Как найти траекторию движения протона

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

и затем, используя уравнение v=E/B, мы находим, что

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

Движение протона по окружности в магнитном поле

Задание 17. Протон движется по окружности в однородном магнитном поле между полюсами магнита под действием силы Лоренца. Как изменятся по сравнению с протоном модуль силы Лоренца и период обращения α-частицы, если она будет двигаться в этом же поле по окружности с той же скоростью?

Для каждой величины определите соответствующий характер изменения:

На α-частицу со стороны магнитного поля действует сила Лоренца , где q – заряд частицы; v – скорость частицы; B – напряженность магнитного поля. Так как α-частица движется по окружности, то магнитное поле направлено перпендикулярно его движению, то есть и сила Лоренца в данном случае запишется в виде

.

В соответствии со вторым законом Ньютона, силу Лоренца также можно записать как , где — центростремительное ускорение. Получаем значение для радиуса окружности R:

.

Теперь вычислим изменение радиуса окружности для альфа-частицы, движущейся с той же скоростью. Альфа-частица имеет в своем составе два протона и два нейтрона, то есть ее масса в 4 раза больше массы протона, а заряд в 2 раза больше заряда протона. В итоге получаем:

,

то есть радиус окружности увеличится в 2 раза. Так как период обращения T – это время одного полного оборота, а радиус увеличился в 2 раза при сохранении той же скорости, то период возрастет.

Модуль силы Лоренца возрастает, так как заряд α-частицы выше заряда протона.

5.3. Движение заряда в однородном магнитном поле

Если начальная скорость заряженной частицы v перпендикулярна магнитному полю В, то в этом случае частица под действием силы Лоренца будет двигаться по окружности постоянного радиуса R (рис. 5.13)

Рис. 5.13. Движение отрицательно заряженной частицы в однородном магнитном поле

Сила Лоренца FL, направленная по радиусу к центру окружности, вызывает радиальное ускорение. По второму закону Ньютона имеем

следовательно, можем записать уравнение

из которого легко получить выражение для угловой скорости частицы

Если q, m и B — постоянные величины, то угловая скорость, а следовательно, и период

тоже являются постоянными величинами, не зависящими от энергии частицы. От скорости движения частицы зависит только радиус орбиты

Сила Лоренца создает только нормальное ускорение и, соответственно, направлена к центру окружности. Следовательно, направление вращения положительно заряженной частицы таково, что вращающийся в том же направлении винт будет двигаться против направления поля. Отрицательно заряженная частица вращается в противоположном направлении (см. рис. 5.14, 5.15).

Рис. 5.14. Движение положительно и отрицательно заряженных частиц в однородном магнитном поле.
Направление магнитного поля указано точками

Если начальная скорость частицы параллельна вектору магнитной индукции, то сила Лоренца равна нулю. Частица будет продолжать двигаться в том же направлении прямолинейно и равномерно.

Наконец, в общем случае можно представить себе, что частица влетает в область однородного магнитного поля со скоростью v, составляющей угол q с направлением магнитного поля. Эту скорость можно разложить на компоненту две составляющих, одна из которых

направлена вдоль поля, а вторая

перпендикулярна полю. Соответственно, движение частицы является суммой двух движений: равномерного вдоль поля со скоростью и вращения по окружности с угловой скоростью . Траектория частицы, таким образом, является спиралью с радиусом R и шагом h (рис. 5.15):

Рис. 5.15. Движение заряженной частицы по спирали в однородном магнитном поле

Пример. В однородном магнитном поле с индукцией 2 Тл движется протон. Траектория его движения представляет собой винтовую линию с радиусом 10 см и шагом 60 см. Определить скорость и кинетическую энергию протона. Какую ускоряющую разность потенциалов U прошел протон перед тем, как влететь в магнитное поле?

Решение. Из уравнений (5.11) находим угол между скоростью протона и полем

Кинетическая энергия протона будет

Мы могли использовать нерелятивистскую формулу для энергии, так как скорость протона много меньше скорости света.

Если протон ускорялся электрическим полем, то при прохождении разности потенциалов U он приобрел энергию eU. Отсюда находим разность потенциалов

Джоуль — слишком большая энергия в мире элементарных частиц. Здесь используют внесистемную единицу — электронвольт (эВ).

Электрон-вольт (эВ) — это внесистемная единица энергии, численно равная энергии, которую приобретает электрон, пройдя ускоряющую разность потенциалов 1 В

Она удобна тем, что любая другая частица с зарядом по модулю равным заряду электрона, ускоренная разностью потенциалов в 3,66 МэВ, как в нашем примере, имеет кинетическую энергию 3,66 МэВ (мегаэлектронвольт).

источники:

http://self-edu.ru/ege2019_phis_30.php?id=7_17

http://online.mephi.ru/courses/physics/electricity/data/course/5/5.3.html

Сила Лоренца

Сила Лоренца действующая на электрон

В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить

[ е = — 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.

Сила Лоренца действующая на электрон и протон

Сила Лоренца действующая на электрон и протон

Величина и направление силы Лоренца определяются соотношением

[ vector{F_{L}}= e vector{v} × vector{B} ]

где $vector{v}$, $vector{B}$ и $vector{F}$ образуют правую систему.

Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:

[ F_{L} = e v B ]

Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины.
Поэтому электрон движется в магнитном поле по окружности.

Вычислить, найти силу Лоренца действующую на электрон или протон

Радиус траектории электрона в магнитном поле

Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

Если

r радиус круговой траектории электрона, метр
me 9,11 · 10-31 кг — масса электрона, кг
e 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость электрона, м/с
B магнитная индукция, Тесла

то, приравнивая обе силы, получаем

[ evB = frac{m_{e} v^{2}}{r} ]

и, следовательно,

[ r = frac{m_{e} v}{eB} ]

Сила Лоренца действующая на протон

Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

[ p = + 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

Сила Лоренца действующая на протон

Сила Лоренца действующая на протон

Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

Радиус траектории протона в магнитном поле

Если

r радиус круговой траектории протона, метр
mp 1,67 · 10-27 кг — масса протона, кг
p 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость протона, м/с
B магнитная индукция, Тесла

Радиус траектории для протона будет вычисляться по аналогичной формуле

[ r = frac{m_{p} v}{p B} ]

Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

Сила Лоренца

стр. 667

Условие задачи:

Протон движется в вакууме в однородном магнитном поле с индукцией 94,2 мкТл так, что вектор его скорости составляет угол 30° с направлением линий индукции магнитного поля. Определить расстояние, пройденное протоном вдоль силовых линий за три витка, если начальная скорость протона 2,5 км/с.

Задача №8.2.19 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(B=94,2) мкТл, (alpha=30^circ), (N=3), (upsilon=2,5) км/с, (S-?)

Решение задачи:

Схема к решению задачиЕсли протон влетает в магнитное поле под некоторым углом (alpha) к линиям индукции, то он будет совершать сложное движение, состоящее из:

  1. равномерного прямолинейного движения со скоростью (upsilon cdot cos alpha) вдоль линий индукции магнитного поля;
  2. равномерного движения по окружности со скоростью (upsilon cdot sin alpha) в плоскостях, перпендикулярных линиям индукции магнитного поля.

Два этих движения дают в сумме движение протона по так называемой винтовой линии.

Шаг винта (h) – это расстояние, которое пройдет протон вдоль линий индукции магнитного поля за время, равное периоду вращения протона (T). Поэтому:

[h = upsilon cos alpha cdot T;;;;(1)]

Зная скорость движения протона по окружности, можно найти период вращения протона (T) по формуле:

[T = frac{{2pi R}}{{upsilon sin alpha }};;;;(2)]

На протон, движущийся в магнитном поле, действует сила Лоренца (F_Л), которую определяет следующая формула:

[{F_Л} = Bupsilon esin alpha ;;;;(3)]

Здесь (B) – индукция магнитного поля, (upsilon) – скорость протона, (e) – модуль заряда протона, (alpha) – угол между вектором скорости и вектором магнитной индукции.

Направление действия силы Лоренца определяется правилом левой руки: если ладонь левой руки расположить так, чтобы линии магнитной индукции входили в нее, а четыре вытянутых пальца направить по направлению движения положительного заряда (или против направления отрицательного заряда), то большой палец, оставленный на 90°, покажет направление силы Лоренца. В нашем случае (при таком направлении вектора магнитной индукции) сила Лоренца направлена влево.

Сила Лоренца (F_Л) сообщает протону центростремительное ускорение (a_ц), поэтому из второго закона Ньютона следует, что:

[{F_Л} = {m_p}{a_ц};;;;(4)]

Центростремительное ускорение (a_ц) можно определить через скорость, равную (upsilon sin alpha) и радиус кривизны траектории (R) по формуле:

[{a_ц} = frac{{{upsilon ^2}{{sin }^2}alpha }}{R};;;;(5)]

Подставим (5) в (4), тогда:

[{F_Л} = frac{{{m_p}{upsilon ^2}{{sin }^2}alpha }}{R};;;;(6)]

Приравняем правые части (3) и (6):

[Bupsilon esin alpha = frac{{{m_e}{upsilon ^2}{{sin }^2}alpha }}{R}]

Имеем:

[Be = frac{{{m_p}upsilon sin alpha }}{R}]

Откуда:

[frac{R}{{upsilon sin alpha }} = frac{{{m_p}}}{{Be}}]

Полученное подставим в (2), тогда:

[T = frac{{2pi {m_p}}}{{Be}}]

С учетом этого формула (1) примет вид:

[h = frac{{2pi {m_p}upsilon cos alpha }}{{Be}}]

Расстояние (S), которое пройдет протон вдоль силовых линий магнитного поля за (N) витков, можно найти так:

[S = Nh]

Поэтому окончательно получим:

[S = Nfrac{{2pi {m_p}upsilon cos alpha }}{{Be}}]

Масса протона (m_e) равна 1,672·10-27 кг, а его заряд (e) равен 1,6·10-19 Кл. Посчитаем численный ответ задачи:

[S = 3 cdot frac{{2 cdot 3,14 cdot 1,672 cdot {{10}^{ – 27}} cdot 2,5 cdot {{10}^3} cdot cos 30^circ }}{{94,2 cdot {{10}^{ – 6}} cdot 1,6 cdot {{10}^{ – 19}}}} = 4,52;м]

Ответ: 4,52 м.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

8.2.18 Циклотрон предназначен для ускорения протонов до энергии 5 МэВ. Определить
8.2.20 Электрон, движущийся со скоростью 10^7 м/с, влетает в однородное магнитное поле
8.2.21 Электрон, прошедший некоторую разность потенциалов, влетает в однородное магнитное

Протон будет участвовать в двух движениях — равномерное движение по окружности в плоскости, перпендикулярной полю(из-за силы Лоренца и наличия поперечной полю компоненты скорости) и продольному движению вдоль поля. Найдем радиус окружности из второго закона Ньютона

mv^2sin^2alpha/R = evsinalpha B
R = frac{mvsinalpha}{eB}

Траектория движения протона — это спираль c радиусом R. Найдем ее шаг H 

H = vTcosalpha  = frac{2pi Rvcosalpha}{vsinalpha} = frac{2pi mvcosalpha}{eB}

Так как сила Лоренца перпендикулярна скорости, скорость остается постоянной и длина дуги вычисляется по банальной формуле L = vt

3.27.
В однородном магнитном поле с индукцией
2 Тл. движется протон. Траектория его
движения представляет собой винтовую
линию радиусом 10 см. и шагом 60 см.
Определите кинетическую энергию протона.

Вычислить:
.

Дано:

В
= 2 Тл.

R
= 0,1 м.

h
= 0,6 м.

m
=

кг.

q
=

Кл.

Решение:

Протон
участвует в двух независимых движениях:
равномерном и прямолинейном со скоростью
,
которая параллельна линиям индукции
магнитного поля, и по окружности со
скоростью

(постоянной по модулю, но непрерывно
изменяющейся по направлению ) в плоскости
перпендикулярной вектору
.
Иначе: представим скорость

как сумму двух взаимно перпендикулярных
по направлению скоростей

и
.

Кинетическая
энергия протона:


(1)

Так
как

перпендикулярно

, то по теореме Пифагора получаем:

где
.

Для
расчета

и

воспользуемся формулами для радиуса
R,
шага h
винтовой линии и периода Т вращения
частицы в магнитном поле.

Шаг
– расстояние между двумя ближайшими
точками пересечения спирали с образующей
цилиндрической поверхности, на которую
эта спираль навита.

Радиус
– расстояние от точки спирали до оси
цилиндрической поверхности.


– путь
частицы, движущейся со скоростью

за время Т;


– период
вращения частицы по спирали;

где
m
– масса частицы, q
– заряд частицы, В – модуль магнитной
индукции.


(3)
– формула для вычисления радиуса
окружности, по которой частица двигалась
бы, имея начальную скорость

.

Из
формул (2) и (3) выражаем

и
:


,
(4)


,
(5)

Подставляем
(4) и (5) в (1):

Ответ:
кинетическая энергия протона равна

Дж.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти угол с помощью синуса угла
  • Как найти известного человека по описанию
  • Как исправить дату заключения трудового договора
  • Как найти куда пришла посылка
  • Как найти оцелотов в майнкрафте