Как найти траекторию зарядов

Электромагнитная
сила, действующая на заряженную частицу,
складывается из сил, действующих со
стороны электрического и магнитного
полей:

. (3.2)

Силу,
определяемую формулой (3.2), называют
обобщенной силой Лоренца. Учитывая
действие двух полей, электрического и
магнитного, говорят, что на заряженную
частицу действует электромагнитное
поле.

Рассмотрим
движение заряженной частицы в одном
только электрическом поле. При этом
здесь и далее предполагается, что частица
нерелятивистская, т.е. ее
скорость существенно меньше
скорости света. На частицу действует
только электрическая составляющая
обобщенной силы Лоренца
.
Согласно второму закону Ньютона частица
движется с ускорением:

,
(3.3)

которое
направленно вдоль вектора
в случае положительного заряда и против
векторав случае отрицательного заряда.

Разберем
важный случай движения заряженной
частицы в однородном электрическом
поле. В этом случае частица движется
равноускоренно ().
Траектория движения частицы зависит
от направления ее начальной скорости.
Если начальная скорость равна нулю или
направлена вдоль вектора,
движение частицы прямолинейное и
равноускоренное. Если же начальная
скорость частицы направлена под углом
к вектору,
то траекторией движения частицы будет
парабола. Траектории движения заряженной
частицы в однородном электрическом
поле такие же, как и траектории свободно
(без сопротивления воздуха) падающих
тел в гравитационном поле Земли, которое
вблизи поверхности Земли можно считать
однородным.

Пример
3.1
. Определить
конечную скорость частицы массой
и зарядом,
пролетевшей в однородном электрическом
полерасстояние
.
Начальная скорость частицы равна нулю.

Решение.
Так как поле однородно, а начальная
скорость частицы равна нулю, движение
частицы будет прямолинейным равноускоренным.
Запишем уравнения прямолинейного
равноускоренного движения с нулевой
начальной скоростью:

.

Подставим
величину ускорения из уравнения (3.3) и
получим:

.

В
однородном поле
(см. 1.21). Величинуназывают ускоряющей разностью потенциалов.
Таким образом, скорость, которую набирает
частица, проходя ускоряющую разность
потенциалов:

.
(3.4)

При
движении в неоднородных электрических
полях ускорение заряженных частиц
переменное, и траектории будут более
сложными. Однако, задачу о нахождении
скорости частицы, прошедшей ускоряющую
разность потенциалов
,
можно решить исходя из закона сохранения
энергии. Энергия движения заряженной
частицы (кинетическая энергия) изменяется
за счет работы электрического поля:

.

Здесь
использована формула (1.5) для работы
электрического поля по перемещению
заряда
.
Если начальная скорость частицы равна
нулю ()
или мала по сравнению с конечной
скоростью, получим:,
откуда следует формула (3.4). Таким образом,
эта формула остается справедливой и в
случае движения заряженной частицы в
неоднородном поле. В этом примере
показаны два способа решения физических
задач. Первый способ основан на
непосредственном применении законов
Ньютона. Если же действующие на тело
силы переменны, бывает более целесообразным
использование второго способа, основанного
на законе сохранения энергии.

Теперь
рассмотрим движение заряженных частиц
в магнитных полях. Изменение кинетической
энергии частицы в магнитном поле могло
бы произойти только за счет работы силы
Лоренца:
.
Но работа силы Лоренца всегда равна
нулю, значит кинетическая энергия
частицы, а вместе с тем и модуль ее
скорости не изменяются. Заряженные
частицы движутся в магнитных полях с
постоянными по модулю скоростями. Если
электрическое поле может быть ускоряющим
по отношению к заряженной частице, то
магнитное поля может быть только
отклоняющим, т. е. изменять лишь направление
ее движения.

Рассмотрим
варианты траекторий движения заряда в
однородном поле.

1.
Вектор магнитной индукции параллелен
или антипараллелен начальной скорости
заряженной частицы. Тогда из формулы
(3.1) следует
.
Следовательно, частица будет двигаться
прямолинейно и равномерно вдоль линий
магнитного поля.

2.
Вектор магнитной индукции
перпендикулярен начальной скорости
частицы (на рис. 3.2 вектор магнитной
индукции направлен за плоскость чертежа).
Второй закон Ньютона для частицы имеет
вид:

или.

Сила
Лоренца постоянна по величине и направлена
перпендикулярно скорости и вектору
магнитной индукции. Значит, частица
будет двигаться все время в одной
плоскости. Кроме того, из второго закона
Ньютона следует, что и ускорение частицы
будет постоянно по величине и
перпендикулярно скорости. Это возможно
только тогда, когда траектория частицы
– окружность, а ускорение частицы 
центростремительное. Подставляя во
второй закон Ньютона величину
центростремительного ускорения
и величину силы Лоренца,
находим радиус окружности:

.
(3.5)

Отметим,
что период вращения частицы не зависит
от ее скорости:

.

3. В общем случае
вектор магнитной индукции может быть
направлен под некоторым углом
к начальной скорости частицы (рис. 3.3).
Прежде всего, отметим еще раз, что
скорость частицы по модулю остается
постоянной и равной величине начальной
скорости.
Скоростьможно разложить на две составляющие:
параллельную вектору магнитной индукциии перпендикулярную вектору магнитной
индукции.

Ясно,
что если бы частица влетела в магнитное
поле, имея только составляющую
,
то она в точности как в случае 1 двигалась
бы равномерно по направлению вектора
индукции.

Если
бы частица влетела в магнитное поле,
имея одну только составляющую скорости
,
то она оказалась бы в тех же условиях,
что и в случае 2. И, следовательно,
двигалась бы по окружности, радиус
которой определяется опять-таки из
второго закона Ньютона:

.

Таким
образом, результирующее движение частицы
представляет собой одновременно
равномерное движение вдоль вектора
магнитной индукции со скоростью
и равномерное вращение в плоскости,
перпендикулярной вектору магнитной
индукции со скоростью.
Траектория такого движения представляет
собой винтовую линию или спираль (см.
рис. 3.3). Шаг спирали– расстояние, пролетаемое частицей
вдоль вектора индукции за время одного
оборота:

.

Откуда
известны массы мельчайших заряженных
частиц (электрона, протона, ионов)? Каким
образом удается их «взвесить» (ведь, на
весы их не положишь!)? Уравнение (3.5)
показывает, что для определения массы
заряженной частицы нужно знать радиус
ее трека при движении в магнитном поле.
Радиусы треков мельчайших заряженных
частиц определяют с помощью камеры
Вильсона, помещенной в магнитное поле,
или с помощью более совершенной
пузырьковой камеры. Принцип их работы
прост. В камере Вильсона частица движется
в пересыщенном водяном паре и является
ядром конденсации пара. Микрокапельки,
конденсирующиеся при пролете заряженной
частицы, отмечают ее траекторию. В
пузырьковой камере (изобретенной лишь
полвека назад американским физиком Д.
Глейзером) частица движется в перегретой
жидкости, т.е. нагретой выше точки ее
кипения. Это состояние неустойчиво и
при пролете частицы происходит вскипание,
вдоль ее следа образуется цепочка
пузырьков.
Подобную
картину можно наблюдать, бросив в стакан
с пивом крупинку поваренной соли: падая,
она оставляет след из пузырьков газа.
Пузырьковые камеры являются важнейшим
инструментом для регистрации мельчайших
заряженных частиц, являясь по сути,
основными информативными приборами
экспериментальной ядерной физики.

Соседние файлы в папке Методички_Общая физика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Пусть в однородном магнитном поле, индукция которого begin mathsize 18px style B with rightwards arrow on top end style, движется частица со скоростью begin mathsize 18px style upsilon with rightwards arrow on top end style, направленной перпендикулярно линиям индукции. Масса частицы m и заряд q. Так как сила Лоренца begin mathsize 18px style F with rightwards arrow on top subscript straight Л end style перпендикулярна скорости begin mathsize 18px style upsilon with rightwards arrow on top end style движения частицы (см. рис. 170), то эта сила изменяет только направление скорости, сообщая частице центростремительное ускорение, модуль которого согласно второму закону Ньютона:

begin mathsize 18px style a equals F subscript straight Л over m equals fraction numerator B q upsilon over denominator m end fraction. end style

В результате частица движется по окружности, радиус которой можно определить из формулы begin mathsize 18px style a equals upsilon squared over R end style:

begin mathsize 18px style R equals upsilon squared over a equals fraction numerator upsilon squared m over denominator B q upsilon end fraction equals fraction numerator m upsilon over denominator B q end fraction. end style

Период Т обращения частицы, движущейся по окружности в однородном магнитном поле:

begin mathsize 18px style T equals fraction numerator 2 straight pi R over denominator upsilon end fraction equals fraction numerator 2 straight pi over denominator upsilon end fraction times fraction numerator m upsilon over denominator B q end fraction equals fraction numerator 2 straight pi m over denominator B q end fraction. end style

(30.2)

Как следует из выражения (30.2), период обращения частицы не зависит от модуля скорости её движения и радиуса траектории, а определяется только модулем заряда частицы, её массой и значением индукции магнитного поля.

От теории к практике

В однородном магнитном поле, модуль индукции которого В = 4,0 мТл, перпендикулярно линиям индукции поля движется электрон. Чему равен модуль ускорения электрона, если модуль скорости его движения begin mathsize 18px style upsilon equals 2 comma 5 times 10 to the power of 6 space straight м over straight с end style? Масса и модуль заряда электрона mе = 9,1 · 10–31 кг и е = 1,6 · 10–19 Кл соответственно.

Материал повышенного уровня

Подобное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Движущиеся с огромными скоростями заряженные частицы из космоса захватываются магнитным полем Земли и образуют так называемые радиационные пояса (рис. 170.2), в которых частицы перемещаются по винтообразным траекториям между северным и южным магнитными полюсами туда и обратно за промежуток времени порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния (рис. 170.3).

Если заряженная частица в момент возникновения внешнего электрического поля покоилась, то fraction numerator m v squared over denominator 2 end fraction equals q U, где U — напряжение между точками, в которых находилась частица в моменты возникновения внешнего электрического поля и выхода из него, q — модуль заряда частицы. Поэтому модуль скорости частицы при выходе из электрического поля:

v equals square root of fraction numerator 2 q U over denominator m end fraction end root.

Если после этого частица попадает в однородное магнитное поле, индукция B with rightwards arrow on top которого перпендикулярна направлению её скорости, то радиус окружности, по дуге которой будет двигаться частица, R equals fraction numerator m v over denominator B q end fraction, откуда

q over m equals fraction numerator 2 U over denominator R squared B squared end fraction.

Величину q over m называют удельным зарядом частицы. Поэтому если опытным путём определить радиус траектории движения частицы в магнитном поле, то, зная индукцию магнитного поля и ускоряющее напряжение электрического поля, можно рассчитать удельный заряд частицы. Этот метод используют при конструировании приборов, которые называют масс–спектрометрами.

Интересно знать

Поскольку сила Лоренца направлена под углом 90° к скорости движения заряженной частицы в каждой точке траектории (рис. 171), то работа этой силы при движении заряженной частицы в магнитном поле равна нулю. Поэтому кинетическая энергия частицы, движущейся в стационарном (не изменяющемся во времени) магнитном поле, не изменяется, т. е. стационарное магнитное поле нельзя использовать для ускорения заряженных частиц.

Увеличение кинетической энергии частицы, т. е. её разгон, возможно под действием электрического поля (в этом случае изменение кинетической энергии частицы равно работе силы поля). Поэтому в современных ускорителях (рис. 172) заряженных частиц электрическое поле используют для ускорения, а магнитное — для «формирования» траектории движения заряженных частиц.

img

img

1. Как определить модуль силы, действующей со стороны магнитного поля на движущуюся в нём заряженную частицу?

2. Как определяют направление силы Лоренца?

3. Заряженная частица движется в однородном магнитном поле со скоростью, направленной перпендикулярно линиям индукции. По какой траектории движется частица?

4. От чего зависит период обращения заряженной частицы в однородном магнитном поле?

Материал повышенного уровня

5. Почему сила Лоренца изменяет направление скорости движения частицы, но не влияет на её модуль?

Рис.
Рис. 172.1

6. На рисунке 172.1 представлены траектории движения двух частиц, имеющих одинаковые заряды. Частицы влетают в однородное магнитное поле из одной точки А с одинаковыми скоростями. Определите знак заряда частиц. Объясните причину несовпадения траекторий их движения.

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

движение заряженной частицы в магнитном поле по окружности

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

движение заряженной частицы в магнитном поле формулы

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

движение заряженной частицы в магнитном поле формулы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

движение заряженной частицы в магнитном поле формулы

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у2 + νz2).

движение заряженной частицы в магнитном поле по винтовой линии

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

движение заряженной частицы в магнитном поле

Заряженная частица стартует с одного конца винтовой линии, накрученной вдоль силовых линий, и движется вдоль нее, пока не достигнет другого конца, где она поворачивает свой ​​путь обратно. Эта конфигурация известна как «магнитная бутылка», поскольку заряженные частицы могут быть захвачены в нее. Она была использована, чтобы ограничить плазму, газ, состоящий из ионов и электронов. Такая схема плазменного заключения может выполнять ключевую роль в контроле ядерного синтеза, процессе, который представит нам почти бесконечный источник энергии. К сожалению, «магнитная бутылка» имеет свои проблемы. Если в ловушке большое число частиц, столкновения между ними вызывают утечку их из системы.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

движение заряженной частицы в магнитном поле земли

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

движение заряженных частиц в однородном магнитном поле

Для положительного q магнитная сила FB=qv х В направлена вверх, а электрическая сила qE – вниз. Когда величины двух полей выбраны так, что qE = qvB, то частица движется по прямой горизонтальной линии через область поля. Из выражения qE = qvB мы находим, что только частицы, имеющие скорость v=E/B, проходят без отклонения через взаимно перпендикулярные электрическое и магнитное поля. Сила FB, действующая на частицы, движущиеся со скоростью большей, чем v=E/B, оказывается больше электрической, и они отклоняются вверх. Те же из них, которые движутся с меньшей скоростью, отклоняются вниз.

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

движение заряженной частицы в магнитном поле формулы

и затем, используя уравнение v=E/B, мы находим, что

движение заряженной частицы в магнитном поле формулы

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

движение заряженной частицы в магнитном поле по спирали

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т — время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один «удар» через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы — ν = qBR /m. Следовательно, ее кинетическая энергия

движение заряженной частицы в магнитном поле формулы

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

движение заряженной частицы в магнитном поле сила лоренца

Однородное поле B приложено в направлении у. Если носителями заряда являются электроны, движущиеся вдоль оси х со скоростью дрейфа vd, то они испытывают направленную вверх (с учетом отрицательного q) магнитную силу FB = qvd х B, отклоняются вверх и накапливаются на верхнем краю плоского проводника, в результате чего появляется избыток положительного заряда на нижнем краю. Это накопление заряда на краях увеличивается до тех пор, пока электрическая сила, появившаяся в результате разделения зарядов, не уравновешивает магнитную силу, действующую на носители. Когда это равновесие будет достигнуто, электроны больше не отклоняются вверх. Чувствительный вольтметр или потенциометр, подключенный к верхней и нижней граням проводника, может измерить разность потенциалов, известную как ЭДС Холла.

Закон движения электрона в магнитном поле

Содержание:

  • Каково движение электрона в магнитном поле
  • Как найти скорость

    • Траектория движения
    • Период обращения электрона в магнитном поле
  • Отклонение электронов в магнитном поле
  • Примеры решения задач

Каково движение электрона в магнитном поле

Известно, что магниты представляют собой металлы, обладающие свойством к притяжению прочих магнитов и металлических предметов определенного состава. Во внутренней области таких объектов сгенерировано магнитное поле, действие которого можно наблюдать в реальных условиях. Эффект проявляется по-разному, то есть магнит отталкивает или притягивает предметы.

Роль источника, формирующего магнитное поле, играют заряженные частицы, которые пребывают в движении. Если перемещение зарядов обладает определенным направлением, то такой процесс называют электрическим током. Таким образом, легко сделать вывод об образовании магнитного поля, благодаря наличию электричества.

Электрический ток ориентирован по перемещению зарядов со знаком плюс и направлен противоположно относительно передвижения частиц, которые заряжены отрицательно. Если предположить, что имеется некая трубка в форме кольца с потоком воды, то какой-то ток примет противоположное ему направление. Электрический ток записывают с помощью буквы I.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Если рассматривать металлические предметы, то в них образование тока связано с перемещением отрицательных зарядов. На наглядном изображении продемонстрировано передвижение частиц, заряженных отрицательно, то есть электронов, в левую сторону. В то время как электричество ориентировано в правую сторону.

схема

Источник: habr.com

В начале исследований электричества ученые не обладали информацией о природе и свойствах носителей электрического тока. При рассмотрении аналогичного проводника слева, как на рисунке выше, можно заметить, что ток перемещается от наблюдателя, а магнитное поле окружает его по часовой стрелке.

2

Источник: habr.com

Эксперимент можно продолжить, используя компас. При размещении прибора около проводника, изображенного на схеме, произойдет разворот стрелки перпендикулярно относительно рассматриваемого проводника, параллельно по отношению к силовым линиям магнитного поля, то есть параллельно кольцевой стрелке, обозначенной черным цветом на изображении.

Представим, что имеется некий шарообразный предмет, заряженный положительно. Заряд со знаком плюс обусловлен недостаточным количеством электронов. Данному шарику можно задать направление путем подбрасывания вперед. В таком случае вокруг объекта сформируется аналогичное предыдущему примеру магнитное поле кольцевого типа, которое закручивается вокруг шарика по направлению часовой стрелки.

3

Источник: habr.com

В данном случае заряженные частицы перемещаются в определенном направлении. Таким образом, целесообразно сделать вывод о наличии электрического тока. В результате при возникновении электричества вокруг него формируется магнитное поле. Передвигающийся заряд, либо какое-то количество таких частиц, формирует около себя «тоннель» в виде магнитного поля. При этом стенки «тоннеля» более плотные около перемещающейся заряженной частицы.

Удаляясь от перемещающегося заряда, напряженность, то есть сила генерируемого магнитного поля, слабеет. В результате компасная стрелка меньше реагирует на него. Закон, согласно которому напряженность рассматриваемого поля распределяется около источника, аналогичен закономерности формирования электрического поля вокруг заряда. Таким образом, величина напряженности и квадрат расстояния до источника находятся в обратной пропорциональной зависимости.

Рассмотрим следующую ситуацию, когда шарик с положительным зарядом движется по траектории в форме круга. В таком случае кольцевые линии магнитных полей, сформированных вокруг предмета, складываются. В итоге получается магнитное поле, обладающее перпендикулярным направлением относительно плоскости, в рамках которой происходит движение заряженного шарика.

4

Источник: habr.com

Заметим, что «тоннель» магнитного поля, образованный около заряженного объекта, сворачивается, и получается кольцо, которое схоже по форме с бубликом. Аналогичную ситуацию можно наблюдать в процессе сворачивания в кольцо проводника с электричеством. Тогда проводник, деформированный так, что получается катушка с множеством витков, называют электромагнитом. Около подобного предмета формируются магнитные поля за счет перемещающихся в нем зарядов, то есть электронов.

При условии вращения шарика с зарядом вокруг собственной оси возникает магнитное поле по аналогии с тем, что образовано у нашей планеты, которое ориентировано вдоль оси вращательного движения. Тогда имеет место возникновение кругового электрического тока, который определяют как ток, провоцирующий образование магнитного поля во время перемещения по круговой траектории заряженной частицы относительно оси шарика.

5

Источник: habr.com

В этом случае процесс аналогичен перемещению шарика по кругу. Отличие состоит в том, что радиус орбиты движения уменьшен до величины радиуса шарообразного объекта. Вышеизложенные выводы имеют смысл и тогда, когда заряд шарика имеет знак минуса, а магнитное поле ориентировано противоположно.

Описанный выше эффект удалось выявить экспериментальным путем Роуланду и Эйхенвальду. Исследователи фиксировали магнитные поля около дисков, обладающих зарядом и совершающих вращательные движения. Вблизи этих объектов замечали отклонения компасной стрелки. Ознакомиться с наглядным представлением опыта можно на рисунке ниже:

6

Источник: habr.com

На изображении отмечены направления магнитных полей, которые зависят от положительного или отрицательного заряда дисков, расположенных в системе. По рисунку заметно, как эти направления меняются при смене знака заряда. Если диск, не обладающий зарядом, привести во вращательное движение, то магнитное поле отсутствует. Стационарные заряды также не образуют вокруг себя поля.

Как найти скорость

В плане изучения интересен процесс перемещения зарядов в пространственной области при наличии магнитного и электрического поля. Применительно к такой ситуации целесообразно воспользоваться соотношением для силы Лоренца, которая представляет собой суммарную величину сил, оказывающих воздействие на заряд, перемещающийся в электрическом и магнитном полях.

Представим, что заряд равен q и перемещается со скоростью (overrightarrow{v}) в условиях однородного магнитного поля, индукция которого составляет (overrightarrow{В}), а также в присутствии электрического поля с определенной напряженностью (overrightarrow{N}). Запишем силу воздействия электрического поля на заряд по модулю:

(Fэ = qE)

Этот компонент силы Лоренца принято называть электрической составляющей. Применительно к магнитному полю, на перемещающийся заряд воздействует магнитная составляющая силы Лоренца. Модуль определяют по закономерности Ампера. Представим, что проводник, по которому течет электричество, расположен в однородном магнитном поле. Вдоль этого объекта перемещаются заряды. Проанализирует ситуацию на отрезке данного проводника, который в длину составляет (triangle l), а площадь его поперечного сечения равна S.

7

Источник: иванов-ам.рф

Формула для вычисления силы тока, протекающего по проводнику:

(I = qnυS)

Зная, что:

(F_{А} = BItriangle l sin alpha)

Получим следующее выражение:

(FA = BqnvSΔtriangle l sin alpha)

Здесь (N = nStriangle l) обозначает количество зарядов, входящих в объем (Striangle l).

Исходя из записанной формулы, несложно выразить скорость движения заряда с учетом второго закона Ньютона:

(v = frac{qBR}{m})

Траектория движения

Изучить направление, в котором перемещаются заряженные частицы в магнитном поле, целесообразно на примере простейшего случая. При этом происходит движение заряда в однородном магнитном поле с индукцией, которая является перпендикуляром исходной скорости заряженной частицы. Схематично передвижение заряда изображено на рисунке:

8

Источник: иванов-ам.рф

В связи со стабильным значением модуля скорости заряда, не меняется модуль магнитной составляющей силы Лоренца по аналогии. Исходя из того, что рассматриваемая сила является перпендикуляром к скорости, можно заключить наличие центростремительного ускорения у перемещающейся частицы. Данная величина также не меняется по модулю, что позволяет сделать вывод о постоянстве радиуса кривизны R рассматриваемой траектории. Таким образом, подтверждается ранее выведенная формула скорости:

(v = frac{qBR}{m})

Период обращения электрона в магнитном поле

Запишем математическое соотношение, позволяющее выразить период обращения заряженной частицы в магнитном поле:

(T=frac{2 cdot{pi}cdot r}{upsilon};)

(r=frac{m cdot upsilon}{|q| cdot B} Rightarrow T=frac{2 cdot pi cdot m}{|q| cdot B}.)

Отклонение электронов в магнитном поле

Из предыдущего анализа движения заряда известно, что процесс сопровождается воздействием на частицу, перемещающуюся в магнитном поле, силы Лоренца. Данная сила определяется величиной и знаком рассматриваемой частицы, а также зависит от быстроты ее перемещения и индукции магнитного поля. В итоге траектория, по которой движется заряд, изменяется. Опытным путем явление можно наблюдать с помощью системы магнитного поля и электронного луча осциллографа.

В ходе эксперимента необходимо выключить горизонтальную развертку луча и с помощью рукояток отрегулировать положение луча по вертикали и горизонтали. В результате последовательных манипуляций луч окажется направленным непосредственно в центральную область экрана. Следует расфокусировать образованное световое пятно, увеличивая яркость до максимально возможного значения. Если поместить рядом с прибором постоянный магнит, то можно наблюдать смещение пятна вбок, как изображено на рисунке:

9

Источник: duckproxy.com

Изменение положение пятна наблюдается в процессе приближения или удаления магнита от осциллографа. Таким образом, справедливо сделать вывод о том, что смещение пятна зависит от величины индукции магнитного поля. Если перевернуть магнит, то направление индукции изменится, а пятно на экране переместится в противоположную сторону.

Примеры решения задач

Задача 1

Созданы условия для движения электрона в однородном магнитном поле. Индукция данного поля составляет (B=4cdot {10}^{-3} {Тл}). Требуется вычислить, чему равен период обращения рассматриваемой отрицательно заряженной частицы.

Решение

В первую очередь следует записать данные из условия задачи. Так как речь в задании идет об электроне, то следует выписать справочные величины заряда и массы:

({q}_{e}=-1.6cdot {10}^{-19} {Кл})

({m}_{e}=9.1cdot {10}^{-31} {кг})

Вспомним формулу для расчета период обращения заряженной частицы в магнитном поле из ранее пройденного теоретического материала:

(T=frac{2 cdot{pi}cdot r}{upsilon}; r=frac{m cdot upsilon}{|q| cdot B} Rightarrow T=frac{2 cdot pi cdot m}{|q| cdot B})

Подставим численные значения и получим:

(T=frac{2 cdot 3.14 cdot 9.1cdot {10}^{-31},text{кг}}{|-1.6cdot {10}^{-19},text{Кл}| cdot 4cdot {10}^{-3},text{Тл}}=8.9cdot {10}^{-9},с)

Ответ: период обращения электрона в магнитном поле равен (8.9cdot {10}^{-9} с).

Задача 2

Имеется однородное магнитное поле, величина индукции которого составляет (10^{-3} Тл) . В это поле попадает отрицательно заряженная частица по направлению перпендикулярно относительно линий магнитной индукции и под углом (alpha=frac{pi}{4}) к границе рассматриваемого поля. Скорость электрона по модулю соответствует (10^{6} м/с). В направлении оси абсциссы и ординаты поле не имеет границ. Известно, что заряд частицы к ее массе относится как (frac{е}{m}=1,76cdot 10^{11} Кл/кг). Необходимо вычислить расстояние, на котором от точки взлета электрон покинет поле.

Решение

Изобразим схематично условие задания:

10

Источник: иванов-ам.рф

В данном случае целесообразно применить правило левой руки, чтобы определить направление силы Лоренца с учетом отрицательного заряда наблюдаемой частицы. Схематично это представлено на рисунке выше. В условиях воздействия магнитного поля электрон подвержен действию магнитной составляющей силы Лоренца. В результате отрицательно заряженная частица будет перемещаться по дуге окружности. Следует вычислить радиус этой окружности. Воспользуемся вторым законом Ньютона:

(moverrightarrow{a}=overrightarrow{F_{л}})

Поскольку центростремительное ускорение:

(а = frac{v^{2}}{R})

В результате получим, что:

(frac{mv^{2}}{R}=evB Rightarrow R=frac{mv}{eB})

При рассмотрении (triangle O^{,}OC) можно сделать вывод:

(OC = frac{l}{2} = R sin alpha)

Тогда:

(l = 2R sin alpha = 2frac{mv sin alpha}{eB})

При подстановке численных значений получим:

(l = frac{2cdot 10^{6} cdot sin frac{pi}{4}}{1,76 cdot 10^{11}cdot 10^{-3} } = 0,008м = 8 мм)

Ответ: 8 мм.

1.1. Электростатика

1.2. Закон сохранения заряда

1.3. Закон Кулона

1.4. Характеристики электрического поля

1.5. Разность потенциалов или напряжение

1.6. Закон суперпозиции для потенциала

1.7. Связь между напряженностью и потенциалом

1.8. Эквипотенциальные поверхности

1.9. Теорема Остроградского-Гаусса

1.10. Теорема Гаусса

1.10.1. Теорема Гаусса для системы точечных зарядов

1.10.2. Применение теоремы Гаусса к расчетам электростатических полей

1.11. Проводник в электрическом поле

1.12. Свойства проводников

1.13. Индуцирование заряда

1.14. Проводник во внешнем электрическом поле

1.15. Электроемкость проводника

1.16. Соединение конденсаторов

1.17. Энергия электростатического поля

1.17.1. Энергия плоского конденсатора

1.18. Диэлектрики

1.18.1. Свойства диэлектриков

1.18.2. Поведение диэлектриков во внешнем электрическом поле

1.19. Поток вектора электрического смещения

1.20. Сегнетоэлектрики и их свойства

1.20.1. Электрический гистерезис в сегнетоэлектриках

Электростатика — раздел физики, изучающий взаимодействие неподвижных зарядов; или взаимодействие зарядов в начале перемещения (если оно есть) и в конце него.

Заряд — особое свойство материи, заключающееся в притяжении или отталкивании тел друг от друга вне зависимости от гравитационных свойств.

Элементарный заряд:

qэ=1,6· 10-19 Кл, = > заряд электрона, обозначается e, исторически принято считать отрицательным.

e = -1,6· 10-19 Кл — это наименьшее количество заряда, которое может иметь материальное тело. Масса электрона, как материального тела:

mэ=9,1· 10 -31 кг — масса электрона.

[q]=1 Кл численное значение в международной системе единиц – СИ.

Принято исторически заряд электрона считать со знаком «-» . То есть тело считается «+» заряженным, если в нем наблюдается недостаток электронов, и «-» заряженным, если в нем имеется избыток электронов. Вблизи зарядов наблюдают электрическое поле.

Электрическое поле указывает на наличие зарядовых свойств у физических тел. Принято электрическое поле характеризовать силовыми линиями и линиями потенциалов. Силовые линии указывают действие со стороны электрического поля на испытываемый заряд. Силовые линии указывают на силу, действующую на «+» пробный qпр точечный заряд (точечный — пренебрегают размерами, пробный – для проверки наличия поля).

Силовые линии, сформированные у » +» заряда, направлены по радиусу от заряда в ¥. Для отрицательно заряженного тела силовые линии направлены по радиусу от ¥ к заряду.

1.2. Закон сохранения заряда

При исследовании взаимодействия зарядов установлено, что одноименно заряженные тела — отталкиваются, а разноименно заряженные — притягиваются. Известно, что в замкнутой системе количество массы вещества остается неизменным. А так как свойство заряда несут тела, обладающие массой, то также можно сказать: для замкнутой системы количество заряда остается величиной постоянной.

Если в замкнутой системе существует несколько зарядов разных знаков, то силовые линии начинаются на положительном заряде и оканчиваются на отрицательном.

1.3. Закон Кулона (1785 г.)

Сила взаимодействия между заряженными телами прямо пропорциональна зарядам этих тел и обратно пропорциональна квадрату расстояния между ними:

, где , k ~ f (среды)

eо=8,85· 10-12 [Ф/м] — электрическая постоянная.

e — характеристика среды, называется — диэлектрическая проницаемость.

e — имеет электрический характер и определяет во сколько раз взаимодействие между одинаковыми зарядами, расположенными на одинаковом расстоянии друг от друга в среде меньше, чем аналогичное взаимодействие в вакууме.

e в-х = 1,00013 — в воздухе.

e вак = 1 — в вакууме, соответственно:

.

Во всех остальных средах e ср >1.

1.4. Характеристики электрического поля

Напряженность поля точечного заряда.

Поле, создаваемое зарядом Q, действует на q’пр с силой

, , тогда на заряд q’’ действует сила . Аналогично для другого заряда . Однако отношение силы к заряду всегда остаётся постоянным:

Е — величина напряженности электрического поля, создаваемого зарядом Q на расстоянии r. Чтобы рассчитать напряженность Е от нескольких зарядов применяют принцип суперпозиции.

Суперпозиция — воздействие однородных объектов на исследуемый или пробный объект (касается любых взаимодействий). Суть принципа суперпозиции — исследуется влияние одного изолированного объекта q1 на искомый qпр независимо от других зарядов, затем влияние второго изолированного объекта q2 на искомый qпр и т.д. Затем результат суммируется векторно (см. рис) или скалярно (см. формулы), пока не задействуются все заряды.

; ; ;

и т.д.

Силы рассчитываются аналогично.

Пример: Определить напряженность поля, созданного зарядами, расположенными в вершинах квадрата, в одной из вершин квадрата. Q=q1=q2=q3, a — сторона квадрата.

В векторной форме имеем:

, .

Если напряженности от каждого заряда

, то из геометрии имеем , и окончательно .

Потенциал — энергетическая характеристика электрического поля, указывающая на способность поля перемещать заряды в пространстве. Если траектория перемещения заряда (от точки 1 к точке 2) носит произвольный характер, то разбиваем ее на малые участки r® 0 ® dr, тогда работа на каждом участке:

.

Работа на участке (1-2):

Это численное значение работы по переносу пробного заряда из (1) в (2). Если пробный заряд перемещается из данной точки поля r1 в ¥ , то

А если менять величину пробного переносимого заряда, то получаем отношение работы к величине переносимого заряда как величину постоянную, не зависящую от пробного заряда:

.

Для данного заряда, формулирующего поле, отношение работы к величине переносимого заряда из данной точки поля в бесконечность является характеристикой заряда, формирующего поле, и есть величина постоянная. Это отношение и есть энергетическая характеристика электрического поля и называется потенциалом данной точки поля, созданного зарядом Q.

.

1.5. Разность потенциалов или напряжение

Если в выражении работы по переносу заряда r2 ¹ ¥ , то, выполняя последовательные преобразования, получим: Разность потенциалов между двумя точками электрического поля называется напряжением: .

1.6. Закон суперпозиции для потенциала

Если система зарядов замкнута, то работа по перемещению пробного заряда в бесконечность со стороны каждого заряда системы: Разделим Аi¥ на qпр, получим систему уравнений: . . . Если учесть знаки зарядов, составляющих данную систему, то получим: Поскольку под знаком суммы стоит алгебраическая сумма, то величина jрез — есть скаляр и он определяется как алгебраическая сумма потенциалов, составляющих данную систему. . Единица измерения потенциала: , dim φ = . А1¥ = qпр× j1 , если пробным зарядом является электрон, а потенциал j =1В, то — это не системная единица измерения работы или энергии, однако широко используемая в микромире.

1.7. Связь между напряженностью и потенциалом

Если закон перемещения пробного заряда неизвестен, то для определения работы разбиваем траекторию на участки r® 0, в пределах которых действующая сила остается постоянной, определяем работу для этих участков и результат суммируем. На участке r разность потенциалов составляет j (или dr и dj соответственно). Тогда запишем

А зная, что напряженность , — это связь напряженности и потенциала для неоднородного поля. Если поле однородно, т.е. на каждую единицу длины изменение потенциала остается постоянным, то: . , где E — напряженность, U — напряжение. Размерностью для напряженности служат .

1.8. Эквипотенциальные поверхности

Вблизи любого геометрического тела (заряженного) всегда можно определить совокупность точек, потенциалы которых одинаковы. Естественно, основной такой совокупностью точек является поверхность заряженного тела. Вдали от поверхности тела совокупностей точек с равным потенциалом может быть сколь угодно много. В трехмерном пространстве такая совокупность точек называется эквипотенциальной поверхностью. Но на плоскости это отобразить сложно. Поэтому на практике ограничиваются отображением сечений эквипотенциальной поверхности на рисунке.

Эти сечения называются эквипотенциальными линиями или линиями равного потенциала. Очевидно, что вблизи точечного заряда эквипотенциальная поверхность (линия) есть сфера (окружность). А работа электрических сил по перемещению заряда вдоль эквипотенциальной поверхности (линии)

, т.к. .

Работа по перемещению заряда вдоль эквипотенциальной линии численно равна 0.

Ориентация векторов напряженности относительно эквипотенциальной поверхности:

.

.

Так как Е¹ 0, qпр ¹ 0, r ¹ 0, то данное уравнение противоречит равенству нуля. Поэтому, надо учесть направление векторов и , а, следовательно, для полной скалярной записи следует добавить

.

Проведём анализ вариантов:

а) если принять, что , тогда , а — не подходит для эквипотенциальных поверхностей.

б) если же тогда , и , что и требовалось доказать.

Т.е. и должны быть взаимно перпендикулярны для случая , это единственный вариант расположения этих векторов. Вектора напряженности заряженных тел всегда перпендикулярны эквипотенциальным поверхностям, а значит, всегда перпендикулярны собственной поверхности заряженного тела.

1.9. Теорема Остроградского–Гаусса

Теорема Остроградского-Гаусса касается расчета векторных полей, пересекающих различные поверхности. Лучше эту проблему решить через пример истечения жидкости через поперечное сечение трубы. Чтобы определить количество истекшей жидкости, разбиваем пространство поперечного сечения на маленькие участки S, на которых:

, а объём истекшей жидкости . Из механики , где — вектор ориентации поверхности, или нормаль к поверхности.

— эта формула определяет количество жидкости, протекающей со скоростью u за время t через ограниченную поверхность S произвольно ориентированную в пространстве. Тогда вводится понятие потока вектора скоростей через ограниченную поверхность.

Поток вектора скоростей — количество или объем истекающей жидкости в единицу времени (можно назвать это мощностью):

В качестве площади, через которую истекает жидкость, берут её составляющую, перпендикулярную потоку жидкости, т.е. , тогда . Чтобы определить количество жидкости через всю поверхность S, интегрируем по всей площади, пересекающей поток, тогда полный поток:

Это выражение для потока скоростей жидкости. На этом примере можно анализировать потоки любых векторов, проходящих через поверхность. Поведение любых векторов в пространстве аналогично поведению вектора , т.е. скорости истекающей жидкости.

Приложения к теореме Остроградского-Гаусса:

Если потоком векторов считать просто количество векторов, проходящих через площадку, пусть есть источник векторов ; , то из рисунка видно, что количество векторов, проходящих через эти равные площадки различно.

1) Поток векторов , проходящий через одинаковую площадку , находящуюся на разных расстояниях от источника, не одинаков и зависит от расстояния, т.е. .

Для определения полного потока (общего количества ), замыкаем поверхность вокруг источника (это сфера). Очевидно, что количество векторов , проходящих через любую замкнутую поверхность есть величина одинаковая.

2) Полный поток через замкнутую поверхность есть величина постоянная, т.е.

.

1.10. Теорема Гаусса

Вектор Е (вектор напряженности электрического поля), проходящий через поверхность, можно рассматривать как любой другой вектор в пространстве, поэтому к нему применима вышеизложенная теорема. Тогда для расчета количества векторов Е можно записать:

Если источник поля — положительный заряд, то напряженность электрического поля от него:

.

Если замкнутая поверхность сфера, то напряженность на ее точках есть величина постоянная. Тогда поток вектора Е через замкнутую поверхность от точечного заряда запишется как:

Это есть теорема Гаусса, говорящая, что поток вектора Е через замкнутую поверхность численно равен величине заряда, формирующего электрическое поле, деленного на электрическую постоянную и диэлектрическую проницаемость.

1.10.1. Теорема Гаусса для системы точечных зарядов

Полный поток, через замкнутую поверхность: Поток вектора Е системы зарядов численно равен сумме зарядов, входящих в систему, деленных на eeo.

1.10.2. Применение теоремы Гаусса к расчетам электростатических полей

Пусть в качестве заряда есть бесконечная заряженная нить.

Если r<<, то считаем нить бесконечной. Заряд нити бесконечен, qнити® ¥, (® ¥ ).

Ограничим замкнутую поверхность вокруг dl цилиндром с основанием r. Через основание цилиндра количество векторов Е=0, т.к. должен быть перпендикулярен эквипотенциальным поверхностям. Тогда все Е пройдут через боковую поверхность. Вводим характеристику заряда для нити как характеристику заряда на единицу длины, т.е. удельное количество заряда. Эта величина есть линейная плотность заряда t . Значит ; а .

Подставив все выражения, получим:

Это выражение определяет напряженность поля бесконечной заряженной нити в любой точке пространства.

Расчет напряженностей для заряженной сферы (поле заряженной сферы).

Пусть имеется:

а) Полая сфера или шар из проводящего материала. В обоих случаях заряд распределяется по поверхности по закону Кулона. Тогда по теореме О.-Г.

.

Приравняем интегралы

Аналогичным способом рассуждая, полный поток вектора через сферу любого радиуса r определится как:

Окончательно получаем напряженность в любой точке пространства, расположенной вдали от заряженной полой сферы:

б) Если

Каждый отдельно взятый заряд на поверхности сферы дает силовую линию, которая пересекает сферу радиуса r дважды (со знаком “+” и со знаком “-”, т.е. входящий и выходящий), таким образом результирующее количество векторов Е, пересекающих эту сферу, равно нулю. То есть электрическое поле внутри полой сферы отсутствует.

в) Поле сферы с зарядом, равномерно распределенным по объему.

По закону Кулона (взаимное отталкивание зарядов) в однородном проводящем теле заряды распределяются по поверхности. Поэтому возьмем искусственный случай смеси проводящих элементов в непроводящей массе.

Рассмотрим случай (r > R): Аналогично рассуждая, поток вектора Е через сферу радиуса r определится как:

; И вновь получим:

— напряженность вдали от сплошной заряженной сферы.

Рассмотрим случай (r < R):

По теореме Гаусса поток вектора Е состоит из двух потоков , где — поток векторов, обусловленный внешним кольцом зарядов относительно сферы радиуса , по определению он º 0 (см. пр. тему).

— поток векторов Е внутренних зарядов относительно сферы радиуса r:

, где — заряд внутри сферы r.

Вводится понятие объемной плотности заряда r , т.е. количество заряда в единице объёма, тогда количество заряда внутри сферы r определится как:

, где r — объемная плотность заряда.

По определению:

а также

Окончательно получаем, что величина напряженности в любой точке пространства внутри однородно заряженной сферы:

.

Поле бесконечной заряженной плоскости.

Определим напряженность в точке А, находящейся на расстоянии r, много меньшем чем любой геометрический размер плоскости (r < <). Чтобы использовать теорему Гаусса, окружаем плоскость поверхностью, которая представляется двумя плоскостями, параллельными заряженной плоскости, на расстоянии r от неё.

Каждый элементарный заряд на заряженной плоскости дает две силовые линии, пересекающие замыкающие поверхности. Используя положения о перпендикулярности силовых линий к поверхности заряженных тел, получим систему параллельных силовых линий, расположенных по обе стороны от заряженной плоскости.

Поле, характеризующееся параллельными силовыми линиями, называется однородным (так же силовые линии должны быть равными между собой). Тогда по теореме Гаусса поток вектора Е через замкнутую поверхность равен:

.

Введем понятие поверхностной плотности заряда:

, где S – площадь заряженной плоскости.

Тогда количество заряда:

.

Окончательно имеем напряженность вблизи бесконечно заряженной плотности (величина напряженности вблизи бесконечно заряженной плотности не зависит от расстояния):

.

Поле двух бесконечно заряженных плоскостей.

Пусть имеем

1) разноименно заряженные бесконечные плоскости (понятие бесконечности см. предыдущий раздел).

По принципу суперпозиции определим напряженность от каждой плоскости и сложим:

, a

Поле между плоскостями:

.

Аналогично рассмотрим ситуацию вне плоскостей. По принципу суперпозиции:

— поле снаружи.

Поле для разноименно заряженных пластин между ними присутствует и однородно. Поле вне пластин отсутствует. Такое образование (конструкция) используется в электротехники, как накопитель электрической энергии, называемый конденсатором или электроемкостью.

2) Одинаково заряженные бесконечные пластины:

Если пластины заряжены одним знаком заряда, аналогично рассуждая, получим, что поле между пластинами отсутствует, а вне пластин неоднородно, т.к. распределено во всем окружающем пространстве. Практического применения не имеет.

1.11. Проводник в электрическом поле

Проводник — материальный объект, в котором в естественных условиях имеется множество свободных носителей заряда. Проводником может стать любой объект, если его подвергнуть внешнему воздействию, вызывающему появление свободных носителей заряда.

Любое вещество состоит из атомов, в составе которых находятся заряженные и не заряженные частицы, это электроны, протоны, нейтроны и т.д. Под действием внешних термодинамических условий (температура, облучение) электроны из атома могут вырываться и становиться свободными. Т.е. существует ряд веществ, обладающих избытком свободных электронов (например, металлы), как правило, знак избыточных зарядов в таких проводниках «-» . На практике всегда работают со свободными носителями заряда — электронами.

«Свободные носители заряда» — значит, что при воздействии на физическое тело сколь угодно малой электрической силы свободные носители заряда движутся направленно вдоль направления движущей силы.

1.12. Свойства проводников

1) есть свободные заряды (металлы). 2) напряженность поля внутри проводника равна нулю (см. выше). 3) напряженность поля у поверхности всегда перпендикулярна поверхности. 4) если внутри проводника: .

Отсюда последовательно можно получить:

.

Математически, если производная от величины (j ) равна нулю по параметру дифференцирования — расстоянию, тогда выражение под знаком дифференциала есть величина постоянная, не зависящая от параметра дифференцирования — от расстояния, т.е. любая точка внутри проводника обладает одинаковым потенциалом. Отсюда следствия:

а) объем проводника эквипотенциальный, внутри проводника.

б) проводник в целом нейтрален, но под воздействием внешних сил двигаются только электроны поскольку атомы, во-первых, обладают много большей массой, а, во-вторых, атомы могут быть закреплены между собой (кристаллическая решетка).

1.13. Индуцирование заряда

Если проводник находится в замкнутой системе, то свободные носители заряда первоначально располагаются хаотично по объему проводника, а затем по закону Кулона расталкиваются и распределяются по всей поверхности проводника.

Чем больше расстояние от центра тела, тем больше скопление заряда. Если проводнику сообщить избыточный заряд, то с наиболее удаленных от центра частей проводника может наблюдаться срыв заряда, если вблизи находится другой проводник (по этому принципу работают молниеотводы).

Если к незаряженному проводнику поднести заряженное тело, то в проводнике произойдет перераспределение заряда в соответствие со знаком поднесенного тела.

В этом заключается принцип индуцирования заряда.

1.14. Проводник во внешнем электрическом поле

По закону Кулона происходит индуцирование заряда на частях поверхности, близких к пластинам конденсатора. Такое перераспределение свободных зарядов по проводнику происходит до тех пор пока величина напряженности внешнего поля (создаваемого пластинами конденсатора), не выровняется величиной напряженности поля, создаваемого перераспределенным зарядом в проводнике.

Перераспределение закончится, когда по первому закону Ньютона результирующая сила равна нулю: при F ¹ 0 заряд перераспределяется; при F = 0 перераспределение прекращается, т.к. / Eвнешнее /=/ Евнутреннее/.

Таким образом, в проводнике, помещенном во внешнее поле, собственно поле как таковое отсутствует. Если внешнее поле увеличить или уменьшить, то перераспределение заряда соответственно усилит или уменьшит величину внутреннего электрического поля, чтобы скомпенсировать внешнее. Т.е. создается ситуация изолированного пространства внутри проводника от внешних воздействий. Этот принцип используется в технике как электростатическая защита для высокоточных приборов, которые нужно изолировать от внешних полей.

1.15. Электроемкость проводника

Если проводнику сообщать избыточный заряд, то величина потенциала на проводнике будет прямо соответствовать величине избыточного заряда (j ~ q).

Величина избыточного заряда зависит от формы проводника. Величина, связывающая заряд и потенциал называется электроемкостью — способностью проводника принимать избыточные заряды.

Если изменять заряды:

Соответственно .

Величина отношения заряда к потенциалу для проводника данной геометрической формы есть величина постоянная (но зависит от формы проводника), это и есть электроемкость:

. Рассмотрим электроёмкость проводников различной геометрии: 1) электроемкость уединенного шара.

Тогда в соответствии с определением: , где окончательно получаем: — электроемкость уединенного шара. Исходя из этой формулы можно сказать, что электроемкость — это функция геометрии тела [C]=1 фарада: В технике используют кратные единицы: 1мкФ=10-6 Ф, 1нФ=10-9 Ф, 1пФ=10-12 Ф. 2) Электроемкость плоского конденсатора

Поле между обкладками конденсатора однородное, т.е. . Аналогично для определяющей формулы можно записать: . Итак — электроемкость плоского конденсатора. Здесь также очевидно, что электроемкость — функция геометрии тела.

1.16. Соединение конденсаторов

Часто необходимо использовать набор конденсаторов, чтобы создать электроемкость нужного номинала. Для увеличения или уменьшения номинала электрической емкости используют параллельное и последовательное соединение конденсаторов.

Батарея конденсаторов — совокупность соединенных каким-либо образом конденсаторов.

а) параллельное соединение.

При параллельном соединении все обкладки, соединенные металлическим проводником, имеют одинаковый потенциал и представляют собой эквипотенциальную поверхность.

Разность потенциалов между обкладками конденсатора — есть напряжение:

По принципу индуцирования зарядов на противоположной обкладке появится избыток заряда, численно равный по величине первому заряду, но противоположный ему по знаку.

А заряд на каждой из левых обкладок конденсатора составляет сумму зарядов, распределенных от общего заряда q+ как поток (электронов) распределяется по ручейкам (проводникам).

Таким образом, при параллельном соединении конденсаторов общая электроемкость равна сумме емкостей батареи конденсаторов.

б) последовательное соединение.

Величина заряда, переносимая на первую обкладку, индуцирует такой же по величине, но противоположный по знаку заряд на второй обкладке:

| q1+ | = | q2 | = | q3+ | = | q4 | =¼=| qi | ¼ и т.д.

Разность потенциалов на каждой из этих обкладок разная. Известно, что по закону Кирхгофа, сумма падений потенциала (j1j2) на элементах замкнутой цепи численно равна напряжению элементов, питающих эту цепь. А падение напряжения на концах не замкнутой цепи численно равно сумме падения напряжения на элементах этой цепи:

Значит, можно записать

При последовательном соединении обратная величина результирующей емкости численно равна сумме обратных величин емкостей, составляющих батарею конденсаторов.

Приложение:

Как правило, в технике используется соединение двух конденсаторов, и чем их больше — тем реже.

а) при параллельном.

б) при последовательном.

, где

Обобщение: Если требуется увеличить электроемкость, то исходные емкости включаются параллельно, если уменьшить — то последовательно.

1.17. Энергия электростатического поля

Так как электрическое поле способно переносить заряженные тела в пространстве, т.е. совершать работу, значит, можно сказать, что оно обладает энергией.

Wэл=Ar¥ => W — характеристика q, формирующего электрического поля.

Принято за способность заряда совершать работу считать работу по переносу одной половины заряда другой половинной этого же заряда, формирующего поле:

.

Итак — энергия электростатического поля.

Сравни с кинетической энергией:

.

1.17.1. Энергия плоского конденсатора

Используя выражение электроёмкости конденсатора Sd=V — объем пространства между обкладками конденсатора, а напряженность электрического поля внутри него: . Тогда получаем — величина эл. энергии, запасенной между обкладками конденсатора. Плотность энергии электростатического поля Здесь обычно пользуются понятием количество энергии в единице объема или плотность энергии: . Силы взаимодействия между обкладками конденсатора Пластины конденсатора заряжены разноименно, значит они притягиваются друг к другу. Для конденсатора: , , тогда .

Поскольку между обкладками конденсатора действует сила притяжения, то во избежании нарушения геометрического пространства между обкладками помещают твердое непроводящее тело, так называемый диэлектрик.

1.18. Диэлектрики

В силу строения атомы некоторых элементов в нормальных термодинамических условиях могут отдавать в межатомное пространство валентные электроны, т.е. энергия связи электронов с атомами так слаба, что тепловая энергия отрывает их от атома. Количество свободных электронов в таком веществе может составлять nсв» 1023 эл/см3. Такие вещества называются проводниками или металлами.

У других элементов валентная связь электронов с атомами может быть сильнее Wсвязи > 3кТ/2 . Тогда в межатомном пространстве число свободных электронов очень мало. Некоторая часть свободных электронов в этих веществах обуславливается термодинамическими функциями (отклонения, обусловленные нестандартными причинами, от нормальной ситуации). Процесс отрыва электронов от атомов носит вероятностный характер. Вероятность отрыва электрона от атома тем больше, чем больше энергия внешнего воздействия.

Поэтому в большинстве диэлектриков количество свободных электронов составляет nсв» 1011 эл/см3. Такого количество электронов мало, чтобы вызвать в электрических цепях, включающих диэлектрик ощутимое протекание электрического тока, которое можно зарегистрировать реальными приборами.

Но в целом в таком веществе суммарное количество заряда остается таким же как и в проводящем веществе. Принято вещество с концентрацией носителей заряда 10-21см-3 — 10 -23 см-3 называется проводящим (проводником), а вещество с концентрацией носителей заряда 10 9 — 1012см -3 называется диэлектриком, но это понятие относительно, т.е. если сопряжены два вещества с концентрациями носителей заряда 1018см-3 и 1014 см-3, то первое вещество называется проводником относительно второго, второе — изолятором (диэлектриком) относительно другого (первого).

Любой физический объект материального мира в нормальных термодинамических условиях всегда имеет как минимум 109 см-3 свободных носителей заряда.

Заряды, которые не свободны в диэлектриках, называются связанными, и под действием внешнего электрического поля они также изменяют свое поведение. Диэлектрики бывают полярные и неполярные.

1.18.1. Свойства диэлектриков

Связанные заряды проявляют в диэлектрике свои свойства под действием внешнего электрического поля соблюдая правила:

  1. связанные заряды не перемещаются по веществу под действием внешнего поля.
  2. связанные заряды не могут передаваться с одного тела на другое.

В исходном состоянии связанные заряды могут перераспределяться двумя способами:

  1. общий центр » -» зарядов может совпадать с центром » +» зарядов (например, в атоме центр » +» зарядов (ядро) может совпадать с центром » -» зарядов (центр окружностей вращающихся электронов));
  2. общий центр » +» зарядов не совпадает с общим центром » -» зарядов.

Тогда первые называются неполярные диэлектрики, а вторые называются полярные диэлектрики: например, Н2, N2, ССl4, CO2, O2, … , неполярные NaCl, и другие соли — полярные.

1.18.2. Поведение диэлектриков во внешнем электрическом поле

При внесении в электрическое поле диэлектрика его объем приобретает электрический дипольный момент. Это явление называется поляризацией диэлектрика. Дипольный момент характеризуется вектором поляризации — электрическим дипольным моментом единицы объема:

.

Электрическим диполем называется совокупность положительных и отрицательных зарядов, связанных между собой, но разнесенных в пространстве. Расстояние между центрами » +» и » -» зарядов называется плечом диполя. Характеристикой диполя является электрический момент диполя:

.

Направление принято считать по от отрицательного заряда к положительному.

Модель полярного диэлектрика

Объем полярного диэлектрика состоит из хаотически ориентированных дипольных моментов в пространстве так, что в целом диэлектрик нейтрален с точки зрения зарядового состояния. Если задать внешнее поле, т.е. поместить диэлектрик между обкладками конденсатора, тогда во внешнем электрическом поле дипольные моменты (диполи) развернутся вдоль силовых линий, т.е. диэлектрик электризуется. Степень поворота диполей вдоль силовых линий зависит от величины внешнего электрического поля. Такие диэлектрики называются содержащими жесткие диполи.

Модель неполярного диэлектрика

В этом состоянии (исходном) диполи нейтральны. При внесении во внешнее электрическое поле центры » +» и » -» зарядов растягиваются в пространстве.

Появляется дипольный момент (¹ 0), т.е. диэлектрик электризуется. Величина плеча диполя прямо пропорциональна внешнему электрическому полю. Такие диполи называются упругими. Если снять внешнее электрическое поле, то диэлектрики вернутся в исходное состояние:

После снятия внешнего поля у неполярных — центры » +» и » -» зарядов сомкнутся, у полярных восстановится хаотическая ориентация диполей. Способность диэлектриков электризоваться под действием внешнего электрического поля называется диэлектрической восприимчивостью .

Можно провести качественный анализ реакции диэлектрика на внешнее поле. Любой диэлектрик отзывается под действием внешнего электрического поля носителями заряда. Удельное количество всех зарядов, задающих электризацию диэлектрика, состоит из отзывающихся свободных и связанных носителей заряда: r = (nсвоб+nсвяз).

Очевидно, что nсвоб » Eвнеш, а nсвяз ~ Eвнеш, зависит от диэлектрической восприимчивости.

Тогда r =(Eвнеш+Eвнеш). Выражение в скобках определяет электризацию диэлектрика и называется диэлектрическим смещением (электрической индукцией D), т.е. Eвнеш+Eвнеш= D=Eвнеш× (1+c ), где:

1+ c = — диэлектрическая проницаемость среды.

Тогда P=Eвнеш — поляризованность диэлектрика.

Для обычных диэлектриков c не превышает единиц и десятков единиц. У неполярных c =соnst. У полярных c ~ f(T), где Т — абсолютная температура. (в градусах Кельвина).

1.19. Поток вектора электрического смещения

Исходя из общего правила по теореме Остроградского-Гаусса:

можно записать:

А из предыдущего раздела следует:

. (*)

Если один любой вектор электрического смещения связан с аналогичным вектором напряженности по формуле (*), то можно предположить, что и любой другой вектор электрического смещения связан с вектором Е. И соответственно, множество векторов электрического смещения связано аналогично с соответствующими векторами напряженности.

Множество векторов — поток векторов. Тогда можно записать:

.

Поскольку выражение для потока вектора Е численно определенно для замкнутой поверхности, то потоком вектора электрического смещения называется количество заряда, сосредоточенное внутри замкнутой поверхности. Таким образом, частные формулы силовых характеристик электрического поля можно записать:

1.20. Сегнетоэлектрики и их свойства

Сегнетоэлектрики — класс диэлектриков, обладающий электризованностью в отсутствии внешнего электрического поля.

Если стрелками указать вектора поляризованности, то схематически можно представить

Если в обычных диэлектриках диполи ориентированны хаотично, то сегнетоэлектриках эти диполи могут группироваться по десять, сто и более штук с параллельно ориентированными диполями. Сегнетоэлектрики — только полярные диэлектрики. Области сегнетоэлектрика с параллельно ориентированными дипольными моментами называется доменами.

При внесении во внешнее электрическое поле сегнетоэлектрик в целом переориентируется в пространстве блоками дипольных моментов и если первоначально при малых напряженностях электрического поля разворот доменов затруднен, то при дальнейшем увеличении Е домены разворачиваются вдоль силовых линий Е как единое целое, а дальнейшее увеличение Е уже не вызывает переориентации диполей, если все домены выстроились вдоль поля.

Сегнетоэлектрик во внешнем электрическом поле.

При снятии внешнего электрического поля многие домены не возвращаются в исходное состояние. Таким образом, сегнетоэлектрик приобретает преимущественную поляризацию в отсутствии внешнего поля.

Свойства сегнетоэлектриков:

а) у обычных диэлектриков e составляет единицы, десятки единиц (c = 1 + e ), у сегнетоэлектриков сотни, тысячи единиц.

б) зависимость поляризованности от внешнего электрического поля нелинейна (тогда, как Р=E для обычных диэлектриков, то есть линейна).

Вид зависимости, представленный на следующем рисунке, для поляризованности диэлектрика от внешнего электрического поля, носит название гистерезиса.

1.20.1. Электрический гистерезис в сегнетоэлектриках

Анализируем схему гистерезиса. Точка (1) характеризуется тем, что последовательное увеличение напряженности внешнего электрического поля Е приводит все к меньшему увеличению поляризованности, дальше после (2) происходит насыщение, т.е. поляризованность не изменяется при увеличении внешнего поля.

Если электрическое поле снимать (уменьшать), то поляризованность уменьшается не так как увеличивалось (3), а при полном снятии электрического поля Е=0 поляризованность сохраняется (P1) — это есть остаточная поляризованность.

Для того, чтобы снять остаточную поляризованность, следует приложить электрическое поле обратной полярности и величина напряженности, при которой поляризованность полностью снимается, численно равна Ес- коэрцитивная сила, возвращающая исходное положение (Р=0). Если увеличивать обратную напряженность (4), то домены переориентируются противоположным образом и при достижении (5) дальнейшее увеличение обратного поля также не приводит к увеличению поляризованности. Снятие обратного поля оставляет в диэлектрике поляризованность (P2), для ее снятия прикладывают силу Е’с и т.д.

Остаточную поляризованность, кроме внешнего поля можно снять нагревом. При нагреве тепловая энергия Q=3кТ/2 сообщается доменами, через них диполям и домены могут разрушатся, т.е. сегнетоэлектрик переходит в обычный диэлектрик с хаотичной ориентацией диполей. Если нагрев снять, то диполи опять, как правило, формируются в домены.

Температуры, при которой домены разрушаются (теряются сегнетоэлектрические свойства) называются температурой Кюри (точкой Кюри). Температура Кюри симметрична относительно нагрева и охлаждения. Потеря и восстановление сегнетоэлектрических свойств происходит при одной температуре. Причиной заставляющей отдельные диполи объединяться в домены, является энергетический выигрыш, т.е. при объединении отдельных диполей при создании доменов высвобождается энергия, что приводит к понижению собственной энергии сегнетоэлектрика.

Понравилась статья? Поделить с друзьями:
  • Как найти наибольший делитель числа онлайн
  • Как найти своего мужчину вдове
  • Как найти посылку без трек кода
  • Как найти остаточную стоимость основных средств формула
  • Как найти dhcp сервер в сети windows