Как найти угловое расстояние астрономия

Угловое расстояние между звездами — онлайн расчет

При тестировании программы расчета углового расстояния между двумя точками на небесной сфере обнаружилось, что представленное здесь расчетное табло позволяет пересчитывать время из представления в часах, минутах и секундах в десятичные доли часа и наоборот, а угловые величины пересчитывает из дробно-десятичного формата в градусах в формат: градусы, минуты, секунды

Угловое расстояние между звездами
Сегодня эфемериды[1] небесных светил принято представлять в экваториальных координатах[2] в формате:
прямое восхождение — чч мм сс,сс;

склонение — (°) (′) (″,″).
Именно такой формат принят за основной для распознавания в позициях строчного ввода координат небесных объектов.
В окна этих позиций вы можете внести скопированные из электронных таблиц координаты небесных объектов.
Во многих случаях будет распознана даже единая строка из двух значений координат, например, такая: 03 ч 24м 19,35c +49° 51′ 40,5″, главное, чтобы присутствовали правильные обозначения водимых угловых координат. Помимо обозначений ч — часы, м — минуты, с — секунды, программа не будет «ругаться» и на представление данных с обозначениями h — hours, m — minutes, s — seconds.
Используемая здесь программа позволяет проводить расчет «на лету», реагируя на обновление данных, но только после того как введены все необходимые значения …
Для начала расчета нужно ввести или обновить обе пары значений координат звездных объектов. Если необходимое значение координат 0,0000°, то лучше сначала в соответствующую позицию ввести ненулевое значение, а затем, после того как включился зеленый свет для расчетов снова установить 0 (можно просто добавить после нуля точку или запятую, главное, чтобы программа распознала, что все координаты введены осознанно).

Расчет углового расстояния между двумя объектами (звездами) небесной сферы

Координаты небесного
Объекта 1

прямое восхождение
 

склонение

Целочисленный набор

ч
м
c

° 


Название звезды

Название созвездия

Угловое расстояние между объектами

Координаты небесного
Объекта 2

прямое восхождение
 

склонение

Целочисленный набор

ч
м
c

° 


Название звезды

Название созвездия

Что-то пошло не так…

После того как будут введены координаты обоих объектов (планет, звезд) должен погаснуть оранжевый запрос «Данные ?», включится зеленый цвет и автоматически начнется расчет углового расстояния, если это не произошло, то кликните по зеленому полю «Расчет».

Итоговый отчет

Oбъект 1: Регул (10ч 08м 22с; 11° 58′ 12″);
Созвездие: Leo, Лев (Leo)

Oбъект 2: Спика (13ч 25м 12с; -11° 09′ 36″);
Созвездие: Vir, Дева (Virgo)

Угловое расстояние между звездами Регул и Спика:
54,06124° .

Расчет углового расстояния между двумя астрономическими объектами, положение которых определено во второй экваториальной системе координат

Во второй экваториальной системе координат положение объектов определяется двумя угловыми параметрами, называемыми прямое восхождение α и склонение δ (Рис.1).

Угловое расстояние между небесными объектами

Рис. 1. Небесная сфера, угловое расстояние β между двумя точками на сфере и их угловые экваториальные координаты

Как видно из рисунка, β — это угловое расстояние между двумя небесными объектами, α1 и δ1, прямое восхождение и склонение, характеризующие положение Объекта 1 на небесной сфере, соответственно, положение Объекта 2 характеризуется α2 и δ2.
Склонение определяется величиной угла от линии небесного экватора до объекта в плоскости перпендикулярной экватору. Прямое восхождение определяется величиной угла между точкой весеннего равноденствия и точкой отсчета склонения. Важно запомнить, что прямое восхождение отсчитывается от точки весеннего равноденствия в направлении противоположном движению часовой стрелки (в точке весеннего равноденствия Солнце вступает в знак Овна) и его величина выражается не градусах, а в часах. На нашем рисунке величина α1 примерно составляет 1 час, а α2 достигает величины почти в 18 часов и соответствующая дуга охватывает три четверти длины линии небесного экватора.
Формула расчета углового расстояния выводится с помощью тригонометрических преобразований угловых параметров треугольников соединяющих точки, соответствующие положению объектов на небесной сфере, центр этой сферы и точки отсчета склонений объектов:

β = arccos(sin(δ1)*sin(δ2)+ cos(δ1)*cos(δ2)*cos(α1 — α2)),

при использовании численных методов, важно помнить что arccos(x)=0 при x=1, во избежание деления на 0.

Примечательные угловые расстояния

Самые интересные возможности программы расчета угловых расстояний между звездами раскрываются при ее применении к таким знаменитым астеризмам[3] как Большой Ковш и Малый Ковш, W Кассиопеи, Большой квадрат и сезонные Треугольники.
Сначала для интереса определим угловой размер Большого Ковша: Внешний край его черпака обозначен звездой Дубхе (α Большой Медведицы, 1,81m) и на краю его ручки располагается  Бенетнаш (η Большой Медведицы, 1,85m), выбираем эти звезды из разворачивающего списка расчетного табло и получаем: 25,71092° или 25° 42′39″.
У Малого Ковша соответствующие края определяют Кохаб (β Малой Медведицы, 2,07m) и Полярная Звезда (α Малой Медведицы, 1,97m), угловое расстояние между ними 16,58° — по этой величине можно калибровать угловое расстояние от большого до указательного пальца.
Размер W Кассиопеи определяется расстоянием между звездами Каф (β Cas; 2,27m) и Сегин (ε Cas, 3,37m): 13,26°

Развеиваем мифы
(нет в мире совершенства)

Большой квадрат — астеризм из звезд Альферац (α Андромеды, 2.06m) — Шеат (β Пегаса, 2.42m) — Маркаб (α Пегаса, 2.48m) — Альгениб (γ Пегаса, 2.84m) на самом деле совсем не квадрат:
Альферац — Шеат:   14,20886°;   Шеат  —  Маркаб:          12,87202°;
Альгениб Маркаб: 16,51628°;   Альферац Альгениб: 13,95490°.

На данный момент на сайте нет детального описания древнейшего астеризма Большой Квадрат, но иллюстрация с его довольно крупным изображением есть:

Как найти созвездие Рыбы

Рис. 2. Как найти созвездие Рыбы с помощью астеризма Большой Квадрат

Как видно из рисунка Большой Квадрат, на самом деле, по конфигурации наиболее близок к трапеции. Для представленных далее астеризмов сезонных Треугольников на сайте имеется хоть какое-то писание и иллюстрации, поэтому для желающих ознакомиться с этими звездными объектами расставлены ссылки на страницы с их изображениями.

Зимний треугольник: астеризм из звезд Бетельгейзе (α Ориона; 0,45m), Сириус (α Большого Пса, -1,45m) и Процион (α Малого Пса, 0,40m):
Бетельгейзе Сириус: 27,11047° ~ 27°;
Сириус — Процион: 25,70019° ~ 26°;
ПроционБетельгейзе: 25,96219 ~ 26° — без одного градуса равносторонний треугольник!

Весенний треугольник: Арктур (α Волопаса, -0,04m), Спика (α Девы, 0,98m), Денебола (β Льва, 2,14m)
Арктур — Спика: 32,78940°;
Спика — Денебола: 35,06157°;
Денебола — Арктур: 35,30957° — без нескольких угловых минут равнобедренный треугольник, хотя его все считают правильным. Наиболее древним вариантом Весеннего Треугольника считается треугольник, третьей вершиной которого вместо не очень яркой Денеболы является Регул (α Льва, 1,4m).

Летне-осенний треугольник: Вега (α Лиры, 0,03m), Денеб (α Лебедя, 1,25m) и Альтаир (α Орла, 0,77m).
Вега — Денеб: 23,84870°;
Денеб — Альтаир: 38,01195°;
Альтаир — Вега: 34,19057° — просто треугольник из ярких звезд, с помощью которого можно легко найти созвездия Стрелец и Козерог.

P.S. На этой странице используется Бета версия программы расчета между двумя небесными объектами, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).

1. Эфемеридами называются рассчитанные наперед угловые координаты небесных тел. если подходить к современному понятию строго, то ЭФЕМЕР́ИДЫ (астрономический термин), координаты небесных светил и др. переменные астрономические величины, вычисленные для ряда последовательных моментов времени и сведенные в таблицы.

2. Прямое восхождение и склонение — название координат во второй экваториальной системе отсчета.
Для определения положения светила s проводят через небесный экватор и Р (полюс мира)  большой круг, называемый часовым кругом, или кругом склонений. Дуга этого круга от экватора до светила есть первая координата — склонение светила d (δ). Склонение отсчитывается от экватора в обе стороны от 0° до 90°, причём для светил Южном полушария d (δ) принимается отрицательным.
…Восхождение светила a (α) —  дуга α1 небесного экватора (Рис.1), отсчитываемая от точки весеннего равноденствия в направлении, обратном вращению небесной сферы, до круга склонений данного светила. Она измеряет сферический угол между кругами склонений, проходящими через точку равноденствия и данное светило. Обычно ее выражается в часах, минутах и секундах времени и может иметь любое значение от 0ч до 24ч

3. Астеризм — группа звезд, образующая характерный рисунок и имеющая самостоятельное название. Астеризм может быть как частью созвездия, например, Трон, так и объединять несколько созвездий, например, Зимний Треугольник.

Большой российский энциклопедический словарь. 2012

Главная 
Статьи 
Блог 
Копилка 
✔ Расчет углового расстояния между звездами

В презентации кратко описаны способы определения углового расстояния между астрономическими объектами — как теоретически обоснованные и общепринятые, так и «народные».

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Слайд 1

Способы определения углового расстояния между астрономическими объектами. Выполнил воспитанник 11 А : Захаров Алексей Евгеньевич Преподаватель: Богданенко Елена Николаевна ГБОУ РО «НШИ с ПЛП» Таганрог, 2020

Слайд 2

Угловое расстояние Угловое расстояние — это мера видимого расстояния между двумя точками или объектами, выраженная в угловых единицах дуги, при условии, что наблюдатель находится в вершине угла концами которого являются две рассматриваемые точки. Поскольку угловое расстояние концептуально совпадает с углом, оно измеряется в тех же единицах, например, градусах или радианах и с использованием таких приборов, как гониометры или оптические приборы, специально предназначенные для поворота в четко определенных направлениях и записи соответствующих углов.

Слайд 3

Определение угловых размеров на небе с помощью руки Для того чтобы научиться искать созвездия на ночном небе, для начала, достаточно знать древнейший астеризм «Большой Ковш» — его семь звезд, самых ярких в созвездии Большая Медведица, являются направляющими (путеводными) для поиска звезд в других созвездиях. На примере астеризма Ковш созвездия Большая Медведица показаны угловые расстояния между звёздами, а также схематически вытянутая рука и расстояние между пальцами. Например, «ширина» мизинца равна 1°, кулак — 10°, «коза» с большим пальцем — 20°.

Слайд 4

Вариант с 3 — 4 — 6° выглядит очень любопытно. Во-первых, позволяет определить расстояние между объектами, которые лежат не на одной линии, а во-вторых, косточки указательного пальца так же могут выступать в качестве линейки. Ещё один вариант определения углового размера.

Слайд 5

Как найти созвездие Малая Медведица Поиск созвездия Малой Медведицы обычно все начинают с поиска Полярной Звезды , чтобы найти Полярную Звезду нужно мысленно провести линию между звездами края Ковша от Мерак к Дубхе и продолжить до первой яркой звезды — это и будет Полярная Звезда, указывающая направление на Север! Полярная Звезда является важнейшей навигационной звездой, а Мерак и Дубхе , помогающие ее найти, еще называют Указателями.

Слайд 6

Как найти созвездие Кассиопея Всесезонный способ определения местоположения Кассиопеи, заключается в «нацеливании» луча, через уже известные звезды. Самый лучший «выстрел» получится если продолжить линию от Алиот (ε UMa ) за Полярную Звезду (α UMa ) при этом получится точное попадание в Гамма Кассиопеи Нави (γ Cas ), к тому же приглядевшись, Вы обнаружите, что Большой Ковш и астеризм Трон Кассиопеи расположены центрально-симметрично относительно Полярной Звезды.

Слайд 7

Расчет углового расстояния между двумя астрономическими объектами Во второй экваториальной системе координат положение объектов определяется двумя угловыми параметрами, называемыми прямое восхождение α и склонение δ. β — это угловое расстояние между двумя небесными объектами, α 1 и δ 1 , прямое восхождение и склонение, характеризующие положение Объекта 1 на небесной сфере, соответственно, положение Объекта 2 характеризуется α 2 и δ 2 . Склонение определяется величиной угла от линии небесного экватора до объекта в плоскости перпендикулярной экватору. Прямое восхождение определяется величиной угла между точкой весеннего равноденствия и точкой отсчета склонения. Важно запомнить, что прямое восхождение отсчитывается от точки весеннего равноденствия в направлении противоположном движению часовой стрелки (в точке весеннего равноденствия Солнце вступает в знак Овна) и его величина выражается не градусах, а в часах .

Слайд 8

Расчет углового расстояния между двумя астрономическими объектами, положение которых определено во второй экваториальной системе координат На рисунке величина α 1 примерно составляет 1 час, а α 2 достигает величины почти в 18 часов и соответствующая дуга охватывает три четверти длины линии небесного экватора. Формула расчета углового расстояния выводится с помощью тригонометрических преобразований угловых параметров треугольников соединяющих точки, соответствующие положению объектов на небесной сфере, центр этой сферы и точки отсчета склонений объектов : β = arccos ( sin (δ 1 )* sin (δ 2 )+ cos (δ 1 )* cos (δ 2 )* cos (α 1 — α 2 )) ,

Слайд 9

Список используемых источников: 1) https://ru.wikipedia.org/wiki/%D0%A3%D0%B3%D0%BB%D0%BE%D0%B2%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5 2) https://2i.by/opredelenie-razmerov/ 3) http://www.abc2home.ru/znaki_zodiaka/sozvezdiya/kak_nayti_sozvezdie.html#gruppa_bolshaya_medvedica 4) http://www.abc2home.ru/blog/uglovoye_rasstoyanie_mezhdu_zvyozdami.html

Слайд 10

Спасибо за внимание !

«Ручное» определение угловых размеров

k5

Тут недавно Московский планетарий опубликовал и социальные сети быстро подхватили памятку «быстрое определение угловых размеров на небе с помощью пальцев вытянутой руки». Начнём с неё:

DN8nTdbW0AAw64f

(по клику изображение откроется в новой вкладке)

На примере астеризма Ковш созвездия Большая Медведица показаны угловые расстояния между звёздами, а также схематически вытянутая рука и расстояние между пальцами. Например, «ширина» мизинца равна 1°, кулак — 10°, «коза» с большим пальцем — 20°.

Ещё один вариант с пальцами руки и дополнительными «позами»:

cosmic distance

Здесь добавились 3 пальца от указательного до безымянного — итого 5°. А также 25° — расстояние от большого пальца до мизинца в максимальной растянутости пальцев.

Кстати, обратите внимание, 1″ (одна секунда) — это примерно диаметр 5-копеечной монеты с расстояния в 4 километра. А теперь вспомните, например, Туманность Сатурн (NGC 7009) в созвездии Водолей имеет видимый размер 0,58′ или 34″. Без телескопа никак…

На просторах интернета нашёл ещё один интересный вариант определения размеров. Смотрим ниже:

fingerangles

Вариант с 3 — 4 — 6° выглядит очень любопытно. Во-первых, позволяет определить расстояние между объектами, которые лежат не на одной линии, а во-вторых, косточки указательного пальца так же могут выступать в качестве линейки.

Напоследок добавлю картинку для сравнения размеров большого пальца и диаметра полной Луны:

01f11

0,5° или 30′ — угловой диаметр полной Луны. Для сравнения диаметры планет Солнечной системы (1′ = 60″):

Меркурий 5″ — 13″
Венера 10 ″ — 66″
Марс 4″ — 25″
Юпитер 30 ″ — 50″
Сатурн 1 5″ — 20″
Уран 3, 5″ — 5″
Нептун 2,2 ″ — 3″

Ну что, теперь, думается мне, вы не растеряетесь и сможете с лёгкостью определить расстояние между удалёнными пунктами на небесной сфере или размеры крупных объектов. А зная угловой размер и удалённость от наблюдателя, можно определить и линейный размер (онлайн-калькулятор).

Источник

Определение угловых расстояний на небе

Большинство объектов, которые исследуются в астрономии, недоступно непосредственному наблюдению, поэтому все сведения о них могут быт 1получены только на основе всестороннего изучения приходящего от них света (или других излучений). О том, как анализируется свет качественно и количественно, будет рассказано дальше. Пока что нам важно, что по направлению луча света, приходящего от небесного тела (светила), можно установить его положение на небе. Это делается путем угловых измерений.

Так, угол между зрительной трубой, направленной на небесное тело, и плоскостью горизонта называется его высотой над горизонтом. Угол между направлениями на две звезды определяет угловое расстояние между ними. Разумеется, угловое расстояние между небесными телами характеризует только их взаимное расположение на небе. Если, например, две звезды находятся друг от друга на малом угловом расстоянии и кажутся расположенными рядом, то это вовсе не означает, что они действительно близки между собой. Одна из них может быть во много раз дальше от Земли, чем другая. Фотографируя звездное небо и измеряя на

фотографиях расстояния между звездами, астрономы составляют звездные атласы и карты, схемы и списки точных координат звезд.

Угловые измерения на небе производят не только при разнообразных астрономических наблюдениях, но и широко импользуют с давних времен в навигации для ориентирования по Солнцу и звездам. В настоящее время по Солнцу и звездам осуществляют ориентацию спутников и космических кораблей.

Угловые измерения необходимы также для определения размеров небесных тел. Нетрудно понять, что видимые размеры светила зависят от расстояния до него. Например, угловойдиаметр Солнца, т. е. угол между направлениями на диаметрально противоположные точки солнечного диска, составляет 0,5°. Луна примерно в 400 раз меньше Солнца, но во столько же раз ближе к Земле; поэтому она имеет такой же угловой диаметр и во время солнечных затмений может полностью закрыть от нас диск Солнца. Звезды же так далеки от нас, что в самые сильные телескопы видны в виде точек, хотя известно, что многие из них гораздо больше Солнца.

Источник

При тестировании программы расчета углового расстояния между двумя точками на небесной сфере обнаружилось, что представленное здесь расчетное табло позволяет пересчитывать время из представления в часах, минутах и секундах в десятичные доли часа и наоборот, а угловые величины пересчитывает из дробно-десятичного формата в градусах в формат: градусы, минуты, секунды

Расчет углового расстояния между двумя объектами (звездами) небесной сферы

Координаты небесного
Объекта 1

Угловое расстояние между объектами

Координаты небесного
Объекта 2

Что-то пошло не так.

Итоговый отчет

Oбъект 1: Регул (10ч 08м 22с; 11° 58′ 12″);
Созвездие: Leo, Лев (Leo)

Расчет углового расстояния между двумя астрономическими объектами, положение которых определено во второй экваториальной системе координат

Во второй экваториальной системе координат положение объектов определяется двумя угловыми параметрами, называемыми прямое восхождение α и склонение δ (Рис.1).

uglovoy razmer big

Рис. 1. Небесная сфера, угловое расстояние β между двумя точками на сфере и их угловые экваториальные координаты

при использовании численных методов, важно помнить что arccos(x)=0 при x=1, во избежание деления на 0.

Примечательные угловые расстояния

Развеиваем мифы
(нет в мире совершенства)

На данный момент на сайте нет детального описания древнейшего астеризма Большой Квадрат, но иллюстрация с его довольно крупным изображением есть:

kak nayti ryby sozvezdie

Рис. 2. Как найти созвездие Рыбы с помощью астеризма Большой Квадрат

Как видно из рисунка Большой Квадрат, на самом деле, по конфигурации наиболее близок к трапеции. Для представленных далее астеризмов сезонных Треугольников на сайте имеется хоть какое-то писание и иллюстрации, поэтому для желающих ознакомиться с этими звездными объектами расставлены ссылки на страницы с их изображениями.

P.S. На этой странице используется Бета версия программы расчета между двумя небесными объектами, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).

1. Эфемеридами называются рассчитанные наперед угловые координаты небесных тел. если подходить к современному понятию строго, то ЭФЕМЕР́ИДЫ (астрономический термин), координаты небесных светил и др. переменные астрономические величины, вычисленные для ряда последовательных моментов времени и сведенные в таблицы.

Большой российский энциклопедический словарь. 2012

Источник

Что такое градусы, угловые минуты и угловые секунды?

star degrees

Как небесные наблюдатели измеряют расстояния в ночном небе? И как это понимать, когда они говорят об объектах, находящихся на расстоянии нескольких градусов (или нескольких угловых минут или угловых секунд) друг от друга.

Самый удобный измерительный прибор для измерения небесного свода всегда с вами, на конце вашей руки.

Вы можете использовать ширину вашего мизинца, кулака и расстояние между пальцами руки. Чтобы измерить расстояние между небесными объектами.

Это очень удобно, когда вы наблюдаете за планетами и звездами, или планетами, звездами и Луной. А также другими космическими объектами.

Вы часто обнаружите, что эти объекты описываются как находящиеся на некотором расстоянии друг от друга в градусах, дуговых минутах или дуговых секундах.

Насколько это далеко друг от друга?

Начнем с того, что от одной стороны неба до другой горизонт измеряется 180 градусами, или полукругом. Поэтому от горизонта до зенита, точки прямо над головой, должно быть 90 градусов. Если вы находитесь на ровной местности с ровным горизонтом. А не в холмистом или горном районе.

hand degrees

“подручное”средство для измерения градусов на небосводе. Изображение Астрономического общества Форт-Уэрта

Общее правило астрономов-любителей состоит в том, что ширина вашего кулака, удерживаемого на расстоянии вытянутой руки, равна примерно 10 градусам. Вы можете смотреть на свой кулак и кулак маленького ребенка и удивляться. Как оба могут измерять 10 градусов, но размер кулаков людей обычно пропорционален длине их рук. Таким образом, ребенок с маленьким кулаком и маленькой рукой будет измерять приблизительно 10 градусов с их точки зрения. Так же как взрослый с большим кулаком и более длинной рукой измеряет 10 градусов с их точки зрения.

Если вы хотите сделать грубую проверку, вытяните руку и кулак к горизонту. Затем положите вторую руку и кулак поверх первой и чередуйте, стараясь не раскачиваться, пока не насчитаете девять кулаков. Ваш девятый кулак должен быть направлен прямо вверх.

Для градусов меньше 10 вам будет достаточно только пальцев. На расстоянии вытянутой руки мизинец измеряет от 1 до 1,5 градусов. А три средних пальца около 5 градусов. Для больших углов вам нужно будет раздвинуть пальцы. Чтобы найти 15 градусов, используйте указательный палец и мизинец, разведенные в стороны. А чтобы найти 25 градусов, посмотрите на промежуток между мизинцем и большим пальцем, разведенными в стороны.

Big Dipper

Большая Медведица – хороший пример для проверки ваших измерений

Последние две звезды в чаше, те, которые используются для поиска полярной звезды. Они находятся примерно в 5 градусах друг от друга. Две верхние звезды в чаше Большой Медведицы находятся на расстоянии 10 градусов друг от друга. И, наконец, используя ту же самую далекую звезду в чаше Большой Медведицы, которую вы использовали для первых двух тестов плюс конечную звезду в ручке, вы отмерите 25 градусов.

Как вы думаете, насколько широко выглядит полная луна – сколько градусов она занимает? 5 градусов? Большинство людей переоценивают его размеры. Но на самом деле полная луна имеет всего пол-градуса в поперечнике.

А как насчет солнца? Хотя инстинктивно вы можете сказать, что солнце больше. Потому что его фактический размер огромен, если поставить его рядом с Луной. Однако площадь, которую занимают солнце и луна, равно полу-градусу. Вы можете догадаться об этом, даже не проверяя солнце с помощью ваших мизинцевых измерений. Потому что вы наверняка знаете, что во время полных солнечных затмений луна временно скользит прямо перед солнцем. Блокируя весь его свет на несколько коротких минут.

sun moon

Теперь, когда у вас есть представление о градусах. Если вы хотите оценить меньшие расстояния, вам нужно знать, что градусы далее делятся на минуты. В 1 градусе 60 угловых минут, поэтому и луна и солнце имеют 30 угловых минут в поперечнике. Угловые минуты также можно разделить. 60 угловых секунд составляют 1 угловую минуту.

Возвращаясь к Большой Медведице, звезды в изгибе ручки представляют собой двойную звездную систему под названием Мицар и Алькор. Они разделены всего 12 дуговыми минутами. Люди с хорошим зрением могут видеть две отдельные звезды без помощи оптических приборов. У Мицара есть еще один спутник, который еще ближе, чем Алькор. Двойная звезда Мицара находится всего в 14,4 угловых секундах. Минуты угла записываются символом ( ‘ ), а секунды записываются символом ( ” ).

Вы можете сказать, сколько времени до захода солнца, измерив его расстояние от горизонта. Солнце движется по небу примерно на 15 градусов за час. Движение на 15 градусов в час в течение 24 часов будет равно 360 градусам, или целому дню от заката до заката.

sunset timelapse

закат над Тадж-Махалом, фото Абхинав Сингхай

Конечно, солнце на самом деле не движется. Это только кажется, что оно движется в небе. Помните, что если вы не находитесь на экваторе, солнце не движется прямо к горизонту. Солнце опускается вниз под углом, который становится круче, чем ближе вы находитесь к полюсам.

Градусы, угловые минуты и угловые секунды, все это полезные единицы измерения в астрономии. Иногда даже ваша собственная рука может вам помочь произвести измерения помочь.

Источник

Особенности астрономии и её методов

Для приближённой оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звёздами ковша Большой Медведицы (α и β) составляет около 5° (рис. 1.2), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) — в 5 раз больше — примерно 25°. Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

3.2

Только два светила — Солнце и Луну — мы видим как диски. Угловые диаметры этих дисков почти одинаковы — около 30′ или 0,5°. Угловые размеры планет и звёзд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооружённого глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2—3′. Это означает, в частности, что наш глаз различает каждую светящуюся точку (звезду) отдельно от другой звезды в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее.

3.3

Горизонтальные координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами — теодолитами.

Источник

Почему так трудно определить размеры небесных объектов и расстояния до них? Все дело в том, что размеры удаленных объектов мы можем определить только по сравнению размерами известных объектов, а на небе нам не с чем сравнивать. Мы видим на небе множество светящихся точек, но яркость точки может определяться как ее размером, абсолютной светимостью, так и расстоянием до нее.

Поэтому в астрономии практически невозможно определить оптическими методами линейный размер удаленного объекта, можно определить только его угловой размер.

Древние греки изобрели тригонометрию, которая позволяет определить количественные соотношения между углами, линейными размерами и линейными расстояниями. С помощью простых математических соотношений, включающих базовую тригонометрию, мы можем вычислить расстояния до удаленных объектов, размеры которых известны (или размеры, если расстояния известны).

Уравнение малых углов

Если углы малые, то синус угла примерно равен тангенсу, который, в свою очередь примерно равен самому углу в радианной мере. 

Уравнение малых углов включает в себя угловой размер объекта, его линейный размер и расстояние. Если известны какие-либо две из этих величин, можно вычислить третью. Обратимся к угловому размеру с символом a, выраженному в секундах дуги. Обозначим диаметр объекта как d, а расстояние до него как D. Тогда уравнение малого угла

a / 206 265 = d / D

Число 206 265 называется константой пропорциональности. Число 206 265 на самом деле является числом секунд дуги в угле 57,3°, который является специальным углом, называемым радианом. Радиан определяется как центральный угол дуги, длина которой равна радиусу окружности. Длина окружности равна 2πr, Радиан равен 360° / 2 π = 57,3° или около шестой части полного круга. 

aDd

Вот пример использования уравнения малого угла. Предположим, что ваш друг ростом в 2 метра стоит через поле от вас, где он виден под углом ½°, или 1800″. Как он далеко от вас? Мы хотим найти расстояние D, выразим эту величину из уранения:

D = 206 265 d / a

man adD

Используя метрические единицы, найдем

D = (2.1 x 105 x 2) / (1.8 x 103) = 2.3 х 102 метра = 230 метров

Если ваш друг имеет рост 2 метра и угловой размер его составляет ½ ° (или 1800 угловых секунд), расстояние D составляет 230 метров. Обратите внимание, что мы округляем все наши оценки до двух значащих цифр, потому что измерение угла вряд ли будет очень точным.

Как поняли древние греки, уравнение малого угла можно использовать для определения астрономических расстояний. Они не могли точно измерить диаметр Луны, но они знали ее угловой размер a, который также составляет примерно ½°, или 1800″.

moon add

Если мы используем современные знания о том, что диаметр Луны составляет около 3500 километров, мы можем оценить расстояние до нее так же, как мы это сделали для расстояния друга выше. В метрических единицах d будет 3,5 × 106 метров. Уравнение будет гласить:

D = (2.1 × 105 × 3.5 × 106) / (1.8 × 103) ≈ 4 х 108 метров ≈ 4 x 105 километров.

Реальное среднее расстояние до Луны 384 000 км. Неплохая точность!

Методы определения расстояний до звезд

Годичный параллакс

Кажущееся перемещение более близкой звезды на фоне очень далеких звезд происходит по эллипсу с периодом в 1 год и отражает движение наблюдателя вместе с Землей вокруг Солнца. Маленький эллипс, описываемый звездой, называется параллактическим эллипсом. В угловой мере большая полуось этого эллипса равна величине угла, под которым со звезды видна большая полуось земной орбиты, перпендикулярная направлению на звезду. Этот угол называется годичным параллаксом (π).

0002

Параллактические смещения звезд служат неопровержимым доказательством обращения Земли вокруг Солнца. Расстояния до звезд определяются по их годичному параллактическому смещению, которое обусловлено перемещением наблюдателя (вместе с Землей) по земной орбите.

Если CT = a есть средний радиус земной орбиты, SC = r — расстояние до звезды S от Солнца C, а угол π — годичный параллакс звезды, то

rasin pi

Так как годичные параллаксы звезд оцениваются десятичными долями секунды, а 1 радиан равен 206265′′, то расстояние до звезды можно определить из соотношения

rae

При измерении расстояний до звезд астрономическая единица слишком мала. Поэтому для удобства определения расстояний до звезд в астрономии применяется специальная единица длины — парсек (пк), название которой происходит от слов «параллакс» и «секунда».

Парсек — это расстояние, с которого радиус земной орбиты был бы виден под углом в 1′′.

1 пк = 206 265 а. е. = 3,086 · 1013 км.

Rasstoyanie do zvezd

Таким образом, расстояние до звезд в парсеках будет определяться выражением

1ps

В астрономических единицах обычно выражаются расстояния до тел Солнечной системы. Расстояния до небесных тел, находящихся за пределами Солнечной системы, обычно выражаются в парсеках, килопарсеках (1 кпк = 103 пк) и мегапарсеках (1 Мпк = 106 пк), а также в световых годах (1 св. г. = 9,46 · 1012 км = 63 240 а. е. = 0,3067 пк или 1 пк = 3,26 св. г.).

Световой год — расстояние, которое электромагнитное излучение (в вакууме) проходит за 1 год.

Источник

Фотометрический метод определения расстояний

Освещенности, создаваемые одинаковыми по мощности источниками света, обратно пропорциональны квадратам расстояний до них. Следовательно, видимый блеск одинаковых светил (т.е. освещенность, создаваемая у Земли на единичной площадке, перпендикулярной лучам света) может служить мерой расстояний до них. Выражение освещенностей в звездных величинах (m — видимая, M — абсолютная звездная величина) приводит к следующей основной формуле фотометрических расстояний rф(пк):

lgrf

Для светил, у которых известны тригонометрические параллаксы, можно, определив M по этой же формуле, сопоставить физические свойства с абсолютными звездными величинами. Это сопоставление показало, что абсолютные звездные величины многих классов светил (звезд, галактик и др.) можно оценивать по ряду их физических свойств.

Основным способом оценки абсолютных величин звезд является спектральный способ: в спектрах звезд одного и того же спектрального класса обнаружены особенности, указывающие на их абсолютные величины (чаще всего это усиление линий ионизованных атомов с возрастанием светимости звезд). По таким признакам звезды разделены на классы светимости. По классам и более мелким подклассам светимости, оцениваемым по спектрам звезд, можно находить абсолютные величины с погрешность до 0,5m. Эта погрешность соответствует относительной погрешности 30%.

Цефеиды (стандартные свечи)

Важный метод определения фотометрических расстояний в Галактике и до соседних звездных систем — галактик — основан на характерном свойстве переменных звезд — цефеид. Короткопериодические цефеиды (с периодами колебаний блеска менее суток) в среднем имеют абсолютную величину +0,5m. Они встречаются в шаровых звездных скоплениях, в центральной области и сферической короне Галактики и относятся к ее звездному населению II типа. По цефеидам в конечном счете найдены расстояния до шаровых звездных скоплений и установлено расстояние от Солнца до центра Галактики.

output ge4GsV

Для долгопериодических цефеид (периоды колебаний от 1 до 146 сут.), относящихся к звездному населению I типа (плоской составляющей Галактики), установлена важная зависимость период-светимость, согласно которой, чем короче период колебаний блеска, тем цефеида слабее по абсолютной величине. С помощью этой зависимости можно определить абсолютные величины цефеид по длительности их периодов колебаний блеска и, следовательно, фотометрические расстояния до цефеид и звездных скоплений, спиральных рукавов и звездных систем, где они наблюдаются (см. Период-светимость зависимость). Погрешность определения расстояний по цефеидам составляет для звездных скоплений в среднем 40% (в отдельных случаях меньше).

star left     star right

Как найти угловое расстояние, зная точку склонения и прямое восхождение?

Supergeroj
[970]

4 года назад 

Груст­ный Родже­р
[397K]

2 года назад 

Для этого есть онлайн-калькулятор. В него вводятся небесные координаты обеих светил, и он выдаст угловое расстояние между ними. Кстати, зная угловое расстояние и зная обычное линейное расстояние до каждого, можно до кучи, через теорему косинусов, найти и линейное расстояние между ними.

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!

Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!

Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее..

Статистика проекта за месяц

Новых пользователей: 4379

Создано вопросов: 15869

Написано ответов: 37355

Начислено баллов репутации: 889482

Понравилась статья? Поделить с друзьями:
  • Как найти время в перми
  • Как найти адрес с помощью координат
  • Как найди попутчицу для
  • Как найти через впн
  • Как найти стих маме на день рождения