Как найти у равнобедреной трапеции в которую

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) — равен полуразности оснований:

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

b = a — 2 h ctg α = a — 2 c cos α

c = h = a — b
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a = d 1 2 — c 2 b = d 1 2 — c 2 c = √ d 1 2 — ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S — b b = 2S — a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

m = a — h ctg α = b + h ctg α = a — √ c 2 — h 2 = b + √ c 2 — h 2

2. Формула средней линии трапеции через площадь и сторону:

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h = 1 √ 4 c 2 — ( a — b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h = a — b tg β = c sin β
2

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

d 1 = √ a 2 + c 2 — 2 ac cos α

d 1 = √ b 2 + c 2 — 2 bc cos β

4. Формула длины диагонали через высоту и основания:

d 1 = 1 √ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

1. Формула площади через стороны:

S = a + b √ 4 c 2 — ( a — b ) 2
4

2. Формула площади через стороны и угол:

S = ( b + c cos α ) c sin α = ( a — c cos α ) c sin α

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S = 4 r 2 = 4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S = d 1 2 · sin γ = d 1 2 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

8. Формула площади через основания и высоту:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

a — большее основание

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Вписанная в равнобедренную трапецию окружность

Какими свойствами обладает вписанная в равнобедренную трапецию окружность?

1. В трапецию можно вписать окружность тогда и только тогда, когда суммы длин её противоположных сторон равны.

То есть, в трапецию ABCD можно вписать окружность, если AD+BC=AB+CD.

И обратно, если для трапеции ABCD верно равенство AD+BC=AB+CD, то в неё можно вписать окружность.

Таким образом, если трапеция ABCD — равнобедренная, AD||BC, то её боковые стороны равны полусумме оснований:

2. Отсюда, по свойству средней линии трапеции, боковые стороны равнобедренной трапеции, в которую можно вписать окружность, равны её средней линии.

Если MN —

3. Высота равнобедренной трапеции, в которую можно вписать окружность, равна среднему пропорциональному (среднему геометрическому) между её основаниями.

По свойству равнобедренной трапеции,

Из прямоугольного треугольника ABF по теореме Пифагора

4. Так как радиус вписанной в трапецию окружности равен половине высоты трапеции, то для равнобедренной трапеции верно равенство

5. В равнобедренной трапеции точки касания делят стороны на две группы равных отрезков.

6. Центр вписанной в равнобедренную трапецию окружности — точка пересечения её биссектрис.

Таким образом, в трапеции ABCD, AD||BC, CO и DO — биссектрисы углов ADC и BCD,

источники:

http://ru.onlinemschool.com/math/formula/trapezium_isosceles/

Вписанная в равнобедренную трапецию окружность

Если в равнобедренной трапеции диагонали перпендикулярны, при решении задачи будет полезен следующий теоретический материал.

1. Если в равнобедренной трапеции диагонали перпендикулярны, высота трапеции равна полусумме оснований.           

v-ravnobedrennoj-trapecii-diagonali-perpendikulyarny

Проведем  через точку C прямую CF, параллельную BD, и продлим прямую AD до пересечения с CF.

diagonali-ravnobokoj-trapecii-perpendikulyarny

Четырехугольник  BCFD — параллелограмм ( BCDF как основания трапеции, BDCF по построению). Значит, CF=BD, DF=BC и AF=AD+BC.  

Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции диагонали равны, а CF=BD, то CF=AC, то есть треугольник ACF — равнобедренный с основанием AF. Значит, его высота CN является также медианой. А так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине, то

    [CN = frac{1}{2}AF = frac{{AD + BC}}{2},]

что в общем виде можно записать как

    [h = frac{{a + b}}{2},]

где h — высота трапеции, a и b — ее основания.

2. Если в равнобедренной трапеции диагонали перпендикулярны, то ее высота равна средней линии.

Так как средняя линия трапеции m равна полусумме оснований, то

    [h = m.]

3. Если в равнобедренной трапеции диагонали перпендикулярны, то площадь трапеции равна квадрату высоты трапеции (или квадрату полусуммы оснований, или квадрату средней линии).

Так как площадь трапеции находится по формуле

    [S = frac{{a + b}}{2} cdot h]

а высота, полусумма оснований и средняя линия равнобокой трапеции с перпендикулярными диагоналями равны между собой:

    [h = frac{{a + b}}{2} = m,]

то

    [S = {h^2}]

    [S = {(frac{{a + b}}{2})^2}]

    [S = {m^2}.]

4. Если в равнобедренной трапеции диагонали перпендикулярны, то квадрат ее диагонали равен половине квадрата суммы оснований, а также  удвоенному квадрату высоты и удвоенному квадрату средней линии.

Так как площадь выпуклого четырехугольника можно найти через его диагонали и угол между ними по формуле

    [S = frac{1}{2}{d_1}{d_2}sin varphi ]

sin 90º =1, и диагонали равнобедренной трапеции равны, то площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна

    [S = frac{1}{2}{d^2}.]

откуда

    [frac{1}{2}{d^2} = {(frac{{a + b}}{2})^2} = {h^2} = {m^2},]

    [{d^2} = frac{{{{(a + b)}^2}}}{2}.]

chet

   Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению прямоугольного треугольника, как говориться: куда мы без теоремы Пифагора, синуса и косинуса?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, посмотрите.

1

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

2

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

3

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

Рассмотрим задачи:

zadacha

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

4

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

5

Таким образом:

6

Ответ: 0,96

zadacha

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:

7

Ответ: 21

zadacha

27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

8

Можем вычислить высоту  трапеции, а затем найти катет:

9

По теореме Пифагора вычисляем катет:

10

Таким образом, меньшее основание равно:

11

Ответ: 22

zadacha

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее  основание разбивается на отрезки:

1010

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

1011

Ответ: 10

zadacha

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:

12

Таким образом большее основание будет равно:

13

Ответ: 71

zadacha

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

14

По определению тангенса:

15

Ответ: 0,4

zadacha

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

16

Выразим гипотенузу обозначенную как х через косинус:

17

Из основного тригонометрического тождества найдём cosα

18

Таким образом:

19

Ответ: 5

zadacha

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 500? Ответ дайте в градусах.

20

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 1800.  В нашем случае это

21

C условии сказано, что разность противолежащих углов равна 500, то есть

22

Так как у равнобедренной трапеции углы  при основании равны, то есть угол А равен углу В, то можем записать

23

Имеем два уравнения с двумя  неизвестными, можем решить систему:

24

*Конечно, эту задачу можно было легко решить просто перебирая пары углов )

zadacha

27833. В равнобедренной трапеции большее основание равно 25, боковая сторона равна 10, угол между ними 600. Найдите меньшее основание.

25

Построим высоты DE и CF:

27

Меньшее основание равно отрезку EF, так как DC и EF это противолежащие стороны прямоугольника. Отрезок EF мы можем найти если вычислим АЕ. Выразим этот катет прямоугольного треугольника ADE через функцию косинуса:

26

Так как AE=FB=5, то EF=25–5–5=15. Следовательно и DC=15.

Ответ: 15

zadacha

27837. Основания равнобедренной трапеции равны 15 и 9, один из углов равен 450. Найдите высоту трапеции.

28

Из точек D и C опустим две высоты:

29

Как уже сказано выше они разбивают большее основание на три отрезка: один равен меньшему основанию, два других равны друг другу.

В данном случае они равны 3, 9 и 3 (в сумме 15). Кроме того, отметим что высотами отсекаются прямоугольные треугольники, причём они являются равнобедренными, так как углы при основании равны по 450. Отсюда следует, что высота трапеции будет равна 3.

Ответ: 3

На этом всё! Успеха вам!

С уважением, Александр.

P.S: Расскажите о сайте в социальных сетях!

Трапеция —  геометрическая фигура представляет собой выпуклый четырехугольник с параллельными
противоположными сторонами. Они называются основаниями. Две другие стороны — боковые.
Трапеция, у которой они одинакового размера, называется равнобедренной. Если одна из боковых сторон
образует у основания угол в 90 градусов-прямоугольной.

Прямая линия, проведенная от одного основания
к другому, именуется высотой трапеции. Величина ее высчитывается делением суммы оснований на 2.
Диагонали — это отрезки, соединяющие противоположные углы фигуры. У равнобедренной трапеции
они равны по длине. Средняя линия-прямая, делящая пополам боковые стороны.

  • Угол трапеции при основании через высоту и прилегающую
    боковую сторону
  • Угол трапеции через нижнее основание, боковую сторону и
    диагональ
  • Угол равнобедренной трапеции через нижнее основание,
    среднию линию и боковую сторону
  • Угол равнобедренной трапеции через среднию линию, верхнее
    основание и боковую сторону
  • Острый угол при нижнем основании прямоугольной трапеции
    через высоту и два основания
  • Острый угол при нижнем основании прямоугольной трапеции
    через два основания и боковую сторону

Угол трапеции при основании через высоту и прилегающую боковую сторону

Рис 1

Введем обозначения: h-высота, с — боковая сторона. Угол трапеции α при основании вычисляется с
помощью формулы

sin α = h/с

где: h — высота трапеции, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Заменим буквенные обозначения условными цифрами. Пример: если высота равна
9см, боковая сторона-11см, получим: sin α = 9 / 11 = 0,818 , отсюда α =
55º. Указанное значение находим в таблице синусов. Данный показатель синуса угла соответствует
величине 55 градусов.

Через нижнее основание, среднию линию и боковую сторону в равнобедренной трапеции

Рис 3

Угол равнобедренной трапеции через нижнее основание, среднюю линию и боковую сторону находится по
формуле:

cos α = (2a-2m) / 2c

где а — нижнее основание, m — средняя линия, с — боковая сторона.

Цифр после
запятой:

Результат в:

Пример.Заменим буквы условными цифровыми значениями. Если нижнее основание равно 8
см, средняя линия-6, а боковая сторона-4,8 см, то косинус угла равен 0,41666, что соответствует 65
градусам. cos α = (2 * 8 — 2 * 6) / 2 * 4,8 = 0, 41666, отсюда α =
65º. Равнобедренная трапеция — геометрическая фигура с нижними острыми углами. Это ее
особенность.

Угол трапеции, зная размер нижнего основания, боковой стороны и диагонали

Рис 2

Если известны эти величины, воспользуемся формулой:

cos α= (a²+c²-d²) / 2ac

где а-нижнее основание, d-диагональ, с-боковая сторона.

Цифр после
запятой:

Результат в:

Пример. При условной величине нижнего основания 4 см, диагонали — 5.7 см,
боковой стороны — 4,4 см косинус равняется 0,081534, что соответствует углу 85 градусов по
таблице функций. cos α= (4² + 4,4² — 5,7²) / 2*4*4,4 = 0,081534,
отсюда α = 85º.

Через среднюю линию, верхнее основание и боковую сторону в равнобедренной трапеции

Рис 4

Нахождение угла равнобедренной трапеции через среднюю линию, верхнее основание и боковую сторону
выполняется по предложенной формуле:

cos α = (2m-2b) / 2c

где m — средняя линия, b — верхнее основание, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Введем условные цифровые значения. Допустим, что у равнобедренной трапеции
верхнее основание равно 4 см, средняя линия-6, боковая сторона-4 см. Косинус составляет 0,5.
Значение соответствует 60 градусам по таблице Брадиса. cos α = (2 * 6 — 2 * 4) / 2 * 4 = 0,5,
отсюда α = 60º

Вычисление острого угла при нижнем основании, если известны величины обоих оснований и боковой
стороны в прямоугольной трапеции

Рис 6

Находится по формуле

cos α = (a — b) / c

где a,b — основания, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Если буквенные выражения заменить условными цифровыми, получится наглядный
пример вычисления. Допустим, длина нижнего основания а 8 см, верхнего b-5,8 см, размер боковой
стороны с-4,8. Подставив в формулу цифровые значения, получим итог: косинус равен 0,45833.
Сравниваем показатель с таблицей вычисления Брадиса: он соответствует углу 63 градуса. cos α=(8 — 5,8) / 4,8 = 0,45833, отсюда α = 63º

Острый угол при нижнем основании, зная высоту и размеры двух оснований прямоугольной трапеции

Рис 5

При известных указанных величинах воспользуемся следующей формулой:

tg(α) = h / (a-b)

где h — высота, a,b — верхнее и нижнее основания.

Цифр после
запятой:

Результат в:

Пример. Введя условные цифровые значения h = 15, a = 11, b = 10 получим tg(α) = 15 / (11-10) = 15. При вычислении получим значение тангенса: 15.
По таблице функций показатель соответствует 86 градусам.

Следует знать несколько закономерностей данной геометрической конструкции. У трапеции четыре угла,
общая сумма которых составляет 360 градусов.

Равнобедренная отличается двумя равными острыми, прилегающими к нижнему основанию, и тупыми
одинаковой величины-к верхнему. У прямоугольной трапеции два угла по 90 градусов, другие —
острый и тупой. Если он прилегает к нижнему основанию, величина такого угла определяется делением
высоты на разность между нижним и верхним основаниями. Угол трапеции при основании равен отношению
высоты к боковой стороне.

Это свойство равнобедренной трапеции удобно доказать в общем виде в начале изучения темы, чтобы в дальнейшем использовать его при решении задач.

Утверждение.

Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований.

vyisota ravnobedrennoy trapetsiiAD=a,

BC=b

    [AF = frac{{a - b}}{2}]

    [DF = frac{{a + b}}{2}]

vyisota ravnobedrennoy trapetsii provedennaya iz tupogo uglaДано: ABCD — трапеция,

AD || BC, AB=CD, AD>BC,

AD=a, BC=b,

    [BF bot AD]

Доказать:

    [AF = frac{{a - b}}{2}]

    [DF = frac{{a + b}}{2}]

Доказательство:

v ravnobedrennoy trapetsii vyisota delit1) Проведем высоту CK:

    [CK bot AD,CK bot BC.]

2) Четырехугольник ABCD — прямоугольник (так как у него все углы прямые). Следовательно, его противоположные стороны равны: FK=BC=b.

3) Рассмотрим треугольники ABF и DCK.

∠AFB=90º, ∠DKC=90º (так как BF и CK — высоты трапеции).

AB=CD (по условию),

BF=CK (как высоты трапеции).

Следовательно, треугольники ABF и DCK равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих сторон:

    [AF = KD = frac{{AD - FK}}{2} = frac{{a - b}}{2}.]

    [FD = FK + KD = {b^{backslash 2}} + frac{{a - b}}{2} = ]

    [ = frac{{2b + a - b}}{2} = frac{{a + b}}{2}.]

Что и требовалось доказать.

Поскольку средняя линия трапеции равна полусумме ее оснований, длина отрезка FD равна длине среднее линии трапеции.

Понравилась статья? Поделить с друзьями:
  • Mmc exe администратор заблокировал выполнение этого приложения как исправить
  • Как найти дикого гуся
  • Как убрать найти мой айфон
  • Как найти музыку в интернете по мелодии
  • Как найти среднеквадратическое отклонение выборки