Как найти третий угол треугольника в окружности

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.

.

Далее, из формулы

.

. (3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

источники:

http://colibrus.ru/treugolnik-vpisannyy-v-okruzhnost/

http://skysmart.ru/articles/mathematic/centralnye-i-vpisannye-ugly


Download Article


Download Article

Finding the third angle of a triangle when you know the measurements of the other two angles is easy. All you’ve got to do is subtract the other angle measurements from 180° to get the measurement of the third angle. However, there are a few other ways to find the measurement of the third angle of a triangle, depending on the problem you’re working with. If you want to know how to find that elusive third angle of a triangle, see Step 1 to get started.

  1. Image titled Find the Third Angle of a Triangle Step 1

    1

    Add up the two known angle measurements. All you have to know is that all of the angles in a triangle always add up to 180°. This is true 100% of the time. So, if you know two of the three measurements of the triangle, then you’re only missing one piece of the puzzle. The first thing you can do is add up the angle measurements you know. In this example, the two angle measurements you know are 80° and 65°. Add them up (80° + 65°) to get 145°.[1]

  2. Image titled Find the Third Angle of a Triangle Step 2

    2

    Subtract this number from 180°. The angles in a triangle add up to 180°. Therefore, the remaining angle must make a sum up the angles up to 180°. In this example, 180° — 145° = 35°.[2]

    Advertisement

  3. Image titled Find the Third Angle of a Triangle Step 3

    3

    Write down your answer. You now know that the third angle measures 35°. If you’re doubting yourself, just check your work. The three angles should add up to 180° for the triangle to exist. 80° + 65° + 35° = 180°. You’re all done.[3]

  4. Advertisement

  1. Image titled Find the Third Angle of a Triangle Step 4

    1

    Write down the problem. Sometimes, instead being lucky enough to know the measurements of two of the angles of a triangle, you’ll only be given a few variables, or some variables and an angle measurement. Let’s say you’re working with this problem: Find the measurements of angle «x» of the triangle whose measurements are «x,» «2x,» and 24. First, just write it down.[4]

  2. Image titled Find the Third Angle of a Triangle Step 5

    2

    Add up all of the measurements. It’s the same principle that you would follow if you did know the measurements of the two angles. Simply add up the measurements of the angles, combining the variables. So, x + 2x + 24° = 3x + 24°.[5]

  3. Image titled Find the Third Angle of a Triangle Step 6

    3

    Subtract the measurements from 180°. Now, subtract these measurements from 180° to get closer to solving the problem. Make sure you set the equation equal to 0. Here’s what it would look like:

    • 180° — (3x + 24°) = 0
    • 180° — 3x — 24° = 0
    • 156° — 3x = 0
  4. Image titled Find the Third Angle of a Triangle Step 7

    4

    Solve for x. Now, just put the variables on one side of the equation and the numbers on the other side. You’ll get 156° = 3x. Now, divide both sides of the equation by 3 to get x = 52°. This means that the measurement of the third angle of the triangle is 52°. The other angle, 2x, is 2 x 52°, or 104°.[6]

  5. Image titled Find the Third Angle of a Triangle Step 8

    5

    Check your work. If you want to make sure that this is a valid triangle, just add up the three angle measurements to make sure that they add up to 180°. That’s 52° + 104° + 24° = 180°. You’re all done.

  6. Advertisement

  1. Image titled Find the Third Angle of a Triangle Step 9

    1

    Find the third angle of an isosceles triangle. Isosceles triangles have two equal sides and two equal angles. The equal sides are marked by one hash mark on each of them, indicating that the angles across from each side are equal. If you know the angle measurement of one equal angle of an isosceles triangle, then you’ll know the measurement of the other equal angle. Here’s how to find it:[7]

    • If one of the equal angles is 40°, then you’ll know that the other angle is also 40°. You can find the third side, if needed, by subtracting 40° + 40° (which is 80°) from 180°. 180° — 80° = 100°, which is the measurement of the remaining angle.
  2. Image titled Find the Third Angle of a Triangle Step 10

    2

    Find the third angle of an equilateral triangle. An equilateral triangle has all equal sides and all equal angles. It will typically be marked by two hash marks in the middle of each of its sides. This means that the angle measurement of any angle in an equilateral triangle is 60°. Check your work. 60° + 60° + 60° = 180°.[8]

  3. Image titled Find the Third Angle of a Triangle Step 11

    3

    Find the third angle of a right triangle. Let’s say you know you have a right triangle, with one of the other angles being 30°. If it’s a right triangle, then you know that one of the angles measures exactly 90°. The same principles apply. All you have to do is add up the measurements of the sides you know (30° + 90° = 120°) and subtract that number from 180°. So, 180° — 120° = 60°. The measurement of that third angle is 60°.[9]

  4. Advertisement

Add New Question

  • Question

    In a right angle triangle, if one of the other two angles is 35 degrees, find the remaining angle.

    Community Answer

    Take the 90, add it to 35. This gives you 125 degrees. Triangles can only ever add up to 180, thus take the difference of 125 and 180 (180-125). This will give you the third remaining angle, which in this case is 55.

  • Question

    If one angle of a right triangle is 50 degrees, what will be the measurement of the third angle?

    Community Answer

    A right angle triangle always consists of one 90 degree angle, and every triangle must equal 180 degrees. Here is the work for this problem: 90 degrees (representing the right angle) + 50 degrees equals 140 degrees. 180 minus 140 equals 40. Therefore, the remaining angle would be 40 degrees.

  • Question

    What if there is only one number?

    Community Answer

    Substitute a letter, and work it out like an algebraic equation that you have to solve.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

  • Making a mistake with addition and subtraction will result in a wrong answer. It’s always a good idea to check, even if it doesn’t appear to be wrong.

Advertisement

References

About This Article

Article SummaryX

To find the third angle of a triangle, start by adding the other 2 angles together. Then, subtract that number from 180 to find the third angle. If the 2 known angles have variables, start by adding all of the measurements, including the variable used for the unknown angle. Then, subtract those numbers and variables from 180 and set the equation equal to 0. Finally, solve for the variable to find the third angle. If you want to learn the angles are on specific kinds of triangles, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 264,091 times.

Did this article help you?


Загрузить PDF


Загрузить PDF

Найти третий угол треугольника, если вам известны значения двух других углов, очень легко. Все, что вам нужно сделать,- это вычесть сумму двух известных углов из 180°. Тем не менее, есть несколько других способов нахождения третьего угла треугольника (в зависимости от заданной вам задачи).

  1. Изображение с названием Find the Third Angle of a Triangle Step 1

    1

    Сложите известные значения двух углов. Запомните: сумма углов в треугольнике всегда равна 180°. Поэтому, если вы знаете два из трех углов треугольника, то вы легко вычислите третий угол. Первое, что нужно сделать,- это сложить известные значения двух углов. Например, даны углы 80° и 65°. Сложите их: 80° + 65° = 145°.

  2. Изображение с названием Find the Third Angle of a Triangle Step 2

    2

    Вычтите сумму из 180°. Сумма углов в треугольнике равна 180°. Поэтому третий угол равен: 180° — 145° = 35°.

  3. Изображение с названием Find the Third Angle of a Triangle Step 3

    3

    Запишите ответ. Теперь вы знаете, что третий угол равен 35°. Если вы сомневаетесь, просто проверьте ответ. Сумма трех углов должна быть равна 180°: 80° + 65° + 35° = 180°.

    Реклама

  1. Изображение с названием Find the Third Angle of a Triangle Step 4

    1

    Запишите задачу. Иногда вместо точных значений двух углов треугольника в задаче даны только несколько переменных, или переменные и значение угла. Например: найдите угол «х», если два других угла треугольника равны 2x и 24°.

  2. Изображение с названием Find the Third Angle of a Triangle Step 5

    2

    Сложите все значения (переменные и числа). х + 2x + 24° = 3x + 24

  3. Изображение с названием Find the Third Angle of a Triangle Step 6

    3

    Вычтите сумму из 180°. Приравняйте полученное уравнение к 0. Вот как это делается:

    • 180° — (3x + 24°) = 0
    • 180° — 3x — 24° = 0
    • 156° — 3x = 0
  4. Изображение с названием Find the Third Angle of a Triangle Step 7

    4

    Найдите х. Для этого обособьте члены с переменной на одной стороне уравнения, а числа – на другой: 156° = 3x. Теперь разделите обе части уравнения на 3, чтобы получить х = 52°. Это означает, что третий угол треугольника равен 52°. Другой угол, данный в условии как 2x, равен: 2*52° = 104°.

  5. Изображение с названием Find the Third Angle of a Triangle Step 8

    5

    Проверьте ответ. Для этого сложите числовые значения всех трех углов (сумма должна быть равна 180°): 52° + 104° + 24° = 180°.

    Реклама

  1. Изображение с названием Find the Third Angle of a Triangle Step 9

    1

    Найдите третий угол равнобедренного треугольника. Равнобедренные треугольники имеют две равные стороны и два равных угла, прилежащих к этим сторонам. Если вы знаете один из равных углов в равнобедренном треугольнике, то вы можете найти угол между равными сторонами. Вот как это сделать:

    • Если один из равных углов 40°, то и другой равный угол 40°. Вы можете найти третий угол, вычтя сумму 40° + 40° = 80° из 180°: 180° — 80° = 100°.
  2. Изображение с названием Find the Third Angle of a Triangle Step 10

    2

    Найдите третий угол равностороннего треугольника. В равностороннем треугольнике все стороны равны и все углы равны. Это означает, что любой угол в равностороннем треугольнике равен 60°. Проверьте это: 60° + 60° + 60° = 180°.

  3. Изображение с названием Find the Third Angle of a Triangle Step 11

    3

    Найдите третий угол прямоугольного треугольника. Например, дан прямоугольный треугольник, в котором один из углов равен 30°. Если это прямоугольный треугольник, то один из его углов равен 90°. Все, что вам нужно сделать, это сложить известные углы (30° + 90° = 120°) и вычесть эту сумму из 180°, то есть 180° — 120° = 60°. Третий угол равен 60°.

    Реклама

Предупреждения

  • Ошибка при сложении или вычитании приведет к неправильному ответу. Поэтому обязательно проверяйте ответ, даже когда вы уверены, что он правильный.

Реклама

Об этой статье

Эту страницу просматривали 83 297 раз.

Была ли эта статья полезной?

Ключевые слова:         угол,   окружность,   хорда,    дуга,   центральный угол,    вписанный угол,    касательная,   секущая,    теорема о секущих,   теорема о касательной и секущей,   градусная мера дуги,    угол опирается на хорду,    угол опирается на дугу,   дуга стягивает хорду,    угол между хордой и касательной,    внутренный угол окружности,    внешний угол окружности.

Центральные и вписанные углы в окружности    

Центральный угол     в   окружности — угол с вершиной в ее центре и сторонами-радиусами.

Дуга окружности ,    соответствующей центральному углу — часть окружности внутри плоского угла.

Градусная мера     дуги окружности — градусная мера соответствующего центрального угла.

Вписанный угол — вершина которого лежит на окружности, а стороны пересекают эту окружность (хорды).

  • Вписанный угол опирается на хорду , которая соединяет точки пересечения сторон угла и окружности.
  • Вписанный угол опирается на дугу, заключенную между его сторонами.
  • Обозначение:   $AB^o$ — градусная мера дуги    $AB$   ,     равна центральному    углу   $AOB$.

_____________________________________________________________________________________

Теорема    Вписанный угол равен   половине   центрального    угла, что опирается    на ту же дугу.

Теорема$angle BAC=frac{angle BOC}{2}=frac{BC^o}{2}$       $angle BAD=frac{angle BOD}{2}=frac{BD^o}{2}$       $angle DAC=frac{angle DOC}{2}=frac{DC^o}{2}$

_____________________________________________________________________________________

               

Случай 1:       Точка   $O$ принадлежит лучу   $AC$.

  • Пусть   $angle A = alpha$    ,   тогда   и    $angle B = alpha$ ,   ведь      $bigtriangleup AOB$   равнобедренный, его стороны    $OB=OA$   как радиусы.   
  • $angle BOC$   является внешним для треугольника , а значит равен сумме двух других углов:       $alpha+alpha=2alpha$     
  • угловое измерение дуги   $BC$   есть    $2alpha$       $Rightarrow$      вписанный угол   равен    половине дуги,    на которую он опирается.

Случай 2:       Точка   $O$ лежит   внутри   вписанного угла $angle BAC$ .   

  • Проведем диаметр    $AD$, обозначим      $angle BAD = alpha$    и тогда    дуга $BD$   равна   $2alpha$   (см. случай 1).
  • Обозначим $angle BAD$   за    $beta$ ,   тогда    дуга    $DC$   равна   $2beta$   ( так же из-за случая 1)          
  • $Rightarrow$         вся дуга     $BC = 2alpha + 2beta = 2left(alpha+betaright)$.    Но     $angle BAC$   ,   в свою очередь, равен     $alpha + beta$            
  • $Rightarrow$       вписанный угол   равен    половине дуги,   на которую он опирается.

Случай 3:       Точка   $O$   находится   вне   вписанного угла .     

  • Проведем диаметр   $AD$, обозначим   угол   $angle BAD$   через    $alpha$ ,   тогда   дуга    $BD$   равна   $2alpha$   (из-за случай 1).
  • $angle CAD$   обозначим через    $beta$ ,   тогда   дуга   $DC = 2beta$ (из-за случай 1).
  • Дуга     $BC$    является разностью большой   дуги   $BD$    и    дуги    $DC$       :       $BC=BD-DC=2alpha-2beta=2left(alpha-betaright)$
  • $Rightarrow$        Вписанный угол     $angle BAD = alpha — beta$. … вписанный угол   равен    половине дуги опирания.

Следствия теоремы о вписанном угле:

  1. Все вписанные углы,   стороны   которых проходят через $A$ и $B$, вершины лежат по одну сторону от прямой $AB$ , равны.
  2. Все вписанные углы, опирающиеся на одну и ту же дугу, равны меж собой.
  3. Вписанные углы,   опирающиеся на диаметр,   равны   90° , являются прямыми углами….центральный угол   180° .

             

Задача 1:        Точки   $A$,   $B$,    $C$   находятся на окружности   и делят ее на три дуги, градусные величины которых относятся как 1 : 3 : 5.               Найдите больший   угол   треугольника    $ABC$   в градусах.

  • Решение:      Пусть   меньшая   дуга   окружности   равна   $x$ ,    тогда     $x + 3x + 5x = 360^o$    ,     $9x = 360^o$    ,     $x = 40^o$           
  • Больший   угол    $bigtriangleup ABC$     опирается   на   большую дугу   и   равен    $5cdot40^o$    ,   для окружности   он   является   вписанным           
  • и   значит равен половине этой дуги   $frac{200}{2}$.                                   Ответ:     $100^o$

            

Задача 2:        В треугольнике   $ABC$     угол $B$    равен   $25^o$   .    Найти   угол   между   радиусом   описанной окружности   и   противоположной   стороной   $AC$.

  • Решение:          Обозначим   $angle ABC$     за   $x$   . Он вписанный     и     опирается на дугу   $AC$ , на   которую   так же опирается   центральный   угол   $AOC$.   
  • Вписанный   угол в два раза   меньше    центрального         $Rightarrow$       $angle AOC = 2x$.                 
  • $bigtriangleup AOC$       равнобедренный, т.к.   две его   стороны   являются радиусами ,
  • значит   углы   при    основании — хорде      $AC$ равны     и     $OAC=OCA=frac{180-2x}{2}=90-x=90-25=65$    .
  • Кстати, угол    $HOC=ABC=x$.          Ответ:     $65^o$

Задача 3:        Отрезки $AC$   и   $BD$ — диаметры окружности с центром   $O$ ,   образовали меж собой   угол   $COD$   равный    $58^o$.   Найти     $angle ACB$.

  • Решение:          Углы    $BOA$    и       $COD$      равны    как   вертикальные ,     поэтому      $angle BOA = 58^o$ .   
  • Искомый угол   $ACB$   — вписанный   и   он   опирается на   ту же дугу , что и центральный угол   $BOA$   .
  • По теореме о вписанных и центральных углах     $ACB=frac{1}{2}BOA=frac{1}{2}cdot58=29$            Ответ:     $angle ACB = 29^o$

Задача 4:        Найдите     $angle DEF$,     если градусные меры дуг $DE$ и   $EF$   равны    $161^o$   и   $53^o$    соответственно.                        

  • Решение:   $angle DEF$ — вписанный,   его градусная   мера   равна половине дуги, на которую он опирается.
  • Дуга    $FD = 360° – (161° + 53°) = 146°$         $Rightarrow$         $angle$ $DEF=frac{1}{2}146=73$                        Ответ:     $73^o$

Задача 5:        Найдите градусную меру   $angle ACB$ , если известно, что   $BC$ является диаметром окружности, а градусная мера центрального $angle AOC$    равна $96^o$.

  • Решение:          $angle ACB$ — вписанный, опирается на дугу    $AB$   и   равен   её половине. Найдем дугу $AB$.        
  • $BC$ — диаметр окружности,   дуга   $CAB$ равна   $180^o$.    $angle AOC$ — центральный угол.     По условию   $angle AOC = 96^o$ .   
  • $Rightarrow$       дуга   $AC = 96^o$ ,   а дуга    $AB = 180^o — 96^o = 84^o$ ,    тогда     $angle$ $ACB=frac{1}{2}84=42$.   Ответ:             $angle ACB = 42^o$

              

Задача 6:        Сторона   $AC$    треугольника   $ABC$   содержит   центр описанной около него окружности.   Найдите $angle C$,   если $angle A = 69^o$.

  • Решение: Важное свойство: вписанный     $angle В$ , опирающийся   на   диаметр     $AC$ ,    равен   $90^o$ .
  • Любой диаметр — развернутый центральный угол — опирается на   дугу   $180^o$           $Rightarrow$       $bigtriangleup ABC$        прямоугольный.
  • По свойству прямоугольного треугольника   сумма острых углов   равна      $90^o$    $Rightarrow$     $angle C=90^o-angle A=90^o — 69^o=21^o$ .
  • Ответ:     $angle C = 21^o$

Задача 7:         $AC$   и    $BD$ — диаметры окружности с центром   $O$.      $angle ACB$    равен     $57^o$.     Найдите    $angle AOD$ .

  • Решение:   $angle ACB$    является     вписанным     углом ,    значит     равен     половине    дуги,    на    которую    опирается …
  • градусная мера   дуги    $AB= 2B = 2cdot57^o=114^o$ .           $O$ — центр окружности лежит на    $BD$   ,     значит $BAD = 180^o$,        
  • тогда    дуга    $AD = 180^o — 114^o= 66^o$.     $angle AOD$ — центральный    и опирается    на    дугу   $AD$ ,
  • значит их градусные меры совпадают.           $Rightarrow$                  Ответ:     $angle AOD = 66^o$

                 

Задача 8:         В   окружности с   центром в   точке     $O$ проведены   диаметры    $AD$   и     $BC$ , угол    $OCD$   равен    $41^o$.     Найдите величину   $angle OAB$   .

  • Решение:   $angle OCD$       и     $angle OAB$ — вписанные    и    опираются на одну и ту же дугу     $DB$ , тогда …
  • … по свойству вписанных углов    они равны.      Таким образом,   $angle OAB$   то же    равен     $41^o$.         Ответ:     $angle OAB = 41^o$

Задача 9:        Диаметр    $AB$,    угол   $CDA$   равен   38°.        Найдите    величину     угла     $CAB$.

  • Решение: угол   $CDA$ —   вписанный,    значит     его   дуга     $AC^o=2cdot38^o=76^o$.         Тогда дуга     $BCD$    равна     $180 — 76 = 104^o$ ,
  • но на   нее опирается   вписанный угол   $CAB$        $Rightarrow$          $CAB=frac{1}{2}104^o$            Ответ:     $CAB = 52^o$   

О главном по теме:   Центральные и вписанные углы в окружности.            1.   Центральный угол     в   окружности — угол с вершиной в ее центре и сторонами-радиусами.         2.   Дуга окружности ,    соответствующей центральному углу — часть окружности внутри плоского угла.         3.   Градусная мера     дуги окружности — градусная мера соответствующего центрального угла.   4.   Вписанный угол — вершина которого лежит на окружности, а стороны пересекают эту окружность (хорды).   ….     Вписанный угол опирается на хорду , которая соединяет точки пересечения сторон угла и окружности. …. Вписанный угол опирается на дугу, заключенную между его сторонами.     Теорема    Вписанный угол равен   половине того центрального    угла, которая опирается    на ту же дугу.

Интерактивные Упражнения:

Задача 21:   Угол АВС равен 66. Найти все что можно. (Т)

Задачи из сайта https://resh.edu.ru :

Задача 22: Градусные меры дуг окружности относятся как 3 : 2 : 2 : 5. Найдите градусную меру большей из этих дуг.

Задача 23: Точки А, В, С, D отметили на окружности в порядке следования их в латинском алфавите. При этом оказалось, что дуга ВСD в 3 раза больше дуги BАD. Найдите градусную меру дуги BCD.

Задача 24: В окружности с центром О проведены две равные хорды MK и PN. Найдите градусную меру большей из дуг с концами M и K, если угол PON равен 110°

Задача 25: Вписанный угол CBA равен 80°, где AB – диаметр. Найдите угол CAB.

Задача 26: На окружности с центром в точке O взяли последовательно точки A, B, C так, что ∠AOC = 150°. Найдите градусную меру угла ABC.

Задача 27: Точки А, В и С лежат на окружности с центром О, ∠ВАС – вписанный угол. Про градусные меры дуг известно, что ∪AB : ∪BC : ∪AC = 3 : 1 : 2. Найдите АВС.

Задача 28: В окружности проведен диаметр AB и равные хорды AC и AD так, что ∠DAB = 40°. Найдите градусную меру угла CBD.

Задача 29: Три точки A,B,C делят окружность на части так, что ∪AB : ∪BC : ∪AC = 3 : 4 : 5. Найдите градусные меры из этих дуг.

Задача 30: Дана окружность с центром в точке О. На окружности взяты точки N, P, Q так, что угол РОQ в 2 раза меньше угла PON и в 3 раза меньше угла QON. Найдите градусную меру дуги PQ, которая не содержит точку N.

Задача 31: Вписанный угол ВСD равен 25°, дуга ВС имеет градусную меру 80°. Найдите градусную меру дуги CD.

Задача 32: На окружности взяли последовательно точки A, B, C, D так, что ∠ABC = 120°. Найдите градусную меру угла ADC.

Задача 33: На окружности с центром в точке О взяты точки K, М, N так, что MK – диаметр, а угол КОN равен 80°. Найдите угол КМN.

Содержание

  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — не диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Треугольник вписанный в окружность

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

    [ r = frac{S}{(a+b+c)/2} ]

  2. Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    [ r = frac{S}{frac{1}{2}P} ]

  3. Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    [ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

    [ R = frac{AC}{2 sin angle B} ]

  2. Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    [ R = frac{abc}{4S} ]

  3. Радиус описанной окружности около треугольника,
    если известны
    все стороны и полупериметр:

    [ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

    [ S = pr ]

  2. Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    [ S = sqrt{p(p-a)(p-b)(p-c)} ]

  3. Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    [ S = frac{1}2 ah ]

  4. Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    [ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]

  5. Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac{1}{2}ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1.  Периметр треугольника вписанного в окружность,
    если известны все стороны:

    [ P = a + b + c ]

  2. Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    [ P = frac{2S}{r} ]

  3. Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    [ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

    [ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]

  2. Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    [ a = frac{b · sin alpha }{sin β} ]

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

    [ l = frac{AB}{2} ]

  2. Средняя линия треугольника вписанного в окружность,
    если известны две стороны, ни одна из них не является
    основанием, и косинус угла между ними:

    [ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

    [ h = frac{2S}{a} ]

  2. Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

  3. Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    [ h = frac{bc}{2R} ]

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

около треугольника описана окружность

Дано: окружность и треугольник,
которые изображены на рисунке 2.

Доказать: окружность описана
около треугольника.

Доказательство:

  1.  Проведем серединные
    перпендикуляры — HO, FO, EO.
  2.  O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

Следовательно: окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Понравилась статья? Поделить с друзьями:
  • Как найти куб метр стены
  • Как найти клип по номеру
  • Когда эта панель видна горячие клавиши отключены дискорд как исправить
  • Как найти сервис на виндовс 10
  • Как найти нормальность раствора h2so4