Как найти толщину изоляции труб

Методика инженерного расчёта тепловой изоляции трубопровода

Ниже представлена краткая методика инженерного расчёта тепловой изоляции трубопровода (трубы). Оптимальную толщину теплоизоляционного слоя находят путём технико-экономического расчёта. Практически толщину слоя изоляции определяют исходя из его термического спротивления (не менее 0,86 [oС • м2/Вт] для труб с Dу <= 25 мм, и 1,22 [oС м2/Вт] для труб с Dу > 25 мм).

Качество тепловой изоляции трубопровода оценивается её КПД. В современных конструкциях тепловой изоляции при использовании материалов с теплопроводностью до 0,1 [Вт/м • K] оптимальная толщина слоя изоляции обеспечивает тепловую эффективность этой изоляции, близкой к 0,8 (т.е. эффективность 80%).

Приведенная информация может быть полезна для проведения инженерных расчётов при проектировании различных машин и узлов, содержащих трубопроводы с тепловой изоляцией. В качестве примера ниже приведены результаты расчёта тепловой изоляции для выпускного коллектора [трубопровода] высокофорсированного дизеля.

Полное термическое сопротивление изоляционной конструкции для цилиндрической стенки трубопровода (трубы) определяется по формуле:

Формула термического сопротивления изоляционной конструкции цилиндрической стенки

где

dиз — искомый наружный диаметр стенки изоляции трубопровода.

dн — наружный диаметр трубопровода.

λиз — коэффициент теплопроводности изоляционного материала.

αв — коэффициент теплоотдачи от изоляции к воздуху.



Линейная плотность теплового потока

Формула линейной плотности теплового потока

где

tн — температура наружной стенки трубопровода.

tиз — температура поверхности изоляции.

Температура внутренней стенки изоляции трубопровода

Формула температуры внутренней стенки изоляции

где

dв — внутренний диаметр трубопровода.

αг — коэффициент теплоотдачи от газа к стенке.

λт — коэффициент теплопроводности материала трубопровода.

Уравнение теплового баланса

Формула теплового баланса изоляции трубопровода

из которого определяется искомый наружный диаметр изоляции трубопровода dиз, и далее толщина изоляции этого трубопровода (трубы) вычисляется по формуле:

Формула определения толщины тепловой изоляции

Пример: Необходимо рассчитать тепловую изоляцию трубопровода высокофорсированного дизеля, наружный диаметр выпускного трубопровода составляет 0,6 м, внутренний диаметр этого трубопровода составляет 0,594 м, температура наружной стенки трубопровода принимается равной 725 К, температура наружной поверхности изоляции принимается равной 333 К, теплопроводность изоляционного материала принимается равной 0,11 Вт/(м•К), тогда проведенный расчет изоляции трубопровода по методике, описанной выше, покажет, что толщина необходимой изоляции трубопровода должна составлять не менее 0,1 м.

  1. Расчет толщины тепловой изоляции трубопроводов

В конструкциях
теплоизоляции оборудования и трубопроводов
с температурой содержащихся в них
веществ в диапазоне от 20 до 300 °С

для всех способов
прокладки, кроме бесканальной, следует
применять

теплоизоляционные
материалы и изделия с плотностью не
более 200 кг/м3

и
коэффициентом теплопроводности в сухом
состоянии не более 0,06

Для теплоизоляционного
слоя трубопроводов при бесканальной

прокладке
следует применять материалы с плотностью
не более 400 кг/м3
и коэффициентом
теплопроводности не более 0,07 Вт/(м · К).

Расчет
толщины
тепловой изоляции трубопроводов
δk
, м
по нормированной плотности теплового
потока выполняют по формуле:

где

– наружный
диаметр трубопровода, м;


отношение наружного диаметра изоляционного
слоя
к диаметру трубопровода .

Величину

определяют по формуле:


основание натурального логарифма;


теплопроводность теплоизоляционного
слоя Вт/(м·oС)
определяемый по приложению 14.

Rк
термическое сопротивление слоя изоляции,
м·°С/Вт, величину которого определяют
при подземной канальной прокладке
трубопровода по формуле:

где
суммарное термическое
сопротивление слоя изоляции и других
дополнительных термических сопротивлений
на пути теплового

потока,
м·°С/Вт
определяемое по формуле:

где

средняя за
период эксплуатации температура
теплоносителя, оС.
В соответствии с [6] её следует принимать
при различных температурных режимах
по таблице 6:

Таблица
6 – Температура
теплоносителя при различных режимах

Температурные
режимы водяных тепловых сетей, oC

95-70

150-70

180-70

Трубопровод

Расчетная
температура теплоносителя, oC

Подающий

65

90

110

Обратный

50

50

50


среднегодовая температура грунта, для
различных городов указана в [ 9, c
360 ]

нормированная линейная плотность
теплового потока, Вт/м (принимается по
приложению15);


коэффициент, принимаемый по приложению
16;


коэффициент взаимного влияния
температурных полей соседних трубопроводов;

термическое сопротивление поверхности
теплоизоляционного слоя, м·oС
/Вт, определяемое по формуле:

где

коэффициент теплоотдачи с поверхности
тепловой изоляции в

окружающий
воздух, Вт/(м. · °С) который, согласно
[6], принимается при прокладке в каналах
,
Вт/(м · °С);

d
– наружный
диаметр трубопровода, м;

термическое
сопротивление внутренней поверхности
канала, м·oС/Вт,определяемое по
формуле:

где

коэффициент теплоотдачи от воздуха к
внутренней поверхности канала, αe
= 8 Вт/(м. · °С);


внутренний эквивалентный диаметр
канала, м, определяемый

по
формуле:

периметр сторон по внутренним размерам
канала, м; (размеры каналов приведены в
приложении 17)


внутреннее сечение канала, м2;

термическое сопротивление стенки
канала, м·oС/Вт
определяемое по формуле:

где

теплопроводность стенки канала, для
железобетона


наружный эквивалентный диаметр канала,
определяемый по наружным размерам
канала, м;


термическое
сопротивление грунта,м·oС/Вт
определяемое по формуле:

где

коэффициент теплопроводности грунта,
зависящий от его

структуры
и влажности. При отсутствии данных
значение
можно принимать для влажных грунтов
2,0–2,5 Вт/(м · °С), для сухих грунтов 1,0–1,5
Вт/(м · °С);


глубина заложения оси теплопровода от
поверхности земли, м.

Расчетную
толщину теплоизоляционного слоя в
конструкциях тепловой изоляции на
основе волокнистых материалов и изделий
(матов, плит, холстов) следует округлять
до значений, кратных 10 мм. В конструкциях
на основе минераловатных полуцилиндров,
жестких ячеистых материалов, материалов
из вспененного синтетического каучука,
пенополиэтилена и пенопластов следует
принимать ближайшую к расчетной толщину
изделий по нормативным документам на
соответствующие материалы.

Если
расчетная толщина теплоизоляционного
слоя не совпадает с номенклатурной
толщиной выбранного материала, следует
принимать по

действующей
номенклатуре ближайшую более высокую
толщину

теплоизоляционного
материала. Допускается принимать
ближайшую более низкую толщину
теплоизоляционного слоя в случаях
расчета по температуре на поверхности
изоляции и нормам плотности теплового
потока, если разница между расчетной и
номенклатурной толщиной не превышает
3 мм.

ПРИМЕР
8.
Определить
толщину тепловой изоляции по нормируемой
плотности теплового потока для
двухтрубной тепловой сети с dн
= 325 мм, проложенной в канале типа КЛ
120×60.
Глубина заложения канала hк=0,8
м,

Среднегодовая
температура грунта на глубине заложения
оси трубопроводов tгр=
5,5 oC,
теплопроводность грунта λгр=2,0
Вт/(м·oC),
тепловая изоляция – маты теплоизоляционные
из минеральной ваты на синтетическом
связующем.
Температурный режим тепловой сети
150-70oC.

Решение:

  1. По
    формуле (51) определим внутренний и
    наружный эквивалентный диаметр канала
    по внутренним и наружным размерам его
    поперечного сечения:

  1. Определим
    по формуле (50) термическое
    сопротивление внутренней поверхности
    канала

  1. По
    формуле (52) рассчитаем термическое
    сопротивление стенки канала:

  1. По
    формуле (49) определим термическое
    сопротивление грунта:

  1. Приняв
    температуру поверхности теплоизоляции
    ,
    (приложение) определим средние температуры
    теплоизоляционных слоев подающего
    и обратного
    трубопроводов:

  1. Используя
    приложение, определим также коэффициенты
    теплопроводности тепловой изоляции
    (матов теплоизоляционных из минеральной
    ваты на синтетическом связующем):

  1. По
    формуле (49) определим термическое
    сопротивление поверхности теплоизоляционного
    слоя

  1. По
    формуле (48) определим суммарные
    термические сопротивления для подающего
    и обратного трубопроводов:

  1. Определим
    коэффициенты взаимного влияния
    температурных полей подающего и
    обратного трубопроводов:

  1. Определим
    требуемые термические сопротивления
    слоёв для подающего
    и обратного трубопроводов
    по формуле (47):

x

x=
1,192

x

x=
1,368

  1. Величину
    B
    для подающего и обратного трубопроводов
    определим по формуле (46):

  1. Определим
    толщину тепловой изоляции для подающего
    и обратного трубопроводов по формуле
    (45):

  1. Принимаем толщину
    основного слоя изоляции для подающего
    и обратного трубопроводов одинаковой
    и равной 100 мм.

ПРИЛОЖЕНИЕ 1

Министерство
образования и науки РФ
высшего профессионального
образования
Российский государственный
профессионально-педагогический
университет Институт электроэнергетики
и информатики
Кафедра автоматизированных систем
электроснабжения

Курсовой проект
по дисциплине

«Теплоснабжение
промышленных предприятий и городов»

Выполнил:

Проверил:

Екатеринбург

2012

ПРИЛОЖЕНИЕ
2

Расчетная температура
для проектирования систем отопления и
вентиляции некоторых городов Российской
Федерации (на основании СНиП 23-01-99*
«Строительная климатология»).

Город

Температура
tнро,
oC

Город

Температура

tнро,
oC

Архангельск

-31

Пенза

-29

Астрахань

-23

Петропавловск-Камчатский

-20

Барнаул

-39

Псков

-26

Белгород

-23

Пятигорск

-20

Братск

-43

Ржев

-28

Брянск

-26

Ростов-на-Дону

-22

Владивосток

-24

Рязань

-27

Воронеж

-26

Самара

-30

Волгоград

-25

Санкт-Петербург

-26

Грозный

-18

Смоленск

-26

Екатеринбург

-35

Ставрополь

-19

Елабуга

-34

Таганрог

-22

Иваново

-30

Тамбов

-28

Иркутск

-36

Тверь

-29

Казань

-32

Тихорецк

-22

Караганда

-32

Тобольск

-39

Кострома

-31

Томск

-40

Курск

-26

Тула

-27

Махачкала

-14

Тюмень

-38

Москва

-28

Улан-Удэ

-37

Мурманск

-27

Ульяновск

-31

Нижний Новгород

-31

Ханты-Мансийск

-41

Новосибирск

-39

Чебоксары

-32

Омск

-37

Челябинск

-34

Оренбург

-31

Чита

-38

ПРИЛОЖЕНИЕ
3

Число часов за
отопительный период со среднесуточной
температурой наружного воздуха, равной
и ниже данной (для ориентировочных
расчетов).

Город

Температура
наружного воздуха, oC

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

+8

Архангельск

1

10

48

150

380

820

1580

2670

4300

6024

Астрахань

3

32

114

291

601

1238

2460

4128

Барнаул

1

12

52

170

415

792

1430

2260

3120

4130

5250

Белгород

1

10

58

254

680

1462

2684

4704

Братск

21

96

236

478

861

1343

2021

2752

3439

4214

5904

Брянск

2

17

89

356

870

1730

3210

4950

Владивосток

2

91

518

1350

2210

3320

4820

Воронеж

7

34

144

470

1020

1850

3380

4780

Волгоград

1

13

126

420

930

1650

3100

4368

Грозный

8

48

148

325

692

1772

3936

Екатеринбург

1

11

54

198

494

1070

1980

3020

4000

5472

Елабуга

1

20

104

319

767

1483

2406

3458

5065

Иваново

5

42

102

275

635

1300

2070

3800

5210

Иркутск

7

58

172

458

864

1730

2600

3300

4320

5780

Казань

1

20

117

328

790

1520

2480

3800

5230

Караганда

3

35

109

276

584

1070

1870

2820

4020

5080

Кострома

3

22

79

244

618

1268

2235

3459

5376

Курск

3

15

97

343

872

1740

3260

4750

Махачкала

3

18

72

260

1030

3620

Москва

3

15

47

172

418

905

1734

3033

4910

Мурманск

6

38

135

452

1117

2276

4002

6740

Нижний Новгород

2

25

99

281

685

1350

2320

3820

5230

Новосибирск

15

89

205

488

910

1550

2430

3290

4270

5450

Омск

1

6

64

195

485

950

1660

2480

3310

4250

5280

Оренбург

5

35

166

500

1060

1810

2640

3770

4820

Пенза

2

11

55

232

670

1420

2390

3670

4950

Петропавловск-Камчатский

1

47

175

925

2219

4188

6316

Псков

1

25

109

285

690

1465

2784

5088

Пятигорск

4

57

222

806

2138

4200

Ржев

14

53

165

519

1084

2025

3353

5232

Ростов-на-Дону

5

41

178

494

1130

2720

4200

Рязань

1

13

58

187

540

1170

2080

3620

5100

Самара

1

10

114

400

890

1490

2360

3780

4950

Санкт-Петербург

21

83

273

708

1533

2878

5240

Смоленск

2

23

112

381

964

1852

3241

5050

Ставрополь

5

17

79

307

959

2181

4056

Таганрог

5

41

176

486

1116

2272

4152

Тамбов

1

19

139

464

1159

2497

5304

Тверь

14

48

160

516

1080

2020

3620

5250

Тихорецк

5

38

165

456

1046

2128

3888

Тобольск

6

43

158

386

820

1500

2360

3290

4070

5500

Томск

3

17

82

228

500

932

1600

2500

3360

4400

5600

Тула

2

10

24

70

206

456

2440

3500

4960

Тюмень

5

25

118

294

670

1270

2120

3050

4050

5280

Улан-Удэ

1

15

86

344

859

1592

2348

3000

3549

4220

5640

Ульяновск

12

94

330

800

1560

2420

3660

5110

Ханты-Мансийск

7

63

181

425

806

1345

1998

2698

3438

4303

5952

Чебоксары

1

20

94

284

701

1399

2348

3490

5208

Челябинск

7

39

166

520

1110

1950

2980

3920

5180

Чита

22

146

478

1050

1800

2540

3160

3340

4400

5760

ПРИЛОЖЕНИЕ 4

Среднемесячные
температуры наружного воздуха для ряда
городов Российской Федерации (по данным
СНиП 23-01-99* «Строительная климатология»).

Город

Средняя месячная
температура воздуха,oC

Янв.

Фев.

Март

Апр.

Май

Июнь

Июль

Авг.

Сен.

Окт

Нояб

Дек

Архангельск

-12,9

-12,5

-8,0

-0,9

6,0

12,4

15,6

13,6

7,9

1,5

-4,1

-9,5

Астрахань

-6,7

-5,6

0,4

9,9

18,0

22,8

25,3

23,6

17,3

9,6

2,4

-3,2

Барнаул

-17,5

-16,1

-9,1

2,1

11,4

17,7

19,8

16,9

10,8

2,5

-7,9

-15,0

Белгород

-8,5

-6,4

-2,5

7,5

14,6

17,9

19,9

18,7

12,9

6,4

0,3

-4,5

Братск

-20,7

-19,4

-10,2

-1,2

6,2

14,0

17,8

14,8

8,1

-0,5

-9,8

-18,4

Брянск

-9,1

-8,4

-3,2

5,9

12,8

16,7

18,1

16,9

11,5

5,0

-0,4

-5,2

Владивосток

-13,1

-9,8

-2,4

4,8

9,9

13,8

18,5

21,0

16,8

9,7

-0,3

-9,2

Воронеж

-9,8

-9,6

-3,7

6,6

14,6

17,9

19,9

18,6

13,0

5,9

-0,6

-6,2

Волгоград

-7,6

-7,0

-1,0

10,0

16,7

21,3

23,6

22,1

16,0

8,0

-0,6

-4,2

Грозный

-3,8

-2,0

2,8

10,3

16,9

21,2

23,9

23,2

17,8

10,4

4,5

-0,7

Екатеринбург

-15,5

-13,6

-6,9

2,7

10,0

15,1

17,2

14,9

9,2

1,2

-6,8

-13,1

Елабуга

-13,9

-13,2

-6,6

3,8

12,4

17,4

19,5

17,5

11,2

3,2

-4,4

-11,1

Иваново

-11,9

-10,9

-5,1

4,1

11,4

15,8

17,6

15,8

10,1

3,5

-3,1

-8,1

Иркутск

-20,6

-18,1

-9,4

1,0

8,5

14,8

17,6

15,0

8,2

0,5

-10,4

-18,4

Казань

-13,5

-13,1

-6,5

3,7

12,4

17,0

19,1

17,5

11,2

3,4

-3,8

-10,4

Караганда

-14,5

-14,2

-7,7

4,6

12,8

18,4

20,4

17,8

12,0

3,2

-6,3

-12,3

Кострома

-11,8

-11,1

-5,3

3,2

10,9

15,5

17,8

16,1

10,0

3,2

-2,9

-8,7

Курск

-9,3

-7,8

-3,0

6,6

13,9

17,2

18,7

17,6

12,2

5,6

-0,4

-5,2

Махачкала

-0,5

0,2

3,5

9,4

16,3

21,5

24,6

24,1

19,4

13,4

7,2

2,6

Москва

-10,2

-9,2

-4,3

4,4

11,9

16,0

18,1

16,3

10,7

4,3

-1,9

-7,3

Мурманск

-10,5

-10,8

-6,9

-1,6

3,4

9,3

12,6

11,3

6,6

0,7

-4,2

-7,8

Н. Новгород

-11,8

-11,1

-5,0

4,2

12,0

16,4

18,4

16,9

11,0

3,6

-2,8

-8,9

Новосибирск

-18,8

-17,3

-10,1

1,5

10,3

16,7

19,0

15,8

10,1

1,9

-9,2

-16,5

Омск

-19,0

-17,6

-10,1

2,8

11,4

17,1

18,9

15,8

10,6

1,9

-8,5

-16,0

Оренбург

-14,8

-14,2

-7,3

5,2

15,0

19,7

21,9

20,0

13,4

4,5

-4,0

-11,2

Пенза

-12,2

-11,3

-5,6

4,9

13,5

17,6

19,6

18,0

11,9

4,4

-2,9

-9,1

Петропавловск-Камчатский

-7,5

-7,5

-4,8

-0,5

3,8

8,3

12,2

13,2

10,1

4,8

-1,7

-5,5

Псков

-7,5

-7,5

-3,4

4,2

11,3

15,5

17,4

15,7

10,9

5,3

0,0

-4,5

Пятигорск

-4,2

-3,0

1,1

8,9

14,6

18,3

21,1

20,5

15,5

8,9

3,2

-1,4

Ржев

-10,0

-8,9

-4,2

4,1

11,2

15,6

17,1

15,8

10,3

4,1

-1,4

-6,3

Ростов-на-Дону

-5,7

-4,8

0,6

9,4

16,2

20,2

23,0

22,1

16,3

9,2

2,5

-2,6

Рязань

-11,0

-10,0

-4,7

5,2

12,9

17,3

18,5

17,2

11,6

4,4

-2,2

-7,0

Самара

-13,5

-12,6

-5,8

5,8

14,3

18,6

20,4

19,0

12,8

4,2

-3,4

-9,6

С-Петербург

-7,8

-7,8

-3,9

3,1

9,8

15,0

17,8

16,0

10,9

4,9

-0,3

-5,0

Смоленск

-9,4

-8,4

-4,0

4,4

11,6

15,7

17,1

15,9

10,4

4,5

-1,0

-5,8

Ставрополь

-3,2

-2,3

1,3

9,3

15,3

19,3

21,9

21,2

16,1

9,6

4,1

-0,5

Таганрог

-5,2

-4,5

0,5

9,4

16,8

21,0

23,7

22,6

17,1

9,8

3,0

-2,1

Тамбов

-10,9

-10,3

-4,6

6,0

14,1

18,1

19,8

18,6

12,5

5,2

-1,4

-7,3

Тверь

-10,5

-9,4

-4,6

4,1

11,2

15,7

17,3

15,8

10,2

4,0

-1,8

-6,6

Тихорецк

-3,5

-2,1

2,8

11,1

16,6

20,8

23,2

22,6

17,3

10,1

4,8

-0,1

Тобольск

-19,7

-17,5

-9,1

1,6

9,6

15,2

18,3

14,6

9,3

0,0

-8,4

-15,6

Томск

-19,1

-16,9

-9,9

0,0

8,7

15,4

18,3

15,1

9,3

0,8

-10,1

-17,3

Тула

-19,9

-9,5

-4,1

5,0

12,9

16,7

18,6

17,2

11,6

5,0

-1,1

-6,7

Тюмень

-17,4

-16,1

-7,7

3,2

11,0

15,7

18,2

14,8

9,7

1,0

-7,9

-13,7

Улан-Удэ

-24,8

-21,0

-10,2

1,1

8,7

16,0

19,3

16,4

8,7

-0,2

-12,4

-21,4

Ульяновск

-13,8

-13,2

-6,8

4,1

12,6

17,6

19,6

17,6

11,4

3,8

-4,1

-10,4

Ханты-Мансийск

-21,7

-19,4

-9,8

-1,3

6,4

13,1

17,8

13,3

8,0

-1,9

-10,7

-17,1

Чебоксары

-13,0

-12,4

-6,0

3,6

12,0

16,5

18,6

16,9

10,8

3,3

-3,7

-10,0

Челябинск

-15,8

-14,3

-7,4

3,9

11,9

16,8

18,4

16,2

10,7

2,4

-6,2

-12,9

Чита

-26,2

-22,2

-11,1

-0,4

8,4

15,7

17,8

15,2

7,7

-1,8

-14,3

-23,5

ПРИЛОЖЕНИЕ 5

Укрупненные
показатели максимального теплового
потока на отопление жилых зданий

на
1 м2
общей площади q o,
Вт

Этажность жилой
застройки

Характеристика
зданий

расчетная
температура наружного воздуха для
проектирования отопления t
o
, oC

-5

-10

-15

-20

-25

-30

-35

-40

-45

-50

-55

Для постройки
до 1985 г.

1 — 2

Без
учета внедрения энергосберегающих
мероприятий

148

154

160

205

213

230

234

237

242

255

271

3 — 4

95

102

109

117

126

134

144

150

160

169

179

5
и более

65

70

77

79

86

88

98

102

109

115

122

1 — 2

С
учетом внедрения энергосберегающих
мероприятий

147

153

160

194

201

218

222

225

230

242

257

3 — 4

90

97

103

111

119

128

137

140

152

160

171

5 и более

65

69

73

75

82

88

92

96

103

109

116

Для постройки
после 1985 г.

1 — 2

По
новым типовым проектам

145

152

159

166

173

177

180

187

194

200

208

3 — 4

74

80

86

91

97

101

103

109

116

123

130

5 и более

65

67

70

73

81

87

87

95

100

102

108

Примечания:

1. Энергосберегающие
мероприятия обеспечиваются проведением
работ по утеплению зданий при

капитальных и
текущих ремонтах, направленных на
снижение тепловых потерь.

2. Укрупненные
показатели зданий по новым типовым
проектам приведены с учетом внедрения

прогрессивных
архитектурно-планировочных решений и
применения строительных конструкций
с

улучшенными
теплофизическими свойствами,
обеспечивающими снижение тепловых
потерь.

ПРИЛОЖЕНИЕ 6

Удельные тепловые
характеристики жилых и общественных
зданий

Наименование
зданий

Объем зданий,

V,
тыс.м

Удельные
тепловые хар-ки, Вт/м

Расчетная
температура ,
oC

жилые
кирпичные здания

до
5

до
10

до
15

до
20

до
30

0.44

0.38

0.34

0.32

0.32

18 — 20

жилые
5-ти этажные крупно-блочные здания,
жилые 9-ти этажные крупно-панельные
здания

до
6

до
12

до
16

до
25

до 40

0.49

0.43

0.42

0.43

0.42

18 — 20

административные
здания

до
5

до
10

до
15

Более
15

0.50

0.44

0.41

0.37

0.10

0.09

0.08

0.21

18

клубы,
дома культуры

до
5

до
10

Более
10

0.43

0.38

0.35

0.29

0.27

0.23

16

кинотеатры

до
5

до
10

более
10

0.42

0.37

0.35

0.50

0.45

0.44

14

театры
, цирки, концертные и зрелищно-спортивные
залы

до
10

до
15

до
20

до
30

0.34

0.31

0.25

0.23

0.47

0.46

0.44

0.42

15

универмаги,
магазины промтоварные

до
5

до
10

Более
10

0.44

0.38

0.36

0.50

0.40

0.32

15

магазины
продовольственные

до
1500

до
8000

0.60

0.45

0.70

0.50

12

детские
сады и ясли

до
5

Более
5

0.44

0.39

0.13

0.12

20

школы
и высшие учебные заведения

до
5

до
10

Более
10

0.45

0.41

0.38

0.10

0.09

0.08

16

больницы
и диспансеры

до
5

до10

до
15

Более
15

0.46

0.42

0.37

0.35

0.34

0.32

0.30

0.29

20

бани,
душевые павильоны

До
5

До
10

Более
10

0.32

0.36

0.27

1.16

1.10

1.04

25

прачечные

до
5

до
10

Более
10

0.44

0.38

0.36

0.93

0.90

0.87

15

предприятия
общественного питания, столовые,
фабрики-кухни

до
5

до
10

Более
10

0.41

0.38

0.35

0.81

0.75

0.70

16

комбинаты
бытового обслуживания, дома быта

до
0.5

До
7

0.70

0.50

0.80

0.55

18

ПРИЛОЖЕНИЕ
7

Поправочный
коэффициент 𝜶
к величине

Расчетная
температура наружного воздуха, С

Расчетная
температура наружного воздуха ,С

0

2.02

-30

1.00

-5

1.67

-35

0.95

-10

1.45

-40

0.90

-15

1.29

-45

0.85

-20

1.17

-50

0.82

-25

1.08

-55

0.80

ПРИЛОЖЕНИЕ
8

Нормы
расхода горячей воды (по СНиП 02.04.01-85
“Внутренний водопровод и канализация
зданий”)

Потребитель

Единица измерения

Расход

Средне-недельный,
л/сут

в сутки наибольшего
водопотребления, л/сут

максимально
часовой, л/ч

Жилые дома
квартирного типа, оборудованные:

умывальниками,
мойками и душами

сидячими ваннами
и душами

ваннами длиной
от 1,5м до 1,7м и душами

1 житель

85

90

105

100

110

120

7,9

9,2

10

Жилые дома
квартирного типа при высоте зданий
более 12 этажей и повышенном благоустройстве

115

130

10,9

Общежития:

с общими душевыми

с душевыми во
всех комнатах

с общими кухнями
и блоками душевых на этажах

1 житель

50

60

80

60

70

90

6,3

8,2

7,5

Гостиницы,
пансионаты и мотели с общими ваннами
и душами

1 житель

70

70

8,2

Гостиницы с
ваннами в отдельных номерах:

в 25% от общего
числа номеров

то же в 75%

во всех номерах

1 житель

100

150

180

100

150

180

10,4

15

16

Больницы:

с общими ваннами
и душевыми

с санитарными
узлами, приближенными к палатам

инфекционные

1 койка

75

90

110

75

90

110

5,4

7,7

9,5

Санатории и дома
отдыха:

с ваннами при
всех жилых комнатах

с душевыми при
всех жилых комнатах

1 койка

120

75

120

75

4,9

8,2

Поликлиники и
амбулатории

1 больной в смену

5,2

6

1,2

Прачечные:

механизированные

немеханизированные

1кг сухого белья

25

15

25

15

25

15

Административные
здания

1 работник

5

7

2

Учебные заведения
с душевыми при гимнастических залах
и буфетами

1 учащийся и 1
препода-ватель

6

8

1,2

Профессионально-технические
училища

то же

8

9

1,4

Предприятия
общественного питания:

для приготовления
пищи, реализуемой в обеденном зале

то же продаваемой
на дом

1 блюдо

12,7

11,2

12,7

11,2

12,7

11,2

Магазины:

продовольственные

промтовары

1 работа-ющий в
смену

65

5

65

7

9,6

2

Стадионы и
спортзалы:

для зрителей

для физкультурников

для спортсменов

1 место

1 физкуль-турник

1 спортсмен

1

30

60

1

30

60

0,1

2,5

5

Бани:

для мытья в
мыльной с ополаскиванием в душе

то же с приемом
оздоровительных процедур

душевая кабина

ванная кабина

120

190

240

360

120

190

240

360

Душевые в бытовых
помещениях промышленных предприятий

1 душевая сетка
в смену

270

270

ПРИЛОЖЕНИЕ
9

Укрупненные
показатели среднего теплового потока
на горячее водоснабжение q г

Средняя
за отопительный период норма расхода
воды при температуре 55
о
С на
горячее водоснабжение в сутки на 1
чел., проживающего в здании с горячим
водоснабжением, л

на одного человека,
Вт, проживающего в здании

с горячим
водоснабжением

с горячим
водоснабжением с учетом потребления
в общественных зданиях

без горячего
водоснабжения с учетом потребления
в общественных зданиях

85

247

320

73

90

259

332

73

105

305

376

73

115

334

407

73

ПРИЛОЖЕНИЕ
10

Номограмма для
расчета трубопроводов водяных тепловых
сетей

ПРИЛОЖЕНИЕ
11

Значения коэффициентов
местных сопротивлений.

Местное
сопротивление

Местное
сопротивление

Задвижка нормальная

0.5

Отводы
сварные двухшовные под углом 90°

0.6

Вентиль с косым
шпинделем

0.5

Вентиль с
вертикальным шпинделем

6

Обратный клапан
нормальный

7

Отводы
сварные трехшовные под углом 90°

0.5

Обратный клапан
“захлопка”

3

Отводы
гнутые под углом 90°
гладкие при R/d:

1

3

4

1

0.5

0.3

Кран проходной

2

Компенсатор
сальниковый

0.3

Компенсатор
П-образный:

с гладкими
отводами

с крутоизогнутыми
отводами

со сварными
отводами

1.7

2.4

2.8

Тройник при
слиянии потоков:

проход*

ответвление

1.5

2

Отводы
гнутые под углом 90°
со складками при R/d:

3

4

0.8

0.5

Тройник при
разделении потока:

проход*

ответвление

1

1.5

Тройник при
потоке:

расходящемся

встречном

2

3

Отводы сварные
одношовные под углом, град:

60

45

30

0.7

0.3

0.2

Грязевик

10

ПРИЛОЖЕНИЕ
12

Расстояние между
неподвижными опорами трубопроводов.

Условный проход
труб, мм

Компенсаторы
П-образные

Компенсаторы
сальниковые

Самокомпенсация

Расстояния
между неподвижными опорами в м при
параметрах теплоносителя: Рраб
=8-16 кгс/см2,
t=100-150 oC

32

50

30

40

60

36

50

60

36

70

70

42

80

80

48

100

80

70

48

125

90

70

54

150

100

80

60

175

100

80

60

200

120

80

72

250

120

100

72

300

120

100

72

350

140

120

84

400

160

140

96

450

160

140

96

500

180

140

108

600

200

160

120

700

200

160

120

800

200

160

120

900

200

160

120

ПРИЛОЖЕНИЕ 13

Значения l эдля труб при= 1

Размеры труб, мм

l
э,
м, при k э,
м

Размеры труб, мм

l
э,
м, при k э,
м

,
мм

,
мм

0,0002

0,0005

0,001

,
мм

,
мм

0,0002

0,0005

0,001

25

33,53,2

0,84

0,67

0,56

350

3779

21,2

16,9

14,2

32

382,5

1,08

0,85

0,72

400

4269

24,9

19,8

16,7

40

452,5

1,37

1,09

0,91

400

4266

25,4

20,2

17

50

573

1,85

1,47

1,24

450

4807

29,4

23,4

19,7

70

763

2,75

2,19

1,84

500

5308

33,3

26,5

22,2

80

894

3,3

2,63

2,21

600

6309

41,4

32,9

27,7

100

1084

4,3

3,42

2,87

700

72010

48,9

38,9

32,7

125

1334

5,68

4,52

3,8

800

82010

57,8

46

38,7

150

1594,5

7,1

5,7

4,8

900

92011

66,8

53,1

44,7

175

1945

9,2

7,3

6,2

1000

102012

76,1

60,5

50,9

200

2196

10,7

8,5

7,1

1100

112012

85,7

68,2

57,3

250

2737

14,1

11,2

9,4

1200

122014

95,2

95,2

63,7

300

3258

17,6

14,0

11,8

1400

142014

115,6

91,9

77,3

ПРИЛОЖЕНИЕ 14

Расчетные
теплотехнические характеристики
теплоизоляционных материалов и изделий

Материал,
изделие

Средняя
плотность в конструкции, кг/м3

Теплопроводность
теплоизоляционного материала в
конструкции λk,

Вт/(м-°С)
для поверхностей с температурой, °С

Температура
применений, °С

20
и выше

19
и ниже

Маты
минераловатные прошивные

120
150

0,045
+ 0,00021 tm
0,049
+ 0,0002 tm

0,044-0,035
0,048-0,037

От
минус 180 до 450 для матов

Маты
теплоизоляционные из минеральной
ваты на синтетическом связующем

65
95 120 180

0,04
+ 0,00029 tm
0,043
+ 0,00022 tm
0,044
+ 0,00021 tm
0,052
+ 0,0002 tm

0,039-0,03
0,042-0,031 0,043-0,032 0,051-0,038

От
минус 60 до 400

От
минус 180 до 400

Теплоизоляционные
изделия из вспененного
этиленполипропиленового каучука
«Аэрофлекс»

60

0,034
+ 0,0002 tm

0,033

От
минус 57 до 125

Полуцилиндры
и цилиндры минераловатные

50
80 100 150 200

0,04
+ 0,00003 tm
0,044
+ 0,00022 tm
0,049
+ 0,00021 tm

0,05
+ 0,0002 tm
0,053
+ 0,00019 tm

0,039-0,029
0,043-0,032 0,048-0,036 0,049-0,035 0,052-0,038

От
минус 180 до 400

Шнур
теплоизоляционный из минеральной
ваты

200

0,056
+ 0,000 tm

0,055-0,04

От
минус 180 до 600

Маты
из стеклянного штапельного волокна
на синтетическом связующем

50
70

0,04
+ 0,0003 tm
0,042
+ 0,00028 tm

0,039-0,029
0,041-0,03

От
минус 60 до 180

Маты
и вата из супертонкого стеклянного
волокна без связующего

70

0,033
+ 0,00014 tm

0,032-0,024

От
минус 180 до 400

Маты
и вата из супертонкого базальтового
волокна без связующего

80

0,032
+ 0,00019 tm

0,031-0,24

От
минус 180 до 600

Песок
перлитовый, вспученный, мелкий

110
150 225

0,052
+ 0,00012 tm
0,055
+ 0,00012 tm
0,058
+ 0,00012 tm

0,051-0,038
0,054-0,04 0,057-0,042

От
минус 180 до 875

Теплоизоляционные
изделия из пенополистирола

30
50 100

0,033
+ 0,00018 tm
0,036
+ 0,00018 tm
0,041
+ 0,00018 tm

0,032-0,024
0,035-0,026 0,04-0,03

От
минус 180 до 70

Теплоизоляционные
изделия из пенополиуретана

40
50 70

0,030
+ 0,00015 tm
0,032
+ 0,00015 tm
0,037
+ 0,00015 tm

0,029-0,024
0,031-0,025 0,036-0,027

От
минус 180 до 130

Теплоизоляционные
изделия «Кайманфлекс (K-flex)»
марок: ЕС

ST
ЕСО

60-80

60-80
60-95

0,036

0,036
0,040

0,034

0,034
0,036

От
минус 40 до 105

От
минус 70 до 130

Примечание.
Средняя
температура теплоизоляционного слоя;
°С:

tm
= (tW+40)/2
— на открытом воздухе в летнее время, в
помещении, в каналах, тоннелях, технических
подпольях, на чердаках и в подвалах
зданий;

tm
= tW/2
— на
открытом воздухе, воздухе в зимнее
время, где tW
— температура среды внутри

изолируемого
оборудования (трубопровода).

ПРИЛОЖЕНИЕ
15

Нормы
плотности теплового потока qe,
Вт/м, через изолированную поверхность
трубопроводов двухтрубных водяных
тепловых сетей при числе часов работы
в год более 5000.

Условный
проход труб

тип
прокладки

открытый
воздух

тоннель,
помещение

непроходной
канал

бесканальная

средняя
температура теплоносителя, оС

d,
мм

50

100

50

100

50

90

50

90

1

2

3

4

5

6

7

8

9

25

13

25

10

22

10

23

24

44

32

14

27

11

24

11

24

26

47

40

15

29

12

26

12

25

27

50

50

17

31

13

28

13

28

29

54

65

19

36

15

32

15

34

33

60

80

21

39

16

35

16

36

34

61

100

24

43

18

39

17

41

35

65

125

27

49

21

44

18

42

39

72

150

30

54

24

49

19

44

43

80

200

37

65

29

59

22

54

48

89

250

43

75

34

68

25

64

51

96

300

49

84

39

77

28

70

56

105

350

55

93

44

85

30

75

60

113

400

61

102

48

93

33

82

63

121

450

65

109

52

101

36

93

67

129

500

71

119

57

109

38

98

72

138

600

82

136

67

125

41

109

80

156

700

92

151

74

139

43

126

86

170

800

103

167

84

155

45

140

93

186

900

113

184

93

170

54

151

1000

124

201

102

186

57

158

ПРИЛОЖЕНИЕ
16

Значение
коэффициента k1.

Район
строительства

способ
прокладки трубопровода

открытый
воздух

тоннель,
помещение

непроходной
канал

бесканаль-ная

Европейские
районы

1.0

1.0

1.0

1.0

Урал

0,98

0,98

0,95

0,94

Западная
Сибирь

0,98

0,98

0,95

0,94

Восточная
Сибирь

0,98

0,98

0,95

0,94

Дальний
Восток

0,96

0,96

0.92

0.9

Районы
Крайнего Севера и приравненные к ним

0,96

0,96

0.92

0.9

ПРИЛОЖЕНИЕ 17

Основные типы
сборных железобетонных каналов КЛ(КЛп)
и КЛс для тепловых сетей

Условный диаметр
трубопровода

Обозначение
(марка)

канала

Размеры канала,
мм

Внутренние
номинальные

Наружные

Ширина

А

Высота

H

Ширина

А

Высота

H

25-50

70-80

КЛ(КЛп)60-30

КЛ(КЛп)60-45

600

300

450

850

440

600

100-150

КЛ(КЛп)90-45

КЛ(КЛп)60-60

900

600

450

600

1150

850

630

750

175-200

250-300

КЛ(КЛп)90-60

КЛ(КЛп)120-60

900

1200

600

1150

1450

780

350-400

КЛ(КЛп)150-60

КЛ(КЛп)210-60

900

1200

600

1800

2400

850

890

450-500

КЛс90-90

КЛс120-90

КЛс150-90

900

1200

1500

900

900

1060

1400

1740

1070

1070

600-700

КЛс120-120

КЛс150-120

КЛс210-120

1200

1500

2100

12000

1400

1740

2380

1370

1470

1470

Выберите подписку для получения дополнительных возможностей Kalk.Pro

Любая активная подписка отключает

рекламу на сайте

    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов
    • Доступ к скрытым чертежам
    • Безлимитные сохранения расчетов

Более 10 000 пользователей уже воспользовались расширенным доступом для успешного создания своего проекта. Подробные чертежи и смета проекта экономят до 70% времени на подготовку элементов конструкции, а также предотвращают лишний расход материалов.

Подробнее с подписками можно ознакомиться здесь.

Технологические трубопроводы предприятий и систем жизнеобеспечения населенных пунктов транспортируют различные среды с разными параметрами. Эти параметры, в частности, температура, должны сохраняться независимо от воздействия условий окружающей среды, а для этого необходима теплоизоляция. Ее толщину определяет расчет, который базируется на требованиях нормативных документов.

Теплоизоляция трубопровода

Теплоизоляция трубопровода должна сохранять температуру в трубе независимо от воздействия на нее условий окружающей среды.

Характеристики прокладки сетей и нормативной методики вычислений

Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный. Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь. Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:

  • открытым способом на улице;
  • открыто в помещении или тоннеле;
  • бесканальным способом;
  • в непроходных каналах.

Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе. Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил. Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:

  1. Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
  2. Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя. Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.

Выбираем утеплитель

Главная причина замерзания трубопроводов – недостаточная скорость циркуляции энергоносителя. В таком случае, при минусовой температуре воздуха может начаться процесс кристаллизации жидкости. Так что качественная теплоизоляция труб – жизненно необходима.

Внимание! Особенно это касается тех трубопроводов, которые работают непостоянно (например, водяная система отопления на даче). Поэтому, дабы не пришлось размораживать и восстанавливать систему, нужно заранее позаботиться о ее тепловой изоляции.

Благо нашему поколению несказанно повезло. В недалеком прошлом утепление трубопроводов производилось по одной лишь технологии, так как утеплитель был один – стекловата. Современные производители теплоизоляционных материалов предлагаю просто широчайший выбор утеплителей для труб, отличающихся по составу, характеристикам и способу применения.

Сравнивать их между собой не совсем правильно, а уж тем более утверждать, что один из них является самым лучшим. Поэтому давайте просто рассмотрим виды изоляционных материалов для труб.

Методика просчета однослойной теплоизоляционной конструкции

Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:

ln B = 2πλ [K(tт — tо) / qL — Rн]

В этой формуле:

  • λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
  • K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
  • tт — температура в градусах транспортируемой среды или теплоносителя;
  • tо — температура наружного воздуха, ⁰C;
  • qL — величина теплового потока, Вт/м2;
  • Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.

Таблица 1

Условия прокладки трубы Значение коэффициента К
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. 1.2
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. 1.15
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. 1.05
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. 1.7
Бесканальный способ прокладки. 1.15

Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.

Таблица 2

Rн,(м2 ⁰C) /Вт DN32 DN40 DN50 DN100 DN125 DN150 DN200 DN250 DN300 DN350 DN400 DN500 DN600 DN700
tт = 100 ⁰C 0.12 0.10 0.09 0.07 0.05 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.017 0.015
tт = 300 ⁰C 0.09 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.015 0.013
tт = 500 ⁰C 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.016 0.014 0.012

Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.

Показатель В следует рассчитывать отдельно:

B = (dиз + 2δ) / dтр, здесь:

  • dиз — наружный диаметр теплоизоляционной конструкции, м;
  • dтр — наружный диаметр защищаемой трубы, м;
  • δ — толщина теплоизоляционной конструкции, м.

Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.

Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:

δ = [K(tт — tо) / qF — Rн]

В этой формуле:

  • δ — толщина теплоизоляционной конструкции, м;
  • qF — величина нормируемого теплового потока, Вт/м2;
  • остальные параметры — как в расчетной формуле для цилиндрической поверхности.

Способы расчета

Для того чтобы определиться с выбором подходящего утеплителя, необходимо рассчитать оптимальную толщину и плотность материала для конкретного случая. Такой расчет позволяет не только уменьшить потери тепла, но и снизить саму температуру труб, с целью их безопасного использования.

Какие факторы нужно учитывать при расчете?

  • Температуру утепляемой поверхности;
  • Температурные перепады окружающей среды;
  • Наличие механических воздействий (например, вибрации и т.д.);
  • Допустимые нагрузки на трубы;
  • Нагрузки от вышележащего грунта и транспортных средств;
  • Коэффициент теплопроводности, которой обладает выбранный утеплитель;
  • Стойкость изолирующего материала к деформации.

Пример расчета толщины изоляции трубопроводов

Изоляция трубопровода минеральной ватой

Важно! В СНиП 41-03-2003 четко прописано, какими должны быть характеристики утеплительных материалов для различных типов трубопроводов и условий эксплуатации. К примеру, для утепляемых труб температурой ниже 12º C , по требованиям СНиП, в теплоизоляции должно предусматриваться наличие пароизоляционного слоя.

Сейчас мы рассмотрим расчет теплоизоляции трубопровода – два проверенных способа, каждый из которых по-своему удобен и надежен.

Инженерный расчет при помощи формул

Оптимальную толщину слоя утеплителя находят путем технико-экономического расчета: толщина материала определяется исходя из его сопротивления температурам – не менее 0,86 (ºC м²/Вт) для труб с диаметром меньше или равным 25 мм, и 1,22 (ºC м²/Вт) для труб с диаметром больше 25 мм.

Приведенная ниже информация будет полезна при проведении инженерных расчетов теплоизоляции для различных трубопроводов. В качестве примера мы рассчитаем необходимую толщину утеплителя для выпускного коллектора высокофорсированного дизеля.

Полное температурное сопротивление утеплительной конструкции для цилиндрической трубы находится по следующей формуле:

Пример расчета толщины изоляции трубопроводов

Формула нахождения температурного сопротивления утеплителя

  • dиз – наружный диаметр утеплителя для трубы;
  • dн – наружный диаметр трубы;
  • из – коэффициент теплопроводности утеплительного материала;
  • в – коэффициент теплоотдачи от утеплителя к воздуху.

Линейная плотность потока тепла:

Нахождение линейной плотности теплового потока

  • tн – температура наружной стенки трубы;
  • tиз – температура поверхности утеплительного слоя.

Температура внутренней стенки утеплителя трубы:

Нахождение температуры внутренней стенки утеплителя трубопровода

  • dв – внутренний диаметр трубы;
  • г – коэффициент отдачи тепла от газа к стенке;
  • т – коэффициент теплопроводности материала, из которого сделана труба.

Формула нахождения теплового баланса:

Нахождение теплового баланса

С ее помощью определяется необходимый наружный диаметр утеплителя для трубы (dиз). Затем вычисляется расчет толщины теплоизоляции трубопроводов по формуле:

Нахождение толщины утеплителя

Пример расчета: поставлена задача – рассчитать теплоизоляцию для трубопровода высокофорсированного дизеля.

Имеются следующие значения:

  • наружный диаметр трубопровода – 0,6 м;
  • его внутренний диаметр – 0,594 м;
  • температура наружной стенки трубопровода – 725 K;
  • температура наружной поверхности утеплителя – 333 K;
  • коэффициент теплопроводности утеплителя – 0,11 Вт/(м K).

Подставив все значения в формулы, данные выше, мы получаем необходимую толщину утеплителя для трубопровода – не менее 0,1 м.

Совет! Если вы считаете, что у вас не получится правильно воспользоваться вышеприведенными формулами, то обратитесь за помощью к инженерам. Они произведут профессиональный расчет, что позволит вам быть уверенным – теплоизоляция получится действительно качественной. Цена на услуги специалиста вполне приемлема и доступна каждому.

Если вы все же решили самостоятельно проделать всю работу, то помните, расчет толщины утеплителя для трубопровода должен осуществляться под конкретные условия – от утеплительного материала, до сезонных температурных перепадов на улице и влажности воздуха. Кстати, влажность значительно ускоряет теплообмен и снижает эффективность некоторых утеплителей (например, минеральной ваты).

Онлайн калькулятор – незаменимый помощник в расчетах теплоизоляции

Помимо услуг квалифицированного инженера есть вариант воспользоваться онлайн помощником. Калькулятор расчета теплоизоляции трубопроводов абсолютно бесплатная программа, не требующая инсталляции и какой-либо оплаты. С ее помощью можно своими руками, да к тому же за считанные минуты произвести точное вычисление.

Пример расчета толщины изоляции трубопроводов

Вот, собственно, так выглядит онлайн помощник

Пользоваться калькулятором достаточно просто.

Сначала предлагается выбрать одну из четырех задач:

  • утепление трубопровода с целью обеспечить заданную температуру на поверхности изоляции;
  • утепление трубопровода с целью предотвратить замерзание содержащейся в нем жидкости;
  • утепление трубопровода с целью предотвратить конденсацию влаги на поверхности изоляции;
  • утепление трубопровода водяной тепловой сети двухтрубной подземной канальной прокладки.

Далее вам будет предложено ввести некоторые данные, необходимые для расчета:

  • утеплительный материал (в предложенном списке вы непременно найдете тот утеплитель, который предпочли);
  • наружный диаметр трубопровода (мм);
  • температура утепляемой поверхности (ºC);
  • сколько времени проходит до замерзания воды в состоянии инерции;
  • наличие защитного покрытия (металлическое или же неметаллическое);
  • средняя температура теплоносителя (воды и т.д.).

Пример расчета толщины изоляции трубопроводов

Вводим все необходимые параметры

Теперь останется лишь нажать кнопку «рассчитать» и получить максимально точный результат.

Пример расчета толщины изоляции трубопроводов

Примерно в такой форме будет выдан результат

Методика просчета многослойной теплоизоляционной конструкции

Некоторые перемещаемые среды имеют достаточно высокую температуру, которая передается наружной поверхности металлической трубы практически неизменной. При выборе материала для тепловой изоляции такого объекта сталкиваются с такой проблемой: не каждый материал способен выдержать высокую температуру, например, 500-600⁰C. Изделия, способные контактировать с такой горячей поверхностью, в свою очередь, не обладают достаточно высокими теплоизоляционными свойствами, и толщина конструкции получится неприемлемо большой. Решение — применить два слоя из различных материалов, каждый из которых выполняет свою функцию: первый слой ограждает горячую поверхность от второго, а тот защищает трубопровод от воздействия низкой температуры наружного воздуха. Главное условие такой термической защиты состоит в том, чтобы температура на границе слоев t1,2 была приемлемой для материала наружного изоляционного покрытия.

Для расчета толщины изоляции первого слоя используется формула, уже приводимая выше:

δ = [K(tт — tо) / qF — Rн]

Второй слой рассчитывают по этой же формуле, подставляя вместо значения температуры поверхности трубопровода tт температуру на границе двух теплоизоляционных слоев t1,2. Для вычисления толщины первого слоя утеплителя цилиндрических поверхностей труб диаметром менее 2 м применяется формула такого же вида, как и для однослойной конструкции:

ln B1 = 2πλ [K(tт — t1,2) / qL — Rн]

Подставив вместо температуры окружающей среды величину нагрева границы двух слоев t1,2 и нормируемое значение плотности потока тепла qL, находят величину ln B1. После определения числового значения параметра B1 через таблицу натуральных логарифмов рассчитывают толщину утеплителя первого слоя по формуле:

δ1 = dиз1 (B1 — 1) / 2

Расчет толщины второго слоя выполняют с помощью того же уравнения, только теперь температура границы двух слоев t1,2 выступает вместо температуры теплоносителя tт:

ln B2 = 2πλ [K(t1,2 — t0) / qL — Rн]

Вычисления делаются аналогичным образом, и толщина второго теплоизоляционного слоя считается по той же формуле:

δ2 = dиз2 (B2 — 1) / 2

Такие непростые расчеты вести вручную очень затруднительно, при этом теряется много времени, ведь на протяжении всей трассы трубопровода его диаметры могут меняться несколько раз. Поэтому, чтобы сэкономить трудозатраты и время на вычисление толщины изоляции технологических и сетевых трубопроводов, рекомендуется пользоваться персональным компьютером и специализированным программным обеспечением. Если же таковое отсутствует, алгоритм расчета можно внести в программу Microsoft Exel, при этом быстро и успешно получать результаты.

Варианты изоляции трубопровода

Напоследок рассмотрим три эффективных способа теплоизоляции трубопроводов.

Возможно, какой-то из них вам приглянется:

  1. Утепление с применением обогревающего кабеля. Помимо традиционных методов изоляции, есть и такой альтернативный способ. Использование кабеля весьма удобно и продуктивно, если учитывать, что защищать трубопровод от замерзания нужно всего лишь полгода. В случае обогрева труб кабелем происходит значительная экономия сил и денежных средств, которые пришлось бы потратить на земельные работы, утеплительный материал и прочие моменты. Инструкция по эксплуатации допускает нахождение кабеля как снаружи труб, так и внутри них.

Пример расчета толщины изоляции трубопроводов

Дополнительная теплоизоляция греющим кабелем

  1. Утепление воздухом. Ошибка современных систем теплоизоляции заключается вот в чем: зачастую не учитывается то, что промерзание грунта происходит по принципу «сверху вниз». Навстречу же процессу промерзания стремится поток тепла, исходящий из глубины земли. Но так как утепление производят со всех сторон трубопровода, получается, также изолирую его и от восходящего тепла. Поэтому рациональнее монтировать утеплитель в виде зонтика над трубами. В таком случае воздушная прослойка будет являться своеобразным теплоаккумулятором.
  2. «Труба в трубе». Здесь в трубах из полипропилена прокладываются еще одни трубы. Какие преимущества есть у этого способа? В первую очередь к плюсам относится то, что трубопровод можно будет отогреть в любом случае. Кроме того, возможен обогрев при помощи устройства по всасыванию теплого воздуха. А в аварийных ситуациях можно быстро протянуть аварийный шланг, тем самым предотвратив все отрицательные моменты.

Пример расчета толщины изоляции трубопроводов

Изоляция по принципу «труба в трубе»

Метод определения по заданной величине снижения температуры теплоносителя

Задача такого рода часто ставится в том случае, если до конечного пункта назначения транспортируемая среда должна дойти по трубопроводам с определенной температурой. Поэтому определение толщины изоляции требуется произвести на заданную величину снижения температуры. Например, из пункта А теплоноситель выходит по трубе с температурой 150⁰C, а в пункт Б он должен быть доставлен с температурой не менее 100⁰C, перепад не должен превысить 50⁰C. Для такого расчета в формулы вводится длина l трубопровода в метрах.

Вначале следует найти полное сопротивление теплопередаче Rп всей теплоизоляции объекта. Параметр высчитывается двумя разными способами в зависимости от соблюдения следующего условия:

Если значение (tт.нач — tо) / (tт.кон — tо) больше или равно числу 2, то величину Rп рассчитывают по формуле:

Rп = 3.6Kl / GC ln [(tт.нач — tо) / (tт.кон — tо)]

В приведенных формулах:

  • K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры (Таблица 1);
  • tт.нач — начальная температура в градусах транспортируемой среды или теплоносителя;
  • tо — температура окружающей среды, ⁰C;
  • tт.кон — конечная температура в градусах транспортируемой среды;
  • Rп — полное тепловое сопротивление изоляции, (м2 ⁰C) /Вт
  • l — протяженность трассы трубопровода, м;
  • G — расход транспортируемой среды, кг/ч;
  • С — удельная теплоемкость этой среды, кДж/(кг ⁰C).

В противном случае выражение (tт.нач — tо) / (tт.кон — tо) меньше числа 2, величина Rп высчитывается таким образом:

Rп = 3.6Kl [(tт.нач — tт.кон) / 2 — tо ] : GC (tт.нач — tт.кон)

Обозначения параметров такие же, как и в предыдущей формуле. Найденное значение термического сопротивления Rп подставляют в уравнение:

ln B = 2πλ (Rп — Rн), где:

  • λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
  • Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.

После чего находят числовое значение В и делают расчет изоляции по знакомой формуле:

δ = dиз (B — 1) / 2

В данной методике просчета изоляции трубопроводов температуру окружающей среды tо следует принимать по средней температуре самой холодной пятидневки. Параметры К и Rн — по приведенным выше таблицам 1,2. Более развернутые таблицы для этих величин имеются в нормативной документации (СНиП 41-03-2003, Свод Правил 41-103-2000).

Вывод

Вот мы и обговорили все самые важные моменты касательно утепления трубопроводов. Вне зависимости от того, какой материал и способ вы выберете для этой цели – перед тем как приступать к монтажу теплоизоляции, желательно рассчитать количество необходимого утеплителя и его стоимость.

Так в дальнейшем вы сэкономите силы и финансовые затраты. Удачи всем строителям своего теплого настоящего и будущего! В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Толщина теплоизоляционного слоя рассчитывается по формуле:

где: d — наружный диаметр тепло-изолируемого трубопровода, мм;

В — отношение наружного диаметра теплоизоляционного слоя к наружному диаметру трубопровода, мм.

Величину В можно вычислить из следующего уравнения:

где: λк — теплопроводность теплоизоляционного слоя, Вт / (м × ºС) — принимается по данным завода-изготовителя; rtot — сопротивление теплопередачи 1 п.м. теплоизоляционной конструкции / Вт, определяемое исходя из нормируемой линейной плотности теплового потока по формуле:

tw — средняя температура холодоносителя, ºС; tв — температура окружающей среды, ºС; qе — нормируемая линейная плотность теплового потока, Вт/м , принимаем по Таблице 20; К1 — коэффициент, учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от района строительства и способа прокладки трубопровода, принимается по Таблице 18; rе — термическое сопротивление стенки трубопровода, Вт / (м × ºС) — не учитывается из-за малой величины для стальных трубопроводов; αе — коэффициент теплоотдачи от наружной поверхности изоляции, Вт / (м 2 × ºС), принимается по таблице 19.

Метод определения по заданной температуре поверхности утепляющего слоя

Данное требование актуально на промышленных предприятиях, где различные трубопроводы проходят внутри помещений и цехов, в которых работают люди. В этом случае температура любой нагретой поверхности нормируется в соответствии с правилами охраны труда во избежание ожогов. Расчет толщины теплоизоляционной конструкции для труб диаметром свыше 2 м выполняется в соответствии с формулой:

Формула определения толщины теплоизоляции.

δ = λ (tт — tп) / ɑ (tп — t0), здесь:

  • ɑ — коэффициент теплоотдачи, принимается по справочным таблицам, Вт/(м2 ⁰C);
  • tп — нормируемая температура поверхности теплоизоляционного слоя, ⁰C;
  • остальные параметры — как в предыдущих формулах.

Расчет толщины утеплителя цилиндрической поверхности производится с помощью уравнения:

ln B =(dиз + 2δ) / dтр = 2πλ Rн (tт — tп) / (tп — t0)

Обозначения всех параметров как в предыдущих формулах. По алгоритму данный просчет схож с вычислением толщины утеплителя по заданному тепловому потоку. Поэтому дальше он выполняется точно так же, конечное значение толщины теплоизоляционного слоя δ находят так:

δ = dиз (B — 1) / 2

Предложенная методика имеет некоторую погрешность, хотя вполне допустима для предварительного определения параметров утепляющего слоя. Более точный расчет выполняется методом последовательных приближений с помощью персонального компьютера и специализированного программного обеспечения.

В современном проектировании принято применять различные конструктивные решения, определённые типы и разновидности материалов. Для теплоизоляции характерно использование толщин не на основании расчётов, а согласно традиции применения. Так, в Московском регионе на кровлю требуется 200 мм теплоизоляционного материала, на стены — 150 мм. При этом не всегда учитываются нюансы. Например, какое основание и какая конструкция стены или кровли используются. Часто не берутся во внимание и характеристики (теплопроводность) изоляционного материала.

В случае проектирования инженерных систем зданий (трубопроводов), как правило, традиционно применяют вспененные решения с маленькими толщинами, в основном 6–13 мм. Обусловлено это в том числе удобством монтажа тонкой изоляции, её дешевизной и экономией места при плотном расположении труб. При этом более толстые материалы для теплоизоляции трубопроводов могут игнорироваться. 

На примере изоляции ГВС и отопления разберём, какая толщина различных по типам материалов требуется и чем чреват некорректный подбор.

При проектировании инженерных систем зданий расчёт толщины изоляции производится согласно СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов» (актуализированная редакция СНиП 41–03–2003). В общих положениях СП (4) указано, что теплоизоляционная конструкция обязана обеспечивать параметры теплохолодоносителя при эксплуатации, нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей (4.1). Кроме того, конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям энергоэффективности — иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчётного срока эксплуатации (4.2).

То есть необходимо подобрать толщину таким образом, чтобы вблизи горячей трубы или оборудования было безопасно находиться (для защиты от ожогов). Помимо этого, тепловые потери должны быть не больше, чем нормировано (Вт/м) в СП 61.13330.2012 для соответствующей трубы (параметров её работы).

На основании расчёта толщины изоляции ГВС и отопления (диаметры труб взяты для примера) для Москвы мы получаем приведённые ниже значения.

Расчёт произведён с помощью программы «Изоляция» (ООО «НТП Трубопровод»).

Приведены толщины изоляции в миллиметрах согласно номенклатуре производителя, внесённой в программу «Изоляция» (в скобках указана расчётная толщина изоляции в миллиметрах).

Исходя из таблицы, применение тонких вспененных материалов может выглядеть логичным и целесообразным, но другой обязательный расчёт выдаёт существенно разнящиеся значения.

Таким образом, согласно п4. СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов» (актуализированная редакция СНиП 41–03–2003) необходимо применять материалы существенно большей толщины, чем показал первый расчет. Иначе применяемые материалы не обеспечивают нормативный уровень тепловых потерь и, соответственно, не отвечают требованиям энергоэффективности.

Получается, что толщины изоляции различных по своей структуре материалов будут в конструкции сопоставимы (ввиду соизмеримой теплопроводности). При определённых условиях изоляция из каменной ваты чуть толще, при других — немного тоньше. Это зависит от выпускаемой номенклатуры и теплопроводности при той или иной температуре. 

Физику не обманешь, и приблизительно одинаковые по своим теплоизоляционным свойствам материалы должны иметь схожую толщину в одинаковых конструкциях. 

Посмотрим, каким будет уровень потерь сверх нормы, если поставить изоляцию, учитывая только безопасную температуру на поверхности (данные представлены ниже).

Видно, что применение малых толщин, как это сейчас практикуется в некоторых проектах, в том числе с подачи производителей тонкой вспененной изоляции, приводит к огромным тепловым потерям. Фактически в системах отопления и горячего водоснабжения они превышают нормируемые в два-три раза (!). Это огромные финансовые потери, свидетельствующие об энергетической неэффективности.

Возможно, именно поэтому российская экономика — одна из самых энергоёмких в мире. По оценкам экспертов, РФ находится на 130-м месте среди 143 стран по уровню энергоэффективности экономики. Энергоёмкость ВВП России в два раза выше среднемировой.

Если прийти к выводу о необходимости применения схожих толщин изоляции из каменной ваты и вспененной изоляции, то окажется, что толщины (30–40 мм) различных диаметров либо не производятся (изготовителями вспененного каучука и полиэтилена), либо стоят гораздо дороже. Пример среднерыночного уровня цен представлен ниже. 

На больших толщинах и диаметрах (начиная с Dy = 25) вспененный каучук, например, становится гораздо дороже — в четыре — шесть раз (по сравнению с цилиндрами из каменной ваты). 

Все эти факторы говорят о том, что традиционное применение (без расчётов) вспененной изоляции с малой толщиной — это прямой путь к огромным перерасходам энергии, а использование вспененных решений с правильно рассчитанными толщинами ведёт к расходам сверх нормы на саму изоляцию. И это без учёта комплексной оценки пожарной опасности вспененных полимерных материалов и их долговечности. 

Строительство и ремонт:

Понравилась статья? Поделить с друзьями:
  • Как найти совпадения по картинке
  • Как найти массу атома в молях
  • Как найти половину отрезка
  • Как составить претензию по страховке
  • Как найти бамбуковые джунгли в майнкрафте