Как найти угловое ускорение через частоту вращения

Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела в теории и на примерах решения задач.

Угловая скорость

Угловой скоростью называют скорость вращения тела, определяющуюся приращением угла поворота тела за некоторый промежуток (единицу) времени.

Обозначение угловой скорости: ω (омега).

Рассмотрим некоторое твердое тело, вращающееся относительно неподвижной оси.

С этим телом свяжем воображаемую плоскость П, которая совершает вращение вместе с заданным телом.
Угловая скорость вращающегося тела
Вращательное движение определяется двугранным углом φ между двумя плоскостями, проходящими через ось вращения. Изменение этого угла с течением времени есть закон вращательного движения:

Положительным считается угол, откладываемый против хода часовой стрелки, если смотреть навстречу выбранному направлению оси вращения Oz. Угол измеряется в радианах.

Быстрота изменения угла φ (перемещения плоскости П из положения П1 в положение П2) – это и есть угловая скорость:

Приняв вектор k как единичный орт положительного направления оси, получим:

Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.

Формулы угловой скорости

Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:

  1. если известно количество оборотов n за единицу времени t:
    Формула угловой скорости по заданным оборотам
  2. если задан угол поворота φ за единицу времени:
    Формула угловой скорости от угла поворота
  3. если известна окружная скорость точки тела v и расстояние от оси вращения до этой точки r:

Размерности угловой скорости:

  • Количество оборотов за единицу времени [об/мин], [c-1].
  • Угол поворота за единицу времени [рад/с].

Определение угловой скорости

Пример: Диск вращается относительно своего центра.
Известна скорость v некоторой точки A, расположенной на расстоянии r от центра вращения диска.
Угловая скорость вращения диска
Определить величину и направление угловой скорости диска ω, если v = 5 м/с, r = 70 см.

Таким образом, угловая скорость диска составляет 7,14 оборотов в секунду. Направление угловой скорости можно определить по направлению скоростей её точек.

Вектор скорости точки A стремится повернуть диск относительно центра вращения против хода часовой стрелки, следовательно, направление угловой скорости вращения диска имеет такое же направление.

Другие примеры решения задач >

Угловое ускорение

Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:


Обозначение: ε (Эпсилон)

Единицы измерения углового ускорения: [рад/с2], [с-2]

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает (вращение ускоряется), а при отрицательном — уменьшается (вращение замедляется).

Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:

Расчет углового ускорения

Пример: По заданному значению касательной составляющей полного ускорения aτ точки B, расположенной на расстоянии r от центра вращения колеса.
Пример расчета углового ускорения колеса
Требуется определить величину и направление углового ускорения колеса ε, если aτ = 10 м/с2, r = 50 см.

Угловое ускорение колеса в заданный момент времени составляет 20 оборотов за секунду в квадрате. Направление углового ускорения определяется по направлению тангенциального ускорения точки.

Здесь, угловое ускорение направлено противоположно направлению угловой скорости вращения колеса. Это означает, что вращение колеса замедляется.

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это  радиан:

Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость

ω = 1,5 с-1 = 9,42 рад/с.

Смотрите также:

  • Примеры расчета угловой скорости и ускорения
  • Скорости и ускорения точек вращающегося тела

Угловое ускорение что это?

Угловое ускорение (varepsilon)  физическая величина, характеризующая изменение угловой скорости при движении тела.

Единица измерения: (lbrackvarepsilonrbrack=frac1{с^2}) или (с^{-2})

Угловая скорость

Круговым движением точки вокруг оси называют движение, где траектория точки  окружность с центром, который лежит на оси вращения, перпендикулярной плоскости окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Угловая скорость (omega) векторная физическая величина, характеризующая скорость изменения угла поворота при круговом движении точки или твердого тела.

При движении по окружности (круговом движении) скорость меняет свое направление, значит такое движение не может считаться равномерным, оно ускоренное или равноускоренное (в частных случаях).

Вектор угловой скорости направлен вдоль оси вращения.

Основные формулы для вычисления угловой скорости

Для равномерного вращения (когда за равные отрезки времени тело поворачивается на один и тот же угол):

  1. (omega=frac nt), где (n) количество оборотов за единицу времени (t).
  2. (omega=fracvarphi t), где (varphi) угол поворота, (t) время, за которое он совершен.
  3. (omega=frac{2pi}T), где (Т) период обращения (время, за которое тело/точка совершает один оборот).
  4. (omega=2pinu), где (nu) числом оборотов в единицу времени.

Единица измерения угловой скорости в СИ: (lbrackomegarbrack=frac{рад}с)

Связь между угловой скоростью и нормальным (центростремительным) ускорением

Центростремительное (нормальное) ускорение (a_n)  это составляющая полного ускорения, которая характеризует изменение направления вектора скорости при криволинейном движении. Другим компонентом полного ускорения является тангенциальное ускорение, оно характеризует изменение величины скорости.

Центростремительное ускорение определяется по формуле:

 (a_n=frac{V^2}R),

где (V)  скорость движения, (R)  радиус окружности.

Единица измерения в СИ: (lbrack a_nrbrack=frac м{с^2})

Итак, формула связывающая эти две величины:

(a_n=omega^2R)

Основные формулы для расчета углового ускорения

Значение углового ускорения в определенный момент времени вычисляется как первая производная от угловой скорости или вторая производная от угла поворота по времени.

(varepsilon=lim_{triangle trightarrow0}frac{triangleomega}{triangle t}=frac{domega}{dt}=frac{d^2varphi}{dt}=overset.omega=overset{..}varphi)

Угловое ускорение маховика

(varepsilon=fracomega t=frac{2pi n}t), где (n)  количество оборотов за единицу времени (t).

Среднее угловое ускорение

Средним угловым ускорением тела называют отношение изменения угловой скорости к отрезку времени, за который оно совершилось.

(leftlanglevarepsilonrightrangle=frac{triangleomega}{triangle t})

Тангенциальное ускорение

Тангенциальным (касательным) ускорением (a_tau) называют ту составляющую полного ускорения, которая направлена по касательной к траектории движения в данной точке. Тангенциальное ускорение описывает изменение скорости по модулю при криволинейном движении.

(a_tau=varepsilon r), где (varepsilon) угловое ускорение, (r)   радиус кривизны траектории в заданной точке.

Мгновенное угловое ускорение

Мгновенное угловое ускорение (alpha) есть первая производная угловой скорости по времени или вторая производная углового перемещения по времени.

(alpha=tg(varepsilon)=frac{;domega}{dt}=frac{d^2phi}{dt^2})

Движение
твердого тела, при котором все его точки
перемещаются по окружности, центры
которой расположены на перпендикулярной
этим окружностям неподвижной прямой,
называется вращательным.
Неподвижная прямая, на которой лежат
центры круговых траекторий то­чек
тела, называется его осью
вращения.

Для образования оси вра­щения достаточно
закрепить какие-либо две точки тела. В
качестве примеров вращательного движения
тел можно привести движение две­рей
или створок окон при их открывании или
закрывании.

Представим
себе тело в виде цилиндра, ось AB
которого лежит в подшипниках (рис. 7.3).

Рис. 7.3. К
анализу вращательного движения твердого
тела

Движением одной
какой-либо точки однозначно определить
вращательное движение тела нельзя.

Для
установления закона вращательного
движения тела, по кото­рому можно
определять его положение в данный
момент, проведем через ось вращения
тела связанную только с нею неподвижную
полуплоскость НП, а внутри тела отметим
подвижную полуплоскость, ко­торая
вращается около оси вместе с телом,
теперь угол
φ,
образуемый в каждый данный момент
времени полуплоскостями НП и ПП, точно
определяет положение тела в пространстве
(см. рис. 7.3). Угол φ
называется углом
поворота

и выражается в радианах. Чтобы определять
положение тела в пространстве в любой
момент времени, необходимо знать
зависимость между углом поворота φ
и временем t,
т. е. знать закон вращательного движения
тела:

Быстрота
изменения угла поворота во времени
характеризуется величиной, которая
называется угловой
скоростью.

Представим,
что в некоторый момент времени t
положение
вращающегося тела определяется углом
поворота φ,
а в момент t
+ Δt –
углом поворота φ
+ Δ φ.
Следовательно, за время Δt
тело повернулось на угол Δ
φ,
и величина

называется
средней
угловой скоростью.

Единицей
угловой скорости является 1 рад/с.
Характеристикой быстроты изменения
угловой скорости служит угловое
ускорение,

обозначаемое
.
Среднее ускорение
;

.

Единица
углового ускорения 1 рад/с2.

Условимся
угол поворота, отсчитываемый против
хода часовой
стрелки,
считать положительным, а отсчитываемый
по ходу часовой стрелки – отрицательным.


б

а

Рис. 7.4. К
определению вида вращательного движения

Векторы


и

– это скользящие векторы, которые
направлены по оси вращения, чтобы, глядя
из конца вектора

(или

),
видеть вращение, происходящее против
часовой стрелки.

Если
векторы

и

направлены в одну сторону (рис. 7.4,
а),
то вращательное движение тела ускоренное
– угловая скорость возрастает. Если
векторы

и

направлены в противоположные стороны,
то вращение тела замедленное

угловая скорость уменьшается (рис. 7.4,
б).

7.3. Частные случаи вращательного движения

1. Равномерное
вращательное движение
.
Если угловое ускорение
и, следовательно, угловая скорость

,
(7.1)

то
вращательное движение называется
равномерным. Из выражения (7.1) после
разделения переменных получим

Если
при изменении времени от 0 до t
угол поворота изменялся от φ0
(начальный угол поворота) до φ,
то, интегрируя уравнение в этих пределах:

получаем уравнение
равномерного вращательного движения

,

которое в
окончательном виде записывается так:

.

Если

,
то

.

Таким
образом, при равномерном вращательном
движении угловая скорость

или при
.

2. Равнопеременное
вращательное движение
.
Если угловое ускорение

(7.2)

то
вращательное движение называется
равнопеременным. Производя разделение
переменных в выражении (7.2):

и
приняв, что при изменении времени от 0
до t
угловая скорость изменилась от
(начальная угловая скорость) до
,
проинтегрируем уравнение в этих пределах:

или

,

т. е.
получим уравнение


(7.3)

выражающее значение
угловой скорости в любой момент времени.

Закон
равнопеременного вращательного движения


или, с учетом уравнения (7.3):

Полагая,
что в течение времени от 0 до t
угол поворота изменялся от
до,
проинтегрируем уравнение в этих пределах:

или

Уравнение
равнопеременного вращательного движения
в оконча­тельном виде


(7.4)

Первую
вспомогательную формулу получим,
исключив из формул (7.3)
и
(7.4) время:


(7.5)

Исключив
из тех же формул угловое ускорение
,
получим вторую вспомогательную формулу:


(7.6)

где

средняя угловая скорость при
равнопере­менном вращательном
движении.

Когда


и
,
формулы (7.3)–(7.6) приобретают более
простой вид:

В
процессе конструирования угловое
перемещение выражают не в радианах, а
просто в оборотах.

Угловая
скорость, выражаемая количеством
оборотов в минуту, называется частотой
вращения

и обозначается n.
Установим зависимость между

–1)
и n
(мин–1).
Так как
,
то при n
(мин–1)
за t
=
1 мин = 60 с угол поворота
.
Следовательно:

.

При
переходе от угловой скорости

–1)
к частоте вращения n
(мин–1)
имеем

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF18273

Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза
б) уменьшить в 2 раза
в) увеличить в 4 раза
г) уменьшить в 4 раза


Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 22k


Download Article

Different ways to calculate rotation speed


Download Article

Most people have a general understanding of the idea of velocity and acceleration. Velocity is the measure of how fast an object is moving, and acceleration is the measure of how quickly the object’s velocity is changing (i.e., speeding up or slowing down). When the object is moving in a circle, such as a spinning tire or a rotating CD, velocity and acceleration are generally measured by the angle of rotation. They are then called angular velocity and angular acceleration. If you know the object’s velocity over some period of time, you can calculate its average angular acceleration. Alternatively, you may have a function to calculate the object’s position. With this information, you can calculate its angular acceleration at any chosen instant.

  1. Image titled Calculate Angular Acceleration Step 1

    1

    Determine the function for angular position. In some cases, you may be provided with a function or formula that predicts or assigns the position of an object with respect to time. In other cases, you may derive the function from repeated experiments or observations. For this article, we assume that the function has been provided or previously calculated.[1]

  2. Image titled Calculate Angular Acceleration Step 2

    2

    Find the function for angular velocity. Velocity is the measure of how fast an object changes its position. In layman’s terms, we think of this as its speed. In mathematical terms, the change of position over time can be found by finding the derivative of the position function. The symbol for angular velocity is omega . Angular velocity is generally measured in units of radians divided by time (radians per minute, radians per second, etc.).[2]

    Advertisement

  3. Image titled Calculate Angular Acceleration Step 3

    3

    Find the function for angular acceleration. Acceleration is the measure of how fast an object’s velocity is changing over time. You can mathematically calculate the angular acceleration by finding the derivative of the function for angular velocity. Angular acceleration is generally symbolized with alpha , the Greek letter alpha. Angular acceleration is reported in units of velocity per time, or generally radians divided by time squared (radians per second squared, radians per minute squared, etc.).[3]

  4. Image titled Calculate Angular Acceleration Step 4

    4

    Apply the data to find instantaneous acceleration. Once you have derived the function for instantaneous acceleration as the derivative of velocity, which in turn is the derivative of position, you are ready to calculate the instantaneous angular acceleration of the object at any chosen time.[4]

  5. Advertisement

  1. Image titled Calculate Angular Acceleration Step 5

    1

  2. Image titled Calculate Angular Acceleration Step 6

    2

    Measure final angular velocity. The second piece of information that you need is the angular velocity of the spinning or rotating object at the end of the time period that you want to measure. This is to be called the “final” velocity.[6]

    • A compact disc plays in the machine by rotating at an angular velocity of 160 radians per second.
    • The roller coaster, after applying its brakes to the spinning wheels, ultimately reaches an angular velocity of zero when it stops. This will be its final angular velocity.
  3. Image titled Calculate Angular Acceleration Step 7

    3

    Measure the elapsed time. To calculate the average angular velocity of the spinning or rotating object, you need to know the amount of time that passes during your observation. This can be found by direct observation and measurement, or the information can be provided for a given problem.[7]

    • The owner’s manual for the CD player provides the information that the CD reaches its playing speed in 4.0 seconds.
    • From observations of roller coasters being tested, it has been found that they can come to a complete stop within 2.2 seconds from when the brakes are initially applied.
  4. Image titled Calculate Angular Acceleration Step 8

    4

    Calculate the average angular acceleration. If you know the initial angular velocity, the final angular velocity, and the elapsed time, fill that data into the equation and find the average angular acceleration.[8]

    • For the example of the CD player, the calculation is as follows:
    • For the roller coaster example, the calculation looks like this:
    • Note that acceleration is always going to be in units of some distance measurement “per” time squared. With angular acceleration, the distance is generally measured in radians, although you could convert that to number of rotations if you wish.
  5. Advertisement

  1. Image titled Calculate Angular Acceleration Step 9

    1

    Understand the concept of angular motion. When people think of the speed of an object, they often consider linear motion — that is, objects traveling mostly in a straight line. This would include a car, a plane, a ball that is thrown or any number of other objects. However, angular motion describes objects that spin or rotate. Think of the earth spinning on its axis. The position or speed of the earth can be measured with angular quantities. A spinning compact disc (or record player, if you’re old enough), electrons on their axes, or the wheels of a car on the axle are other examples of rotating objects that can be measured through angular motion.[9]

  2. Image titled Calculate Angular Acceleration Step 10

    2

    Visualize angular position. When you measure the position of a moving vehicle, for example, you can measure the distance traveled in a straight line from the starting point. With a rotating object, the measurement is generally done in terms of the angle around a circle. By convention, the starting or “zero” point is generally a horizontal radius from the center to the right side of the circle. The distance traveled is measured by the size of the angle theta , measured from that horizontal radius.[10]

    • The angle that is being measured is commonly represented by theta , the Greek letter theta.
    • Positive motion is measured in a counterclockwise direction. Negative motion is measured in a clockwise direction.
  3. Image titled Calculate Angular Acceleration Step 11

    3

    Measure angular motion in radians. Linear travel is generally measured in some unit of distance, such as miles, meters, inches or some other unit of length. Rotational or angular motion is generally measured in units called radian. A radian is a fraction of the circle. For standard reference, mathematicians use the “unit circle,” which has a standard radius of 1 unit.[11]

    • One full rotation around the unit circle is said to measure 2π radians. Therefore, a half circle is π radians, and a quarter circle is π/2 radians.
    • Sometimes it is useful to convert from radians to degrees. If you recall that a full circle is 360 degrees, you can find the conversion as follows:
    • Thus, one radian is about equal to 57.3 degrees.
  4. Image titled Calculate Angular Acceleration Step 12

    4

    Understand the concept of angular acceleration. Angular acceleration is the measurement of how fast or slow a rotating object is changing its velocity. In other words, is the spinning speeding up or slowing down? If you know the angular velocity at a starting time and then at a later ending time, you can calculate the average angular acceleration over that time interval. If you know the function for the object’s position, you can use calculus to derive the instantaneous angular acceleration at any chosen time.[12]

    • People often use the word “acceleration” to mean speeding up, and “deceleration” to mean slowing down. In mathematical and physical terms, however, only the word “acceleration” is used. If the object is speeding up, the acceleration is positive. If it is slowing down, the acceleration is negative.
  5. Advertisement

Add New Question

  • Question

    What are the formulas to find the initial acceleration of an object?

    Community Answer

    Initial acceleration generally has to be given as a condition of the problem or the experiment.

  • Question

    What is the direction of radial and tangential acceleration and how do they affect each other?

    Community Answer

    Angular (or radial) measurements are generally counterclockwise. Tangential acceleration means the straight line direction of the tangent at some measured point along the circle. The tangent is a line that is perpendicular to the radius at that point.

  • Question

    How can you find angular acceleration in revolutions per second squared?

    Community Answer

    This article shows how to find acceleration in radians per second squared. To convert the number of radians to the number of revolutions, recall that 1 full circle (or 1 revolution) is equal to 2pi radians. This is roughly equivalent to 6.28 radians per revolution. If you know the acceleration in radians per second squared, divide that answer by 6.28 to get revolutions per second squared.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • Remember to express final results with the proper units. Angular position is usually expressed in radians. Angular velocity is expressed in radians per time. Angular acceleration is expressed in units of radians per time squared.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate instantaneous angular acceleration, start by determining the function for angular position, or the position of the object with respect to time. Next, find the angular velocity, which is the measure of how fast the object changes its position. Then, find the derivative of the function for angular velocity in order to determine the function for angular acceleration. Finally, plug in the data to find the instantaneous acceleration of the object at any chosen time. To learn more, including how to calculate average angular acceleration, read on.

Did this summary help you?

Thanks to all authors for creating a page that has been read 91,057 times.

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Как найти штрафы по казахстану
  • Как исправить неверно переданные показания электросчетчика
  • Заговор как найти деньги которые потеряла
  • Как блум нашла своих родителей мультик
  • Как найти свой стиль одежды онлайн