходится.

Иногда на трансформаторе бывает написано не только количество витков обмоток, а и диаметр провода. но к этому стоит относиться скептически, так как наклейки могут ошибаться.В этом примере я сначала нашел доступный для измерения участок провода, немного поднял его так, чтобы можно было подлезть штангенциркулем.А когда измерил, то выяснил что диаметр провода не 0.355, а 0.25мм.Попробуем применить вариант расчета, который я приводил выше.0.25/2=0.1250.125х0.125х3.14=0.05мм.кв0.05=2.5=0.122 Ампера

0.122х220 (напряжение обмотки) = 26.84 Ватта.

Кроме того вышеописанный способ отлично подходит в случаях, когда вторичных обмоток несколько и измерять каждую просто неудобно.

5. Метод обратного расчета.

В некоторых ситуациях можно использовать программу для расчета трансформаторов. В этих программах есть довольно большая база сердечников, а кроме того они могут считать произвольные конфигурации размеров исходя из того, что мы можем измерить.Я использую программу Trans50Hz.

    Сначала выбираем тип сердечника.

    в основном это варианты кольцевой, Ш-образный ленточный и Ш-образный из пластин.Слева направо — Кольцевой, ШЛ, Ш.В моем примере я буду измерять вариант ШЛ, но таким же способом можно выяснить мощность и других типов трансформаторов.Шаг 1, измеряем ширину боковой части магнитопровода.Заносим измеренное значение в программу.

    Шаг 2, ширина магнитопровода.Также заносим в программу.Шаг 3, ширина окна.Здесь есть два варианта. Если есть доступ к окну, то просто измеряем его.Если доступа нет, то измеряем общий размер, затем вычитаем четырехкратное значение, полученное в шаге 1, а остаток делим на 2.Пример — общая ширина 80мм, в шаге 1 было 10мм, значит из 80 вычитаем 40.

    Осталось еще 40, делим на 2 и получаем 20, это и есть ширина окна.Вводим значение.Шаг 4, длина окна.По сути это длина каркаса под провод, часто его можно измерить без проблем.Также вводим это значение.После этого нажимаем на кнопку — Расчет.И получаем сообщение об ошибке.

    Дело в том, что в программе изначально были заданы значения для расчета мощного трансформатора.Находим выделенный пункт и меняем его значение на такое, чтобы мощность (напряжение умноженное на ток) не превысило нашу ориентировочную габаритную мощность.Можно туда вбить хоть 1 Вольт и 1 Ампер, это неважно, я выставил 5 Вольт.

    Заново нажимаем на кнопку Расчет и получаем искомое, в данном случае программа посчитала, что мощность нашего магнитопровода составляет 27.88 Ватта..

    Полученные данные примерно сходятся с расчетом по диаметру провода, тогда я получил 26.84 Ватта, значит метод вполне работает.

    5. Измерение максимальной температуры.

    Обычные (железные) трансформаторы в работе не должны нагреваться выше 60 градусов, это можно использовать и в расчете мощности.Но здесь есть исключения, например трансформатор блока бесперебойного питания может иметь большую мощность при скромных габаритах, это обусловлено тем, что работает он кратковременно и он раньше отключится, чем перегреется.

    Например в таком варианте его мощность может быть 600 Ватт, а при длительной работе всего 400.Еще есть китайские производители, которые бывает используют в дешевых адаптерах трансформаторы &amp;amp;amp;amp;amp;amp;amp;quot;маломерки&amp;amp;amp;amp;amp;amp;amp;quot;, которые греются как печки, это ненормально, часто реальная мощность трансформатора может быть в 1.2-1.

    5 раза меньше заявленной.Чтобы измерить мощность вышеуказанным способом, берем любую нагрузку, лампочки, резисторы и т.п. Как вариант, можно использовать электронную нагрузку, но в этом случае подключаем ее через диодный мост с фильтрующим конденсатором.Ждем примерно с час, если температура не превысила 60, то увеличиваем нагрузку. Дальше думаю процедура понятна.

    Есть правда небольшая оговорка, температура трансформатора может заметно отличаться в зависимости от того, есть ли корпус и насколько он большой, но зато дает весьма точный результат. Единственный минус, тест очень долгий.

    Подобные трансформаторы я использую в последние 10-15 лет крайне редко, потому они лежат где нибудь на дальних полках балкона и когда искал, наткнулся на весьма любопытные индикаторы, ИН-13. Покупал для индикатора уровня в усилитель, но так и забросил в итоге. Теперь вот нашел и думаю, что из них можно сделать, возможно у вас есть идеи и предложения.

    В случае интересной идеи, попробую сделать и показать процесс в виде обзора.На этом все, а в качестве дополнения видео по определению габаритной мощности трансформатора.

    Эту страницу нашли, когда искали: как определить на какой ток рассчитан силовой трансформатор, как мощность передается через трансформатор, рассчитать трансформатор на 12 ватт, 60 вольт, как определить мощность транса по сечению проводу, сколько выдает ампер трансформатор 18в, определить мощность трансформатора напряжения 220 /12 в, узнать трансформатора в ват шеобразный, как найти ток первичную обмотки если известен ток вторичной обмотки напряжение и мощность, как узнать сколько ампер выдаёт понижающий трансформатор на 12 вольт, как правильно проверить сколько вольт выдаёт трансформатор, мощность тр-ра по сечению, как найти мощность и количество трансформаторов, мощность на вторичной обмотке 1%, как можно определить потребляемую мощность первичной обмотки трансформатора?, как посчитать ток потребления трансформатора, как узнать мощность трансформатор tv бу4700.086, как вычислить мощность старой дальнего сердечника трансформатора, как рассчитать понижающий трансформатор с 220 на 12 вольт, как узнать мощность у трансформатора тока, как узнать мощность тороидального трансформатора если нет этикетки, сколько ватт может выдать трансформатор расчет, как определить какой ток способен выдать трансформатор, мощность малогабаритного силового трансформатора, как определить мощность трансформатора по сечению стержневого сердечника таблица, как определить первичную и вторичную мощность трансформатора

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

    Возможно ли узнать мощность и ток трансформатора по его внешнему виду

    Возможно ли узнать мощность и ток трансформатора по его внешнему виду

    Трансформатор — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

    Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

    Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

    Как определить параметры неизвестного трансформатора

    Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

    Как определить параметры неизвестного трансформатора

    Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

    Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

    Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

    Как определить параметры неизвестного трансформатора

    Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

    Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

    Итак, давайте найдем площадь сечения окна.

    Как определить параметры неизвестного трансформатора

    Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

    В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

    Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

    Как определить параметры неизвестного трансформатора

    Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

    Как определить параметры неизвестного трансформатора

    Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

    Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

    Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

    Ранее ЭлектроВести писали, что АББ получила заказ на более 20 млн. долл. США от компании MHI Vestas Offshore Wind на поставку надежных энергоэффективных и компактных трансформаторов WindSTAR, разработанных для установки на ветровых турбинах.

    Как узнать мощность трансформатора?

    Радиоэлектроника для начинающих

    Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

    Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

    Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

    Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

    Как определить параметры неизвестного трансформатора

    Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

    Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

    Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток ( на напряжение питания прибора (). Думаю, многие знакомы с этой формулой ещё по школе.

    P=Uн * Iн

    ,где – напряжение в вольтах; – ток в амперах; P – мощность в ваттах.

    Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин.

    Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре.

    К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

    Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

    Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

    При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

    Как определить параметры неизвестного трансформатора

    Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

    Как определить параметры неизвестного трансформатора

    Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом.

    Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра.

    Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

    Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

    ,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

    После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

    Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

    Как определить параметры неизвестного трансформатора

    В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

    Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

    Как определить параметры неизвестного трансформатора

    Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

    Как определить параметры неизвестного трансформатора

    Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

    Главная » Радиоэлектроника для начинающих » Текущая страница

    Также Вам будет интересно узнать:

    Как определить параметры неизвестного трансформатора

    Как определить параметры неизвестного трансформатора

    Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

    Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.

    Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом.

    Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков.

    Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.

    О том, как правильно измерить сопротивление мультиметром смотрите здесь: Как измерить мультиметром напряжение, ток, сопротивление, проверить диоды и транзисторы

    Как определить параметры неизвестного трансформатора

    Рис. 1. Схема обмоток трансформатора (пример)

    Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

    Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

    Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

    Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки.

    У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой.

    Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

    Как определить параметры неизвестного трансформатора

    Рис. 2. Трансформатор ТПП-281

    Как измерить ток холостого хода трансформатора

    Ток холостого хода следует измерить амперметром переменного тока.

    При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть.

    Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

    Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, — напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

    Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

    Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

    Как определить параметры неизвестного трансформатора

    Рисунок 3. Схема испытания вторичной обмотки трансформатора

    Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

    Для питания усилителя требуется одна обмотка со средней точкой (см. статью «Трансформаторы для УМЗЧ»). Соединяем последовательно две вторичные обмотки и измеряем напряжение.

    Должно получиться 48В, точка соединения обмоток будет средней точкой.

    Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.

    В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.

    Борис Аладышкин

    Понравилась статья? Поделить с друзьями:
  1. Как найти сигму в статистике
  2. Как найти метр куб бетона
  3. Как найти стоимость пир
  4. Как найти объем помещения в куб м
  5. Как исправить испорченные волосы у кукол