Как найти три решения неравенства

Найдите три решения неравенства:
а) 1,2 < х < 1,6;
б) 2,1 < х < 2,3;
в) 0,001 < х < 0,002;
г) 0,01 < х < 0,011.

reshalka.com

Математика 5 класс Виленкин. Номер №1471

Решение a

Получай решения и ответы с помощью нашего бота

Посмотреть калькулятор Дроби

1,2 < x < 1,6
при х = 1,38; 1,5; 1,59.

Решение б

2,1 < x < 2,3
при х = 2,15; 2,18; 2,2.

Решение в

0,001 < х < 0,002
при х = 0,0015; 0,0018; 0,0019.

Решение г

0,01 < х < 0,011
при х = 0,0101; 0,0102; 0,0103.

ГДЗ и решебники
вип уровня

  1. ГДЗ
  2. 5 класс
  3. Математика
  4. Виленкин
  5. Задание 1471

Условие

Найдите три решения неравенства:
а) 1,2 < х < 1,6; в) 0,001 < х < 0,002;
6) 2,1 < х < 2,3; г) 0,01 < х < 0,011.

Решение 1

Фото ответа 1 на Задание 1471 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Решение 2

Фото ответа 3 на Задание 1471 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Решение 3

Фото ответа 2 на Задание 1471 из ГДЗ по Математике за 5 класс: Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. 2013г.

Популярные решебники

    При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы. 
    Напомним свойства числовых неравенств.
    1. Если а > b , то b < а; наоборот, если а < b, то b > а.
    2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
    3. Если а > b, то а + c > b+ c (и  а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
    4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.

Замечание.

Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
    5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
    6. Если а > b и m – положительное число, то m а > m b и  , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
    Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
    7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.

    8. Если а > b, где а, b > 0, то  и если а < b , то .

Виды неравенств и способы их решения

1. Линейные неравенства и системы неравенств

Пример 1. Решить неравенство .
    Решение:
          .
    Ответ: х < – 2.

Пример 2. Решить систему неравенств  
    Решение:
         .
    Ответ: (– 2; 0].

Пример 3. Найти наименьшее целое решение системы неравенств 

    Решение:
        
    Ответ: 

2. Квадратные неравенства

Пример 4. Решить неравенство х2 > 4.
    Решение:
        х2 > 4   (х – 2)∙(х + 2) > 0.
        Решаем методом интервалов.

        

        

Ответ:

3. Неравенства высших степеней

Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0. 
    Решение:
          
    Ответ: 

Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где   .
    Решение:
        Область определения неравенства: .
        С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству

        

        Решаем методом интервалов.

        
        Решение неравенства: .
        Середина отрезка: .
    Ответ: .

4. Рациональные неравенства

Пример 7. Найти все целые решения, удовлетворяющие неравенству .
    Решение:
             
        

        

        Методом интервалов:

        

        Решение неравенства: .
        Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1. 
    Ответ:  – 6; – 5; – 4; 1.

5. Иррациональные неравенства

Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.

Пример 8. Решить неравенство .
    Решение:    
        Область определения: .
        Так как арифметический корень не может быть отрицательным числом, то .
    Ответ: .

Пример 9. Найти все целые решения неравенства .

    Решение:

        Область определения .

        – быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства , при этом учитывая область определения. Т.е. исходное неравенство равносильно системе 

        Целыми числами из этого отрезка будут 2; 3; 4.

    Ответ: 2; 3; 4.

Пример 10. Решить неравенство .

    Решение:

        Область определения:  

        Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства —  положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное  исходному.

        

        

         т.е. , и этот числовой отрезок включён в область определения.

    Ответ: .

Пример 11. Решить неравенство .

    Решение:

        Раскрываем знак модуля.

        
        Объединим решения систем 1) и 2): .

    Ответ: 

6. Показательные, логарифмические неравенства и системы неравенств

Пример 12. Решите неравенство .

    Решение:

                      .

    Ответ: .

Пример 13. Решите неравенство .

    Решение:

        .

    Ответ: .

Пример 14. Решите неравенство .

    Решение:

        

    Ответ: .

Пример 15. Решите неравенство .

    Решение:

        
    Ответ: .    

Задания для самостоятельного решения

Базовый уровень

 Целые неравенства и системы неравенств

    1) Решите неравенство 2х – 5 ≤ 3 + х.

    2) Решите неравенство – 5х > 0,25. 

    3) Решите неравенство .

    4) Решите неравенство 2 – 5х ≥ – 3х.

    5) Решите неравенство х + 2 < 5x – 2(x – 3).

    6) Решите неравенство 
 .

    7) Решите неравенство (х – 3) (х + 2) > 0.

     8) Решить систему неравенств  

    9) Найдите целочисленные решения системы неравенств 

    10) Решить систему неравенств .

    11) Решить систему неравенств  

    12) Найти наименьшее целое решение неравенства  

    13) Решите неравенство .

    14) Решите неравенство .

    15) Решите неравенство .

    16) Решите неравенство .

    17) Найдите решение неравенства , принадлежащие промежутку .

    18) Решить систему неравенств  

    19) Найти все целые решения системы  

Рациональные неравенства и системы неравенств

    20) Решите неравенство .

    21) Решите неравенство .

    22) Определите число целых решений неравенства .

    23) Определите число целых решений неравенства .

    24) Решите неравенство .

    25) Решите неравенство 2x<16 .

    26) Решите неравенство .

    27) Решите неравенство .

    28) Решите неравенство .

    29) Найдите сумму целых решений неравенства  на отрезке [– 7, 7].

    30) Решите неравенство .

    31) Решите неравенство .

Иррациональные неравенства

    32) Решите неравенство .

    33) Решите неравенство 

    34) Решите неравенство .

Показательные, логарифмические неравенства и системы неравенств

    35) Решите неравенство .

    36) Решите неравенство .

    37) Решите неравенство .

    38) Решите неравенство .

    39) Решите неравенство .

    40) Решите неравенство 49∙7х < 73х + 3.

    41) Найдите все целые решения неравенства .

    42) Решите неравенство .

    43) Решите неравенство .

    44) Решите неравенство 7x+1-7x<42 .

    45) Решите неравенство log3(2x2+x-1)>log32 .

    46) Решите неравенство log0,5(2x+3)>0 .

    47) Решите неравенство .

    48) Решите неравенство .

    49) Решите неравенство .

    50) Решите неравенство logx+112>logx+12 .

    51) Решите неравенство logx9<2.

    52) Решите неравенство .

Повышенный уровень

    53) Решите неравенство |x-3|>2x.

    54) Решите неравенство 2│х + 1| > х + 4.

    55) Найдите наибольшее целое решение неравенства .

    56) Решить систему неравенств  

    57) Решить систему неравенств .

    58) Решите неравенство .

    59) Решите неравенство 25•2x-10x+5x>25 .

    60) Решите неравенство .

Ответы

1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; 8) (-2;0]; 9) – 1; 10) х ≥ 7,5;               11); 12) 1; 13); 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17); 18) ; 19) 3, 4, 5; 

20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17);                                           28)

; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35);   36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43) ; 44) х < 1;                           45) 46) (– 1,5; – 1); 47) х < 0; 48); 49) ; 50) х > 0;            51) ; 52) ; 53) х < 1; 54); 55) – 1; 56) ; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60) 

.

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Неравенства

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x < b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x < c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x < c

x<c

x ∈ ( − ∞ ; c )
x ≤ c

x≤c

x ∈ ( − ∞ ; c ]
x > c

x>c

x ∈ ( c ; + ∞ )
x ≥ c

x≥c

x ∈ [ c ; + ∞ )

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x < b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 − 3 x > 18

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на (-3) – коэффициент, который стоит перед  x. Так как    − 3 < 0 ,   знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество    6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15         |     ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед  x. Так как 3 > 0,   знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ [ − 5 ;     + ∞ )

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 1 ≤ 6 x − 1

6 x − 6 x ≤ − 1 + 1

0 ≤ 0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство    x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    0 > 42

    Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Ответ: x ∈ ∅

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем   a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , < , точки будут выколотые.

    Решение квадратного неравенства, знак неравенства строгий

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    Решение квадратного неравенства, знак неравенства нестрогий

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах -+-

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах -+-

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

    1. Записать ответ.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство    x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 ≥ x + 12

    x 2 − x − 12 ≥ 0

    x 2 − x − 12 = 0

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2≥x+12

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство    − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    − 3 x − 2 ≥ x 2

    − x 2 − 3 x − 2 ≥ 0

    − x 2 − 3 x − 2 = 0

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства -3x-2≥x^2

    Поскольку знак неравенства   ≥ , выбираем в ответ интервал со знаком   +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство   4 < x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    4 < x 2 + 3 x

    − x 2 − 3 x + 4 < 0

    − x 2 − 3 x + 4 = 0

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c =   ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    x 1 = − 4, x 2 = 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0

    Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства 4<x^2+3x

    Поскольку знак неравенства   < ,  выбираем в ответ интервалы со знаком   − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство   x 2 − 5 x < 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 − 5 x < 6

    x 2 − 5 x − 6 < 0

    x 2 − 5 x − 6 = 0

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    x 1 = 6, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 =   44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2-5x<6

    Поскольку знак неравенства   < , выбираем в ответ интервал со знаком   -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ:   x ∈ ( − 1 ; 6 )

    №5. Решить неравенство   x 2 < 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    x 2 < 4

    x 2 − 4 < 0

    x 2 − 4 = 0

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0   [ x = 2 x = − 2

    x 1 = 2, x 2 = − 2

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2<4

    Поскольку знак неравенства   < ,   выбираем в ответ интервал со знаком   − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − 2 ; 2 )

    №6. Решить неравенство   x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения   x 2 + x = 0.

    x 2 + x ≥ 0

    x 2 + x = 0

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    x 1 = 0, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2+x≥0

    Поскольку знак неравенства   ≥ ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю   f ( x ) = 0.  Найти нули числителя.
    1. Приравнять знаменатель дроби к нулю   g ( x ) = 0.  Найти нули знаменателя.

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x.

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые.

    Если знак неравенства строгий,
    при нанесении на ось x нули числителя выколотые.

    Если знак неравенства нестрогий,
    при нанесении на ось x нули числителя жирные.

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство   x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю  f ( x ) = 0.

    x − 1 = 0

    x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю  g ( x ) = 0.

    x + 3 = 0

    x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3   =   2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Решение дробно рационального неравенства (x-1)/(x+3)<0

    Ответ:   x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство   3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду  f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) ≤ 5

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю  f ( x ) = 0.

    − 5 x − 37 = 0

    − 5 x = 37

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю  g ( x ) = 0.

    x + 8 = 0

    x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   ≤ ,  выбираем в ответ интервалы со знаком   -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Решение дробно рационального неравенства 3/(x+8)≤5

    Ответ:   x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство   x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю  f ( x ) = 0.

    x 2 − 1 = 0

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Решение дробно рационального неравенства (x^2-1)/x>0

    Ответ:   x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    { x + 4 > 0 2 x + 3 ≤ x 2

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x.
    1. Решить второе неравенство системы, изобразить его графически на оси x.
    1. Нанести решения первого и второго неравенств на ось x.
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств   { 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 3 ≤ 5  

    2 x ≤ 8 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 4 ;

    Графическая интерпретация:

    Решение неравенства 2x-3≤5

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    7 − 3 x ≤ 1

    − 3 x ≤ 1 − 7

    − 3 x ≤ − 6 | ÷ ( − 3 ),  поскольку  − 3 < 0,  знак неравенства после деления меняется на противоположный.

    x ≥ 2

    Графическая интерпретация решения:

    Решение неравенства 7-3x<=1

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-3≤=5; 7-3x≤=1

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    Ответ:   x ∈ [ 2 ; 4 ]

    №2. Решить систему неравенств   { 2 x − 1 ≤ 5 1 < − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 1 ≤ 5

    2 x ≤ 6 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 3

    Графическая интерпретация:

    Решение неравенства 2x-1≤5

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    1 < − 3 x − 2

    3 x < − 1 − 2

    3 x < − 3 | ÷ 3 ,  поскольку  3 > 0,  знак неравенства после деления сохраняется.

    x < − 1

    Графическая интерпретация решения:

    Решение неравенства 1<-3x-2

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-1≤5; 1<-3x-2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ:   x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств   { 3 x + 1 ≤ 2 x x − 7 > 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    3 x + 1 ≤ 2 x

    3 x − 2 x ≤ − 1

    x ≤ − 1

    Графическая интерпретация решения:

    Решение неравенства 3x+1≤2x-1

    1. Решаем второе неравенство системы

    x − 7 > 5 − x

    x + x > 5 + 7

    2 x > 12 |   ÷ 2 ,  поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x > 6

    Графическая интерпретация решения:

    Решение неравенства x-7>5-x

    1. Наносим оба решения на ось x.

    Решение системы неравенств 3x+1≤2x-1; x-7>5-x

    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    Ответ:   x ∈ ∅

    №4. Решить систему неравенств   { x + 4 > 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    x + 4 > 0

    x > − 4

    Графическая интерпретация решения первого неравенства:

    Решение неравенства x+4>0

    1. Решаем второе неравенство системы

    2 x + 3 ≤ x 2

    − x 2 + 2 x + 3 ≤ 0

    Решаем методом интервалов.

    − x 2 + 2 x + 3 = 0

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Решение квадратного неравенства 2x+3≤x^2

    Графическая интерпретация решения второго неравенства:

    Решение квадратного неравенства 2x+3≤x^2

    1. Наносим оба решения на ось x.

    Решение системы неравенств x+4>0; 2x+3<=x^2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Ответ:   x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )

    Скачать домашнее задание к уроку 8.

    В статье рассмотрим решение неравенств. Расскажем доступно о том, как строиться решение неравенств, на понятных примерах!

    Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

    Общи сведения о неравенствах

    Неравенством называется выражение, в котором функции соединяются знаками отношения >, <, Знак неравенства, «Знак. Неравенства бывают как числовые, так и буквенные.
    Неравенства с двумя знаками отношения, называются двойными, с тремя — тройными и т.д. Например:
    a(x) > b(x),
    a(x) < b(x),
    a(x) Знак неравенстваb(x),
    a(x) Знак неравенстваb(x).
    a(x) < c(x) < b(x) — двойное неравенство.
    Неравенства, содержащие знак > или < , называются строгими, а неравенства, содержащие
    Знак неравенства или Знак неравенства — нестрогими.
    Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
    «Решить неравенство» означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств. Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +Бесконечность в Неравенстве, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
    Бесконечность в Неравенстве Формула Неравества + Бесконечность в Неравенстве
    Ответ будет следующим: xПринадлежность в Неравенстве (3; +Бесконечность в Неравенстве).
    Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности Бесконечность в Неравенстве всегда выделяется круглой скобкой. Знак Принадлежность в Неравенстве означает «принадлежание».
    Рассмотрим как решать неравенства на другом примере со знаком Знак неравенства:
    xЗнак неравенства 2
    Бесконечность в Неравенстве Формула Неравества+Бесконечность в Неравенстве
    Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
    Ответ будет следующим: xПринадлежность в Неравенстве [2; +Бесконечность в Неравенстве).

    Свойства неравенств

    Выделяют три основных свойства неравенств:

    1. Можно перенести любой член неравенства из одной части неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.
    2. Пример:
      Зх + 5 > х2
      равносильно Зх — х2 + 5 > 0, при этом x2 был перенесен с противоположным знаком.

    3. Можно умножать или делить обе части неравенства на одно и то же положительное число, при этом знака неравенства не меняется.
    4. Пример:
      9х — 3 > 12х2
      равносильно 3х — 1 > 4х2, при этом обе части первого неравенства были разделены на положительное число 3.

    5. Можно умножить или разделить обе части неравенства на одно и то же отрицательное число, при этом знак неравенства меняется на противоположный.
    6. Пример:
      -2х2 — Зх + 1 < 0 равносильно 2х2 + Зх — 1 > 0, при этом обе части первого неравенства умножили на отрицательное число -1, и знак неравенства изменился на противоположный.

    Решение систем неравенств

    Системой называется запись нескольких неравенств, обозначенная фигурной скобкой, при этом количество и вид неравенств, входящих в систему, может быть любым. Решением системы неравенств является пересечение решений всех неравенств, входящих в эту систему. Например, двойное неравенство f(x) < g(x) < h(x) записывается следующим образом:Формула Неравества
    Пример.

    Требуется решить следующую систему неравенств Формула Неравества

    Решение:
    Формула Неравества

    Система аналогична неравенству х > 1, поэтому ответ: xПринадлежность в Неравенстве (1; +Бесконечность в Неравенстве).

    Решение линейных неравенств

    Линейным называется неравенство вида ax>b, при этом знак неравенства может быть любым.
    Допустим a>0, тогда ax>b равносильно Решение линейных неравенств, таким образом множество решений неравенства является промежуток Формула Неравества.
    Допустим a>0, тогда ax>b равносильно Формула Неравества, таким образом множество решений неравенства является промежуток Формула Неравества.
    Если же a=0, тогда 0*x>b, т.е. неравенство не имеет решений при bЗнак неравенства0, и верно при любых х при b<0.

    Решение квадратных неравенств

    Квадратным называется неравенство вида ax2 + bx + c > 0, в котром a, b, c – некоторые действительные числа и aФормула Неравества0
    Простейшими квадратными неравенствами являются неравенства x2 < m и x2 > m
    Множество решений неравенства x2 < m:

    1. при m< 0 нет чисел, которые в квадрате дают отрицательное число (т.е. нет решений)
    2. при m>0 xПринадлежность в Неравенстве (-Формула Неравества; Формула Неравества), т.е. —Формула Неравества < x < Формула Неравества или Формула Неравества<Формула Неравества.

    Множество решений неравенства x2 > m:

    1. при m<0 xПринадлежность в НеравенствеR (т.е. x — любое действительное число);
    2. при m>0 xПринадлежность в Неравенстве (-Бесконечность в Неравенстве; — Формула Неравества) Неравенства (Формула Неравества; +Бесконечность в Неравенстве), т.е. —Бесконечность в Неравенстве < x < — Формула Неравества и Формула Неравества < x < +Бесконечность в Неравенстве или Формула Неравества > Формула Неравества.

    Решение более сложных квадратных неравенств сводиться к простому переводу выражения вида
    ax2 + bx + c > 0
    в неравенство
    (x-x1)(x-x2) > 0 , где x1 и х2 — корни квадратного уравнения ax2 + bx + c = 0.
    Полученное неравенство мы раскладываем таким же образом на систему простых неравенств и легко находим решение.

    Решение неравенств методом интервалов

    Методом интервалов можно Формулу Неравества вида h(x) > 0 (<, Знак неравенства,Знак неравенства) свести к решению уравнения h(x) = 0.
    Данный метод заключается в следующем:

    1. Находится ОДЗ неравенства.
    2. Неравенство приводится к виду h(x) > 0(<,Знак неравенства, Знак неравенства) путем упрощения.
    3. Решается уравнение h(x) = 0.
    4. Если на ОДЗ отмечены точки, они ограничивают его и разбивают на интервалы знакопостоянства, при этом знак функции h(х) определяется на каждом таком интервале.
    5. Решением является объединение отдельных множеств, на которых h(x) имеет соответствующий знак. После дополнительной проверки точки ОДЗ, являющиеся граничными, включаются (или не включаются) в ответ.

    Метод интервалов основывается на том, что непрерывная функция h(x) меняет знак либо в граничных точках «разрыва» на ОДЗ, либо при переходе через 0, т.е. в тех точках, которые являются корнями уравнения h(x) = 0. В других точках перемены знака не происходит.
    Пример.
    Решить неравенство Формула Неравества
    Решение:
    ОДЗ: Формула Неравества откуда имеем xПринадлежность в Неравенстве [-1; 5) Неравенства (5; +Бесконечность в Неравенстве)
    Решим уравнение Формула Неравества
    Числитель дроби равен 0 при x = -1, это и есть корень уравнения. Отметим найденный корень на числовой прямой (черным кружком, т.к. неравенство нестрогое), предварительно отметив ОДЗ:
    Формула Неравества
    Чтобы определить знак на промежутке (-1; 5) возьмем число 0, Формула Неравества
    Чтобы определить знак на втором промежутке возьмем число 8, Формула Неравества
    Точки 0 и 8 выбирались произвольно, но так, чтобы упростить процесс вычисления каждого значения функции.
    Ответ: (-5; +Бесконечность в Неравенстве).

    Для закрепления темы решения неравенств настоятельно рекомендуем посмотреть наше видео по теме:

    На этом пока всё….Надеюсь появилось понимание о том, как решить неравенства. Если всё же остались какие то вопросы по решению неравенств, смело задавайте их в комментариях.
    Спасибо

    Заметка: выбираете институт? — все институты здесь (http://www.kartaznaniy.ru/vuzy/instituty) .


    Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


    Понравилась статья? Поделить с друзьями:
  1. Как исправить поврежденный файл ворд
  2. Как найти свойство моего компьютера
  3. Как найти мастер активации
  4. Как найти синус в прямоугольнике формула
  5. Как найти отдел кадров ржд