Как найти удельную теплоемкость при постоянном давлении

Теплоемкости при постоянном давлении и постоянном объеме

При сообщении телу некоторого количества теплоты изменяется его температура (за исключением агрегатных превращений и вообще изотермических процессов). Характеристиками такого изменения являются различные теплоемкости: теплоемкость тела CT, удельная теплоемкость вещества c, молярная теплоемкость C.

Понятия теплоемкости тела и удельной теплоемкости рассмотрены тут.

Молярная теплоемкость C — величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

(~C = frac{Q}{nu Delta T} . qquad (1))

Единицей молярной теплоемкости в СИ является джоуль на моль-Кельвин (Дж/моль·К).

Удельная теплоемкость связана с молярной соотношением

(~C = cM. )

В отличие от такой, например, характеристики вещества, как его молекулярная масса Mr удельная теплоемкость вещества не является неизменным параметром. Удельная теплоемкость может резко изменяться при переходе вещества из одного агрегатного состояния в другое. Так, вода в газообразном состоянии имеет удельную теплоемкость 2,2·103 Дж/кг·К а в жидком 4,19·103 Дж/кг·К .

Теплоемкость зависит и от условий, при которых происходит передача теплоты телу. Последнее особенно относится к газам. Например, при изотермическом расширении газа ему передается некоторое количество теплоты Q > 0, а ΔΤ = 0. Следовательно, удельная теплоемкость газа при изотермическом процессе

(~c = frac{Q}{m Delta T} to infty .)

При адиабатном сжатии (расширении) газ не получает теплоты и не передает ее окружающим телам (Q = 0), а температура газа изменяется (ΔΤ ≠ 0). Следовательно, удельная теплоемкость газа при адиабатном процессе

(~c = frac{Q}{m Delta T} = 0 .)

Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме или изохорной теплоемкостью (cV, CV), во втором — теплоемкостью при постоянном давлении или изобарной теплоемкостью (cp, Cp).

Если объем не изменяется (ΔV = 0), то работа, совершенная газом, так же равна нулю (А = 0). Согласно первому закону термодинамики

(~Q = Delta U) и (~C_{TV} = frac{Delta U}{Delta T},)

Откуда

(~Delta U = C_{TV} cdot Delta T = c_V m Delta T . qquad (2))

Следовательно, теплоемкость при постоянном объеме равна изменению внутренней энергии газа при изменении температуры на 1 К.

Если газ идеальный, то в формуле (2)

(~Delta U = frac i2 frac mM R Delta T .)

Тогда молярная теплоемкость при постоянном объеме (~C_V = frac{Delta U_M}{Delta T}), где (~Delta U_M = frac i2 R Delta T) — изменение внутренней энергии 1 моль газа. Из этих равенств теплоемкость газа при постоянном объеме — (~C_{TV} = frac i2 frac mM R); молярная теплоемкость газа при постоянном объеме — (~C_V = frac i2 R).

Если газ нагревается при постоянном давлении, то согласно первому закону термодинамики

(~Q = Delta U + A,)

где (~A = p Delta V = frac mM R Delta T).

Тогда теплоемкость газа при постоянном давлении

(~C_{Tp} = frac{Q}{Delta T} = frac{Delta U}{Delta T} + frac mM R = C_{TV} + frac mM R = frac{i + 2}{i} frac mM R .)

Молярная теплоемкость при постоянном давлении:

(~C_p = C_V + R) — уравнение Майера;

(~C_p = frac i2 R + R = frac{i + 2}{i} R .)

Таким образом, теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме. Их отношение равно

(~gamma = frac{C_p}{C_V} = frac{i + 2}{i} .)

где γ — показатель адиабаты (коэффициент Пуассона).

Из-за малости величины коэффициента объемного расширения твердых и жидких тел работой, совершаемой ими при нагревании при постоянном давлении, можно пренебречь и считать, что теплоемкости при постоянном объеме и постоянном давлении практически совпадают. Поэтому теплоемкость твердых и жидких тел при заданной температуре может считаться вполне определенной величиной.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 159-161.

При введении
понятия теплоемкости мы не обращали
внимание на одно существенное
обстоятельство: теплоемкости зависят
не только от свойств вещества, но и от
процесса, при котором осуществляется
теплопередача.

Если нагревать
тело при постоянном давлении, то оно
будет расширяться и совершать работу.
Для нагревания тела на 1 К при постоянном
давлении ему нужно передать большее
количество теплоты, чем при таком же
нагревании при постоянном объеме.

Жидкие и твердые
тела расширяются при нагревании
незначительно, и их теплоемкости при
постоянном объеме и постоянном давлении
мало различаются. Но для газов это
различие существенно. С помощью первого
закона термодинамики можно найти связь
между теплоемкостями газа при постоянном
объеме и постоянном давлении.

Теплоемкость газа при постоянном объеме Найдем молярную теплоемкость газа при постоянном объеме. Согласно определению теплоемкости

где
ΔT

изменение температуры. Если процесс
происходит при постоянном объеме, то
эту теплоемкость обозначим через Cv.
Тогда

(5.6.1)

При постоянном
объеме работа не совершается. Поэтому
первый закон термодинамики запишется
так:


(5.6.2)

Изменение
энергии одного моля достаточно
разреженного (идеального) одноатомного
газа равно:

(см.
§ 4.8).

Следовательно,
молярная теплоемкость при постоянном
объеме одноатомного газа равна:


(5.6.3)

Теплоемкость газа при постоянном давлении

Согласно
определению теплоемкости при постоянном
давлении Ср


(5.6.4)

Работа, которую
совершит 1 моль идеального газа,
расширяющегося при постоянном давлении,
равна:


(5.6.5)

* Из формулы (5.6.5)
видно, что универсальная газовая
постоянная численно равна работе,
которую совершает 1 моль идеального
газа при постоянном давлении, если
температура его увеличивается на 1К.

Это
следует из выражения для работы газа
при постоянном давлении А’
=
pΔV
и
уравнения состояния (для одного моля)
идеального газа pV
=
RT.

Внутренняя
энергия идеального газа от объема не
зависит. Поэтому и при постоянном
давлении изменение внутренней энергии
ΔU
=
CVΔT,
как
и при постоянном объеме. Применяя первый
закон термодинамики, получим:


(5.6.6)

Следовательно,
молярные теплоемкости идеального газа
связаны соотношением


(5.6.7)

Впервые эта формула
была получена Р. Майером и носит его
имя.

В случае идеального
одноатомного газа


(5.6.8)

Теплоемкость идеального газа при изотермическом процессе

Можно формально
ввести понятие теплоемкости и при
изотермическом процессе. Так как при
этом процессе внутренняя энергия
идеального газа не меняется, какое бы
количество теплоты ему ни было передано,
то теплоемкость бесконечна.

Молярная
теплоемкость идеального газа при
постоянном давлении больше теплоемкости
при постоянном объеме на величину
универсальной газовой постоянной
R.

§ 5.7. Адиабатный процесс

Мы
рассмотрели изотермический, изобарный
и изохорный процессы. После ознакомления
с первым законом термодинамики появляется
возможность изучить еще один процесс,

это
процесс, протекающий в системе при
отсутствии теплообмена с окружающими
телами. (Но работу над окружающими телами
система может совершать.)

Процесс в
теплоизолированной системе называют
адиабатным.

При
адиабатном процессе Q
=
0 и согласно закону (5.5.3) изменение
внутренней энергии происходит только
за счет совершения работы:


(5.7.1)

Конечно, нельзя
окружить систему оболочкой, абсолютно
исключающей теплообмен. Но в ряде случаев
реальные процессы очень близки к
адиабатным. Существуют оболочки,
обладающие малой теплопроводностью,
например двойные стенки с вакуумом
между ними. Так изготовляются термосы.

Процесс можно
считать адиабатным даже без теплоизолирующей
оболочки, если он происходит достаточно
быстро, т. е. так, чтобы за время процесса
не происходило заметного теплообмена
между системой и окружающими телами.

Согласно
выражению (5.7.1) при совершении над
системой положительной работы, например
при сжатии газа, внутренняя энергия его
увеличивается; газ нагревается. Наоборот,
при расширении газ сам совершает
положительную работу (А’ > 0), но А
<
0
и внутренняя энергия его уменьшается;
газ охлаждается.

Зависимость
давления газа от его объема при адиабатном
процессе изображается кривой, называемой
адиабатой
(рис. 5.9). Адиабата обязательно идет круче
изотермы. Ведь при адиабатном процессе
давление газа уменьшается не только за
счет увеличения объема, как при
изотермическом процессе, но и за счет
уменьшения его температуры.

Рис. 5.9

Адиабатные процессы
широко используются в технике. Они
играют немалую роль в природе.

Нагревание воздуха
при быстром сжатии нашло применение в
двигателях Дизеля. В этих двигателях
отсутствуют системы приготовления и
зажигания горючей смеси, необходимые
для обычных бензиновых двигателей
внутреннего сгорания. В цилиндр
засасывается не горючая смесь, а
атмосферный воздух. К концу такта сжатия
в цилиндр с помощью специальной форсунки
впрыскивается жидкое топливо (рис.
5.10). К этому моменту температура сжатого
воздуха так велика, что горючее
воспламеняется.

Рис. 5.10

Так как в двигателе
Дизеля сжимается не горючая смесь, а
воздух, то степень сжатия у этого
двигателя больше, а значит, коэффициент
полезного действия (КПД) двигателей
Дизеля выше, чем у обычных двигателей
внутреннего сгорания. Кроме того, они
могут работать на более дешевом
низкосортном топливе. Есть, однако, у
двигателя Дизеля и недостатки:
необходимость высоких степеней сжатия
и большое рабочее давление делают эти
двигатели массивными и вследствие этого
более инерционными — они медленнее
набирают мощность. Двигатели Дизеля
более сложны в изготовлении и эксплуатации,
тем не менее они постепенно вытесняют
обычные бензиновые двигатели, используемые
в автомобилях.

Охлаждение газа
при адиабатном расширении происходит
в грандиозных масштабах в атмосфере
Земли. Нагретый воздух поднимается
вверх и расширяется, так как атмосферное
давление падает с высотой. Это расширение
сопровождается значительным охлаждением.
В результате водяные пары конденсируются
и образуются облака.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Теплоемкость газов



Понятие о теплоемкости

Замысловатый термин «теплоемкость» не что иное, как способность тела расходовать внешнюю тепловую энергию для повышения внутренней кинетической энергии собственных молекул, т. е. повышать температуру при подводе тепла извне.
Как мы уже знаем из предыдущих статей, повышение температуры любого вещества сопровождается увеличением кинетической энергии его частиц, скорость которых начинает возрастать. Этот процесс неизбежно сопровождается уменьшением внутренней потенциальной энергии молекул тела, поскольку они слабее взаимодействуют посредством гравитационных и электромагнитных полей (в первую очередь из-за увеличения расстояния между ними).

Различные вещества способны по-разному «впитывать» внешнюю энергию. Чтобы нагреть до определенной температуры, например, 1 кг нержавеющей стали, необходимо затратить значительно больше тепла, чем для нагрева 1 кг чугуна.
Подобный факт наталкивает на мысль о введении понятия некоторой способности материальных тел «захватывать» и «впитывать» поступающее от окружающей среды тепло. Именно этим физическим свойством материальных тел является теплоемкость.

Чтобы повысить температуру единицы количества вещества на dT, необходимо сообщить ему теплоту dq.
Отношение c = dq/dT называют удельной теплоемкостью вещества.
Удельная теплоемкость показывает, какое количество теплоты необходимо подвести к единице вещества, чтобы нагреть его на (один градус Кельвина).

В зависимости от выбранной единице количества вещества различают массовую (отнесенную к 1 кг), киломольную (отнесенную к 1 кмолю) и объемную (отнесенную к 1 м3) удельные теплоемкости.
понятие удельной теплоемкости
Удельная теплоемкость газа зависит от способа подвода к нему теплоты. Очевидно, что на основании определения теплоемкости и уравнения первого закона термодинамики можно записать:

c = dq/dT = (du + pdv)/dT = du/dT + pdv/dT.

Величину pdv/dT называют удельной работой. Она показывает, какую работу совершает единица количества газа при повышении его температуры на .
Если при подводе теплоты к газу занимаемый им объем остается постоянным (v = const), то dv = 0 и удельная теплоемкость cv = du/dT, откуда du = cvdT.

Если же при подводе к газу теплоты его давление остается неизменным (p = const), то удельная теплоемкость будет равна:

cp = cv + pdv/dT.    (1)

Следовательно, удельная теплоемкость при постоянном давлении больше удельной теплоемкости при постоянном объеме на удельную работу.

Если продифференцировать уравнение состояния pv = RT  при   p = const, получим выражение удельной работы для идеальных газов:

dA = pdv/dT = R.     (2)

Эта формула позволяет уяснить физический смысл газовой постоянной. Газовая постоянная R – это работа, совершаемая единицей количества газа при нагревании на , если теплота подводилась при постоянном давлении.
Подставив в уравнение (1) значение удельной газовой постоянной из формулы (2), получим уравнение Майера:

cv – cp = R.

Для идеального газа значения cp и cv постоянны, поэтому и отношение cp/cv = k тоже является величиной постоянной.
Нагревая идеальный газ от температуры T1 до T2 при постоянном объеме, необходимо подвести количество теплоты, равное:

qv = cv(T1 – T2),

а для нагревания при постоянном давлении:

qp = cp(T1 – T2).

***



Зависимость теплоемкости от температуры

Удельная теплоемкость реальных газов в отличие от идеальных газов зависит от давления и температуры. Зависимостью удельной теплоемкости от давления в практических расчетах можно пренебречь. Но зависимость удельной теплоемкости от температуры необходимо учитывать, поскольку она очень существенна.
Исследования показывают, что удельная теплоемкость реальных газов является сложной функцией температуры:

c = f(T).

Из этого следует, что в различных температурных интервалах для нагревания единицы количества газа на требуется разное количество теплоты.
Однако, если выбрать достаточно узкий температурный интервал, то для него можно принять удельную теплоемкость постоянной. Очевидно, что если этот температурный интервал стремится к нулю, удельная теплоемкость соответствует истинной удельной теплоемкости при данной температуре:

c = lim Δq/ΔT при Т стремящемся к нулю, или c = dq/dT, откуда

dq = cdT.

Чтобы определить количество теплоты, необходимое для нагревания газа от T1 до T2, необходимо проинтегрировать полученную дифференциальную зависимость.

При практическом решении теплотехнических задач пользуются понятием средней удельной теплоемкости в заданном температурном интервале.
Средняя удельная теплоемкость (cm) газа в некотором интервале температур – это количество теплоты, которое необходимо подвести к газу или отвести от него, чтобы изменить температуру на в данном температурном интервале.

***

Удельная теплоемкость газовой смеси

Под удельной массовой теплоемкостью ссм газовой смеси понимают количество теплоты, необходимое для нагревания 1 кг смеси на . Очевидно, что это количество теплоты можно получить путем суммирования количества теплоты, необходимое для нагревания каждого компонента, входящего в состав смеси:

ссм = Σ cimi,

где:
ci – удельная массовая теплоемкость i-го компонента смеси;
mi — массовая доля этого компонента в смеси.

Аналогично можно определить удельную объемную теплоемкость газовой смеси – как сумму удельных объемных теплоемкостей ее компонентов.
Удельная киломольная теплоемкость смеси газов определяется по формуле:

μсм ссм = Σ μiciri,

где: μi – молекулярная масса компонента смеси; ri – объемная доля компонента в составе смеси.

***

Термодинамические процессы

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»

(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

  • для специальности СПО «Механизация сельского хозяйства»
  • для специальности СПО «Техническое обслуживание и ремонт автомобильного транспорта»

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

  • для специальности СПО «Механизация сельского хозяйства»
  • для специальности СПО «Техническое обслуживание и ремонт автомобильного транспорта»



Понравилась статья? Поделить с друзьями:
  • Как найти дату заседания суда по фамилии
  • Как найти работу не увольняясь со старой
  • Как исправить вылет майнкрафта с модами
  • Как найти опцион на акцию
  • Как правильно составить приглашение на свадьбу