Как найти ток в цепи с диодом

12

1. Введение.

Так как диод
является нелинейным элементом, то
система уравнений, составленная по
законам Кирхгофа, является системой
нелинейных алгебраических уравнений.

Расчет такой
системы уравнений производят:

1.Графически,
используя реальную характеристику
диодов.

2.Аналитически,
используя то или иное аналитическое
описание характеристики.

3. Графоаналитическим
методом, используя представление
характеристики диода отрезками прямых,
аппроксимирующих вольтамперную
характеристику диода (рис.1):

Рис.1. Аппроксимация
вольтамперной характеристики отрезками
прямых

Так как величина

как правило весьма мала, то допустимо
считать, что при обратном напряжении,
ток равен нулю и третий участок примет
вид, показанный на рис.2. 2-ой и 3-ий
участоки также можно заменить отрезками
прямых. В результате вольтамперная
характеристика примет вид, показанный
на рис.2.















Рис.2. Кусочно-линейная
аппроксимированная характеристика
диода.

Каждому участку
характеристики соответствует своя
расчетная схема (Таб.1).

Таб.1

№ участка

Расчетная схема

Примечание

1

2

3


Следует заметить,
что величина дифференциального
сопротивления

зависит от положения точки на участке
3 и может быть определена по выражению:

(1.1)

Величина

равна приблизительно 0,6 В для кремниевых
и 0.3 В для германиевых диодов.

Рассмотренные
выше модели, применяют при анализе
слаботочных электронных устройств
(усилители). В устройствах работающих
при напряжениях, составляющих десятки
вольт, величиной E можно
пренебречь и при анализе пользоваться
так называемой вентильной характеристикой
(рис.3):

Рис.3.Вентильная
характеристика диода

В этом случае на
1-ом участке диод представляет собой
«закоротку», а на 3-ем разрыв. При
качественном анализе и при расчете
выпрямительных устройств, работающих
как правило при сравнительно больших
значениях токов и напряжении, следует
прежде всего использовать именно этот
тип характеристики.

2. Порядок расчета резистивных цепей с диодами.

2.1 Графический расчет.

Данный метод
нагляден, и его практически используют,
если в схеме один нелинейный элемент.
В других случаях применение метода
требует серьезных ухищрении.

Пример №1. Найти
токи и напряжения в схеме на рис.4. Диод
марки D1N3900,
статическая вольтамперная характеристика
которого показана на рис.5.


.


Рис.4 Исходная
схема с диодом.

Рис.5 Статическая
характеристика диода D1N3900

Так как в схеме
один контур, то можно составить только
одно уравнение по 2-ому закону Кирхгофа:

(1.2)

Проведя небольшое
преобразование , получим:


(1.3)

Правая часть
выражения (1-3), это уравнение прямой .Для
ее построения, необходимо рассчитать
положение 2-х точек, задаваясь 2-мя
значениями

:

  1. Примем, используя
    характеристику диода (рис.5),

    ,
    тогда из (1-3), следует:
    (
    т.1).

  2. Задаваясь значением

    ,
    получаем

    (т.2).

  3. Соединяем т.1 и
    т.2 прямой.

  4. Точка пересечения
    прямой с характеристикой диода,
    определяет значения тока в цепи

    и
    величину напряжения на диоде

    .

Проведем машинное
моделирование данной схемы (рис.6).
Сходимость результатов достаточно
высока. Разность определяется точностью
построения

Рис.6 Машинное
моделирование схемы по рис.4

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1. Дано: схема (рис.1), U1 = 10 B, U2 = 13 B, U3 = 15 В, U4 = 22 B, R1 = R2 =1 кОм. Определить Uвых
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Решение:
При U1 = U2 = U3 = 0 диоды закрыты и напряжение
Uвых = U4•R2 / (R1 + R2) = 11 В.
Если подключим U1, Uвых не изменится – диоды закрыты.
При подключении U2 напряжение Uвых станет равным 13 В (диод в ветви с U2 будет открыт).
При подключении U3 откроется диод в этой ветви, напряжение Uвых станет равным 15 В. Остальные диоды закроются.

2. Считая диоды идеальными, найти величину тока и напряжения для цепей, показанных на схеме.
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Решение:
Для цепи на схеме не является очевидным, находятся ли оба диода в проводящем состоянии. В этом случае сделаем предположение о нахождении диодов в проводящем состоянии, проделаем вычисления и проверим правильность нашего предположения.
Для цепи схемы из предположения о проводимости обоих диодов следует, что
UB = 0; U = 0
Ток через диод VD2 может быть определен из выражения
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ
Записывая уравнение для токов в узле В, имеем
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ
Таким образом, диод VD1 находится в проводящем состоянии, как мы изначально предположили, и окончательные результаты
I = 1 мА и U = 0 В.

3. Определить ток в цепи и напряжение на диодах вольтамперные характеристики которых представлены, если Uвх = 2,5 В, Rн = 25 Ом
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Решение:
построим суммарную ВАХ диодов и «опрокинутую» ВАХ нагрузочного резистора.
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Ответ: U1 = 0,6 В, U2 = 0,7 В, Uн = 1,2 В, I = 45 мА

4. В однополупериодном выпрямителе (без фильтра) напряжение на нагрузке Uнср = 40 В.
С каким Uобрмакс нужно выбрать полупроводниковый диод?

Решение:
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

5. В однополупериодном выпрямителе напряжение на вторичной обмотке трансформатора U2 = 150 В. Частота напряжения сети 50 Гц,
Rн = 2 кОм.
Определить Uнср, Iпрд, Iнср,Uобрмакс, коэффициент пульсаций р.

Решение:
Uнср =√2•U2/π = 67,36 В
Iнср = Uнср/ Rн = 67,36 / 2000 = 0,034 А
Iпрд = Iнср = 0,034 А
Uобр макс = √2•U2 = 212 В
р = 1,57
.
6. В однополупериодном выпрямителе с емкостным фильтром рис 21, рассчитать Uнср и Uобрмакс, если Сф = ∞, U2 = 150 В, частота напряжения сети 50 Гц,
Rн = 2 кОм, построить временную диаграмму выпрямителя.
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Решение:
Сф = ∞, следовательно р = 0
Uнср =√2•U2 / (1 + р) = 212 В
Iнср = Uнср/ Rн = 212 / 2000 = 0,106 А
Iпрд = Iнср = 0,106 А
Uобр макс = 2√2•U2 = 424 В

Временная диаграмма выпрямителя .
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

7. В двухполупериодной мостовой схеме выпрямителя с фильтром, напряжение на вторичной обмотке трансформатора U2 = 150 В. Частота напряжения сети 50 Гц, Rн = 2 кОм, при условии, что емкость фильтра равна ∞. Определить среднее значение выпрямленного напряжения Uнср, значение прямого тока через диод Iпрд , Iнср, Uобрмакс, коэффициент пульсаций?

Решение:
Сф = ∞, следовательно, р = 0
Uнср =√2•U2 / (1 + р) = 212 В
Iнср = Uнср/ Rн = 212 / 2000 = 0,106 А
Uобр макс = √2•U2 = 212 В

8. Для однополупериодной схемы выпрямления без фильтра рис, определить коэффициент трансформации трансформатора, максимальное обратное напряжение на диоде, если выпрямленное напряжение на нагрузке 30 В и напряжение на первичной обмотке трансформатора 220 В (50 Гц).
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Решение:
Uнср =√2•U2/π = 30 В
U2 = 2,22 Uнср = 66 В
Uобр макс = √2•U2 = 94 В
N= U1/ U2 = 220/66 = 3,33

9. Определите емкость конденсатора фильтра Сф в мостовом выпрямителе, если выпрямленное напряжение Uнср = 12 В, ток Iнср = 10 мА, а коэффициент пульсаций не должен превышать 0.05.

Решение:
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

10. В однополупериодном выпрямителе, работающем на Rн = 250 Ом, действующее значение напряжения на вторичной обмотке трансформатора
U2 = 10 В.
Нарисовать схему однополупериодного выпрямителя.
Определить, с каким допустимым прямым током надо выбрать полупроводниковый диод,
Нарисовать временные диаграммы входного и выходного напряжений выпрямителя.

Решение:
Uнср =√2•U2 / π = 4,5 В
Iнср = Uнср/ Rн = 4,5 / 250 = 0,018 А
Iпрд = Iнср = 0,018 А
Iпрдоп = 1,3• Iпрд = 0,0234 А

Временная диаграмма выпрямителя.
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

11. В однополупериодном выпрямителе с емкостным фильтром рис, напряжение на вторичной обмотке трансформатора U2 = 10 В. Частота напряжения сети 50 Гц, Rн = 1 кОм, Сф = 80 мкФ.
Определить среднее значение выпрямленного напряжения Uнср, Iнср, Uобр макс, коэффициент пульсаций р, построить временные диаграммы.

Решение:
Uнср =√2•U2 / (1 + р) = 14,1/(1 + 0,2) = 11,75 В
Uобр макс = 2√2•U2 = 28,2 В
τразр = С•Rн = 0,05 с

Строим временные диаграммы:
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

12. В однополупериодном выпрямителе с емкостным фильтром, напряжение на нагрузке Uнср = 40, В, коэффициент пульсаций не должен превышать 0.05.
С каким Uобрмакс нужно выбрать полупроводниковый диод?

Решение:
задачи и примеры ДИОДЫ, ВЫПРЯМИТЕЛИ

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

обратный клапан

Диод — это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

диод 1N4007диод

А некоторые выглядят чуточку по-другому:

д226б диодд214 диод

Есть также и SMD исполнение диодов:

смд диодsmd диод

Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.

На схемах диод обозначается так

диод обозначение на схеме

Он может пропускать электрический ток только от анода к катоду.

направление электрического тока через диод

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

катод диодакатод диодакатод смд smd диода

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

воронка диоддиод обозначение на схеме

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

диод в цепи переменного тока

Мой генератор частоты выглядит вот так.

генератор частоты

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

цифровой осциллограф OWON

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

[quads id=1]

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»

параметры диода КД411

Для объяснения параметров диода, нам также потребуется его ВАХ

вольтамперная характеристика диода

1) Обратное максимальное напряжение Uобр — это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр — это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

вах стабилитрона

Выглядят стабилитроны точно также, как и обычные диоды:

ДиодДиод

На схемах обозначаются вот так:

стабилитрон обозначение на схеме

Светодиоды

Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

светодиодыосветительные светодиоды

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Диодсветодиодные лампочки

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

светодиодная лента

На схемах светодиоды обозначаются так:

обозначение на схеме светодиода

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

светодиоды

Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Диод

Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

таблица светодиоды напряжение

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор —  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

тиристорДиод

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

силовой тиристор

На схемах  триодные тиристоры  выглядят вот таким образом:

обозначение тиристора на схеме

Существуют также  разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  — одна из разновидностей диодных сборок.

маломощный диодный мостдиодные мосты

 На схемах диодный мост обозначается вот так:

диодный мост обозначение на схемедиодный мост обозначение на схеме

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Приобрести диоды можно тут.

Очень интересное видео про диод

Похожие статьи по теме «диод»

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

Содержание

  1. Ток светодиод. Как определить ток светодиода
  2. Расчет резистора для светодиода. Делаем расчет резистора для параллельного или последовательного включения светодиодов
    • Особенности включения светодиода
    • Формулы расчета резистора для светодиода
    • Параллельное и последовательное включение светодиодов
  3. Номинальный ток светодиода. Определение тока
  4. Основные характеристики светодиодов. Классификация светодиодов по их области применения
    • Индикаторные светодиоды
    • Осветительные светодиоды
  5. На какое напряжение бывают светодиоды. Как узнать напряжение светодиода?
  6. Видео как узнать рабочий ток и напряжения светодиода.

Ток светодиод. Как определить ток светодиода

Светодиоды широко используются в современной электронной аппаратуре. К числу их несомненных достоинств относятся небольшие размеры и яркое свечение. Но для того чтобы светодиод исправно работал, необходимо правильно установить его рабочий ток.

Ток светодиод. Как определить ток светодиода

Вам понадобится

  • — тестер (мультиметр);

Инструкция

1

Светодиоды могут исправно служить многие годы, одна быстро выходят из строя, если работают при повышенной силе тока. Чтобы правильно рассчитать силу тока, надо знать напряжение, на которое рассчитан конкретный светодиод.

2

Напряжение питания большинства светодиодов можно определить по цвету их свечения. Так, для белых, синих и зеленых светодиодов напряжение питания обычно составляет 3 В (допустимо до 3,5 В). Красные и желтые светодиоды рассчитаны на питающее напряжение 2 В (1,8 – 2,4 В). Большинство обычных светодиодов рассчитаны на ток 20 мА, хотя есть светодиоды, для которых сила тока может превышать 150 мА.

3

Оценить номинальный ток неизвестного светодиода при отсутствии справочных материалов достаточно сложно. Смотрите на колбу — чем она больше, тем выше обычно номинальный ток. Одним из признаков того, что установленный ток выше допустимого, может являться изменение спектра излучаемого света. Например, если излучение белого светодиода приобретает синий оттенок, то сила тока явно превышена.

4

Не забывайте о том, что светодиоды очень чувствительны к превышению питающего напряжения. Например, включив светодиод, рассчитанный на 2 В, в цепь с двумя последовательно соединенными 1,5-вольтовыми батарейками (в сумме 3 В), вы можете его сжечь.

5

Если используется напряжение питания выше рекомендованного, лишние вольты необходимо погасить добавочным (гасящим) резистором. Рассчитать сопротивление резистора можно по формуле R=U/I. Например, вам надо запитать светодиод на 3 В от бортовой сети автомобиля в 12 В. У вас лишние 9 В. При номинальном токе светодиода 20 мА (0,02 А) вы получите нужное значение, поделив 9 на 0,02 – это будет 450 Ом.

6

Собрав схему со светодиодом, обязательно измерьте потребляемый им ток, включив тестер в разрыв цепи. Если ток превышает 20 мА, его надо уменьшить, увеличив номинал резистора. Чуть меньший ток – например, 18 мА, только пойдет светодиоду на пользу, увеличив срок его службы.

7

Следите за правильностью подключения светодиода. К плюсу источника питания подключается анод, к минусу — катод. Катод имеет более короткий вывод, на колбе с его стороны сделан срез (плоская площадка).

Расчет резистора для светодиода. Делаем расчет резистора для параллельного или последовательного включения светодиодов

Светодиод — прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Особенности включения светодиода

Расчет резистора для светодиода. Делаем расчет резистора для параллельного или последовательного включения светодиодовСветодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

Расчет резистора для светодиода. Делаем расчет резистора для параллельного или последовательного включения светодиодов осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Другой метод маркировки —— предназначен для обозначения параметров резисторов посредством цветных полосок и кольц.

Такого явления не произойдет, если светодиод питается от специального источника стабилизированного тока – драйвера. При использовании драйвера с постоянным стабилизированным током обеспечиваются лучшие характеристики излучения светодиода, и, кроме того, увеличивается срок его работы. Однако такие источники тока дорогие и используются только для ответственных случаев.

При отсутствии источника со стабилизированным током для предотвращения сгорания светодиода от нестабильности питающего напряжения последовательно с ним обычно включается ограничивающий резистор.

Формулы расчета резистора для светодиода

Расчет резистора для светодиода. Делаем расчет резистора для параллельного или последовательного включения светодиодовВ общем случае расчет сопротивления резистора для светодиодов производится по закону Ома. Зная напряжение и ток, можно определить величину сопротивления участка цепи:

R=U/I , где:

  • R- сопротивление, Ом;
  • U- напряжение на участке цепи, В;
  • I-ток, протекающий в цепи, А.

В данном случае, выбрав необходимое рабочее значение тока светодиода Iсв и определив по вольтамперной характеристике рабочее напряжение светодиода Uсв, с учетом напряжения питания схемы Uпит можно определить величину сопротивления ограничивающего резистора Rогр:

Rогр=(Uпит-Uсв)/(Iсв*0,75)

Коэффициент 0,75 предназначен для обеспечения некоторого запаса. Определив величину сопротивления, надо найти ближайший к нему номинал резистора.
Далее рассчитывается мощность, рассеиваемая на ограничивающем резисторе:

Pрас =Iсв²*Rогр , где:

  • Pрас — мощность, рассеиваемая на ограничивающем резисторе, Вт;
  • Iсв — ток светодиода, А;
  • Rогр – сопротивление ограничивающего резистора, Ом.

После расчета мощности резистора для светодиода необходимо выбрать элемент со стандартным максимально допустимым значением. При этом необходимо ориентироваться на большую из ближайших к рассчитанной мощности величин.

Параллельное и последовательное включение светодиодов

При параллельном включении светодиодов необходимо иметь в виду, что соединение к одному ограничивающему резистору не рекомендуется. Это связано с тем, что даже светодиоды одного типа имеют большие разбросы по току.Это приводит к тому, что при таком включении через светодиоды будут течь токи разной величины. Светодиоды будут светиться с разной яркостью. Кроме того, в случае, если сгорит один источник света, то по остальным светодиодам потечет большой ток, что может привести к выходу из строя всех остальных.

Впервые столкнувшись с задачей монтажа безопасного электроснабжения дома или квартиры, многие ищут отвечт на вопрос:? Задача такого устройства — передать сигнал о неисправности в домашней электросети соответствующей аппаратуре.

Детальнее ознакомиться с принципом работы устройства защитного отключения можно, а о схемах подключения —.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

При последовательном включении светодиодов необходимо включать приборы одного типа. Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.
Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N — это количество включенных приборов.

Выводы:

  1. Светодиоды — широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Номинальный ток светодиода. Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Номинальный ток светодиода. Определение тока

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Основные характеристики светодиодов. Классификация светодиодов по их области применения

Ток светодиод. Как определить ток светодиода 05

Изначально светодиоды применялись в качестве индикаторов

Элементы led-освещения различаются по области их применения. Основные типы светодиодов: индикаторные и осветительные. Устройства не одинаковы, каждые имеют свои отличительные особенности и технические параметры.

Индикаторные светодиоды

Первый LED-светильник появился в середине прошлого века. Прибор имел тусклое красноватое свечение, небольшую энергетическую эффективность. Несмотря на недостатки, разработки в данном направлении были продолжены. Спустя 20 лет появились варианты с желтым и зеленым оттенком. К началу 90-х сила светового потока достигла 1 Люмена. К началу 2000-х значение достигло уровня 100 Люменов.

В 1993 году японские инженеры представили светодиод синего цвета. Свет устройства стал значительно ярче предшественников. С этого момента на рынке стали появляться устройства с разным свечением – сочетание синего, зеленого, желтого и красного позволяют создавать любой цвет и оттенок.

В настоящее время разработки продолжаются. Появляются новые виды светодиодов. При этом сохраняется низковольтное потребление при увеличении силы светового потока.

Осветительные светодиоды

Основные характеристики светодиодов. Классификация светодиодов по их области применения Первые модели с низкой светимостью (DIP) были пригодны для индикаторной работы (например, в темноте виден выключатель – горит небольшой красный светодиод). Современные устройства позволяют освещать значительные площади – бытовые и промышленные помещения. Мощность светодиода выросла – LED-прибор для фонарика с показателем 3Вт аналогичен лампе накаливания на 25-30Вт. Потребление электроэнергии меньше примерно в 10 раз.

Такие светодиоды получили название осветительные благодаря основной области применения. Используются в лентах, фарах, лампах, других изделиях. Изготавливаются в отдельных корпусах, которые допускают поверхностный монтаж.

Основное отличие – выдают только белый свет холодного или теплого оттенков. Классификация:

  • SMD – популярны модели с рассеивающим элементом на 100-130°; подложка для лампы из меди или алюминия, не нагреваются;
  • СОВ – более мощные, сверхъяркие, состоят из множества небольших кристаллов, угол рассеивания значительный;
  • Filament – обладают самым низким КПД (в сравнении с SMD), часто используются как декоративные элементы, изготавливаются различных размеров и форм.

Исходя из назначения и параметров помещения, выбирают оптимальный вариант. Характеристики осветительных устройств указаны на упаковке и в технической документации.

На какое напряжение бывают светодиоды. Как узнать напряжение светодиода?

Простая схема для проверки рабочего напряжения LED приборов. Как и у любого диода, у светодиода есть некоторая барьерная точка, до которой сопротивление диода велико. Но, после достижения напряжением этой точки диод (и светодиод) открывается, — диод проявляет свои свойства односторонней проводимости, а светодиод начинает светиться. Дальнейшее повышение напряжения приводит только к резкому снижению сопротивления диода. Напряжение на нем повышается несильно, но ток возрастает стремительно. Фактически, светодиод стремится стабилизировать напряжение источника на уровне своего барьерного напряжения. Можно сказать, что начинается «борьба» между источником напряжения и светодиодом. При напряжении источника 4,5V и напряжении падения на светодиоде 1,5V идет борьба за 3V. И, при свежей «батарейке», в проигрыше часто оказывается светодиод. Ток через него превышает допустимое значение, и он перегорает. Именно поэтому, в схемах на светодиодах всегда последовательно светодиоду включен токоограничительный резистор. Этот резистор нужен, чтобы на нем «повисли» эти «спорные», в данном случае, 3V, и каждый остался при своем. Так как же измерить «на какое напряжение» светодиод? Если есть мультиметр (или другой вольтметр) можно собрать схему, показанную на рисунке:

На какое напряжение бывают светодиоды. Как узнать напряжение светодиода?

Поскольку, сейчас часто встречаются светодиоды на 6 или 7V желательно взять «батарейку» с напряжением 12В и выше. Подключить к ней, через токоограничительный резистор, сопротивлением, например, 1К, светодиод, так чтобы он светился, и измерить на нем напряжение. То, что покажет мультиметр и будет тем самым напряжением, «на которое» этот светодиод. Можно обойтись и без мультиметра, если есть сетевой источник с переключаемым выходным напряжением (например, универсальный сетевой адаптер с выходными напряжениями 1,5V, 3V, 4,5V, 6V, 9V, 12V). Подключаете к нему светодиод через токоограничительный резистор и повышаете напряжение от минимального до тех пор, пока светодиод не загорится. Это и будет, примерно, то напряжение «на которое» этот светодиод.

Источник: https://mdmstroyproekt.ru/novosti/napryazhenie-svetodiodov-tablica-tehnicheskie-harakteristiki-svetodiodov-sravnitelnye

Видео как узнать рабочий ток и напряжения светодиода.

Упрощенные методы анализа схем с диодами с прямым смещением

Добавлено 22 февраля 2020 в 16:50

В данной статье описываются два метода, которые мы используем для оценки токов и напряжений, присутствующих в цепи, которая включает в себя один или несколько диодов.

Что делает диодные схемы настолько сложными для анализа?

Мы уже обсуждали экспоненциальную зависимость тока от напряжения у диодов с прямым смещением. В этой статье мы узнаем, как использовать понимание этой связи тока и напряжения для выполнения простого анализа диодных схем.

Анализ диодных схем

Диоды усложняют анализ цепи, поскольку имеют нелинейную вольт-амперную характеристику. Другими словами, диод не имеет единственного числового значения, которое фиксирует математическую связь между током и напряжением.

Для резистора это единственное числовое значение является сопротивлением, и, следовательно, когда мы строим для резистора зависимость между током и напряжением, мы получаем прямую линию. С типовым кремниевым диодом, напротив, график нелинейной ВАХ выглядит как экспоненциальная кривая, показанная ниже.

Рисунок 1 Вольт-амперная характеристика диода

Рисунок 1 – Вольт-амперная характеристика диода

Метод 1: Диод как ключ

Самый безболезненный (и наименее точный) способ анализа диодных цепей – сделать вид, что диод является ключом, управляемым напряжением, который работает для электрического тока как идеальный односторонний клапан. Если напряжение на этом «ключе» больше 0 В, ток течет свободно, без какого-либо сопротивления или падения напряжения. Если напряжение на «ключе» меньше или равно 0 В, ток не течет совсем.

Первым шагом в этом типе анализа является допущение, что диод находится в режиме проводимости или непроводимости. Любое предположение приведет к правильным результатам, поэтому просто сделайте свою лучшую догадку. Если предполагается, что диод находится в режиме проводимости, сохраните его на схеме, но обращайтесь с ним как куском провода. Если предполагается, что диод не проводит ток, замените его разрывом в цепи.

Теперь приступите к анализу и проверьте, что результаты имеют смысл. Если напряжение на предполагаемой разомкнутой цепи больше нуля, предположение было неверным – этот диод на самом деле проводит ток. Если ток, протекающий через проводящий диод, направляется от катода к аноду, то предположение было неверным – мы ограничиваем наш анализ диодами с прямой проводимостью, поэтому ток, протекающий от катода к аноду, указывает на то, что диод на самом деле не проводит ток.

Рисунок 2 Схема вверху представляет иоходную схему. В левом нижнем углу диод считается непроводящим и был заменен разрывом цепи. Справа внизу предполагается, что диод является проводящим и заменен на соединение с нулевым сопротивлением.

Рисунок 2 – Схема вверху представляет исходную схему. В левом нижнем углу диод считается непроводящим и был заменен разрывом цепи. Справа внизу предполагается, что диод является проводящим и заменен на соединение с нулевым сопротивлением.

Этот метод может показаться довольно примитивным, но на самом деле это удобный способ выполнить быстрый предварительный анализ. Это особенно полезно, когда в цепи присутствуют напряжения, которые достаточно велики по сравнению с обычными прямыми напряжениями диодов, или когда цепь содержит несколько диодов, и основной проблемой является определение, какие из них являются проводящими.

Метод 2: Подход с постоянным падением напряжения

Когда мы используем метод, описанный в предыдущем разделе, мы анализируем схему, как будто диоды идеальны, то есть они работают для тока как идеальные односторонние клапаны. Мы можем сделать этот метод намного более реалистичным, просто добавив идеальную батарею, которая представляет падение напряжения на диоде.

Батарея становится внутренней частью всего компонента диода, как показано на следующей схеме.

Рисунок 3 Условное обозначение диода представляет идеальный диод, и батарея делает две вещи: она изменяет пороговое условие для проводимости и создает падение напряжения, которое присутствует, когда диод проводит ток.

Рисунок 3 – Условное обозначение диода представляет идеальный диод, и батарея делает две вещи: она изменяет пороговое условие для проводимости и создает падение напряжения, которое присутствует, когда диод проводит ток.

Поскольку напряжение идеальной батареи является фиксированным и постоянным, этот метод анализа соответствует упрощенной модели диода, состоящей из двух дискретных состояний: если напряжение между анодом и катодом на диоде меньше 0,7 В, диод заперт и действует как разомкнутая цепь; если напряжение больше или равно 0,7 В, диод проводит ток с нулевым сопротивлением, но вызывает падение напряжения на 0,7 В (вам не обязательно использовать значение 0,7 В в качестве постоянного падения напряжения, но это стандартный выбор для типовых кремниевых диодов).

Понимание модели с постоянным падением напряжения

Если вам непонятно, как работает эта модель, обратите внимание, что полярность батареи противоположна направлению прямого тока, протекающего через диод. Таким образом, ток не может течь от анода к катоду, пока прямое напряжение не превысит напряжение батареи, а это означает, что батарея создает пороговое условие для проводимости диода. Также обратите внимание, что батарея не создает паразитный ток, который мешает нашему анализу схемы, потому что идеальный диод не позволяет току течь в направлении от катода к аноду.

После перехода в режим проводимости напряжение батареи становится обычным падением напряжения. Опять же, давайте рассмотрим полярность батареи. Представьте себе резистор на месте батареи; мы представили бы падение напряжения на резисторе, нарисовав плюс слева и минус справа, и мы знаем, что эта ориентация указывает на падение напряжения при движении по пути прохождения тока. Батарея имеет ту же ориентацию полярности, и, таким образом, она также представляет падение напряжения, в этом случае вызванное диодом, а не резистора.

Далее: более сложные методы анализа диодных схем

Мы рассмотрели экспоненциальную зависимость тока от напряжения у диода и два метода упрощения анализа схем, заменив эту экспоненциальную зависимость чем-то более простым. В следующей статье мы обсудим более сложные методы анализа.

Теги

Анализ цепейДиодПрямое смещение диода

Понравилась статья? Поделить с друзьями:
  • Как найти свой uuid
  • Возможно изменения конфигурации оборудования не обнаружены как исправить
  • Как найти протекший заряд
  • Как исправить битый файл ворд
  • Болтается барабан в стиральной машине как исправить видео