Как найти угловую скорость формула через частоту

Что такое угловая скорость

​Угловая скорость (обозначается как (omega)) — векторная величина, характеризующая скорость и направление изменения угла поворота со временем.

Модуль угловой скорости для вращательного движения совпадает с мгновенной угловой частотой вращения, а направление перпендикулярно плоскости вращения и связано с направлением вращения правилом правого винта.

Единица измерения

В Международной системе единиц (СИ) принятой единицей измерения угловой скорости является радиан в секунду (рад/с)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Формула угловой скорости

Вектор угловой скорости определяется отношением угла поворота ((varphi)) к интервалу времени ((mathcal t)), за которое произошел поворот:

(omega=frac{trianglevarphi}{trianglemathcal t})

Зависимость угловой скорости от времени

Зависимость (varphi ) от (mathcal t) наглядно показана на графике:

Зависимость угловой скорости от времени

 

Угол, на который повернулось тело, характеризуется площадью под кривой.

Угловая скорость вращения, формула

Через частоту

(omega=2pimathcal n)

(mathcal n) — частота вращения ((1/с))

(pi) — число Пи ((approx 3,14))

(mathcal n=frac1T)

(T )— период вращения (время, за которое тело совершает один оборот)

Через радиус

(omega=frac vR)

(v) — линейная скорость(м/с)

(R) — радиус окружности (м)

Как определить направление угловой скорости

Направление скорости в физике можно определять двумя способами:

  1. Правило буравчика. Буравчик имеет правую резьбу (вращательное движение вправо при закручивании). Если вращать буравчик в направлении вращения тела, он будет завинчиваться (или вывинчиваться) в ту сторону, куда направлена угловая скорость. 
  2. Правило правой руки. Представим, что взяли тело в правую руку. Следует направлять и вращать его туда, куда указывают четыре пальца. Отведенный в сторону большой палец покажет направление угловой скорости при этом вращении.

Связь линейной и угловой скорости

Линейная скорость ((v)) тела, расположенного на расстоянии (R) от оси вращения, прямо пропорциональна угловой скорости.

(v=Romega)

(R) — радиус окружности (м)

Чему равна мгновенная угловая скорость

Мгновенную угловую скорость нужно находить как предел, к которому стремится средняя угловая скорость при (trianglemathcal trightarrow0) :

(omega=lim_{trianglerightarrow0}frac{trianglevarphi}{trianglemathcal t})

Измеряется в рад/с

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.


Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Связь со вторым законом Ньютона

Как вывести формулу центростремительного ускорения

Движение по циклоиде*

Иногда применительно к автомобилям всплывают вопросы из математики и физики. В частности, одним из таких вопросов является угловая скорость. Она имеет отношение как к работе механизмов, так и к прохождению поворотов. Разберёмся же, как определить эту величину, в чём она измеряется и какими формулами тут нужно пользоваться.

Содержание

  • Как определить угловую скорость: что это за величина?
  • Формула времени, за которое вращается точка по окружности заданного радиуса
  • Угол поворота и период обращения
  • Чему равна угловая скорость в конкретных случаях?
  • Связь угловой и линейной скоростей
  • Ускорение, момент и связь их с массой
  • Шарнир как пример передачи импульса

Как определить угловую скорость: что это за величина?

С физико-математической точки зрения эту величину можно определить следующим образом: это данные, которые показывают, как быстро некая точка осуществляет оборот вокруг центра окружности, по которой она движется.

ПОСМОТРЕТЬ ВИДЕО

Эта, казалось бы, чисто теоретическая величина, имеет немалое практическое значение при эксплуатации автомобиля. Вот лишь несколько примеров:

  • Необходимо правильно соотносить движения, с которыми вращаются колёса при повороте. Угловая скорость колеса автомобиля, движущегося по внутренней части траектории, должна быть меньше, чем у внешнего.
  • Требуется рассчитывать, насколько быстро в автомобиле вращается коленвал.
  • Наконец, сама машина, проходя поворот, тоже имеет определённую величину параметров движения – и от них на практике зависит устойчивость автомобиля на трассе и вероятность опрокидывания.

Формула времени, за которое вращается точка по окружности заданного радиуса

Для того, чтобы рассчитывать угловую скорость, используется следующая формула:

ω = ∆φ /∆t

Где:

  • ω (читается «омега») – собственно вычисляемая величина.
  • ∆φ (читается «дельта фи») – угол поворота, разница между угловым положением точки в первый и последний момент времени измерения.
  • ∆t
    (читается «дельта тэ») – время, за которое произошло это самое смещение. Точнее, поскольку «дельта», это означает разницу между значениями времени в момент, когда было начато измерение и когда закончено.

Приведённая выше формула угловой скорости применяется лишь в общих случаях. Там же, где речь идёт о равномерно вращающихся объектах или о связи между движением точки на поверхности детали, радиусом и временем поворота, требуется использовать другие соотношения и методы. В частности, тут уже будет необходима формула частоты вращения.

Угловая скорость измеряется в самых разных единицах. В теории часто используется рад/с (радиан в секунду) или градус в секунду. Однако эта величина мало что означает на практике и использоваться может разве что в конструкторской работе. На практике же её больше измеряют в оборотах за секунду (или минуту, если речь идёт о медленных процессах). В этом плане она близка к частоте вращения.

Угол поворота и период обращения

Гораздо более часто, чем угол поворота, используется частота вращения, которая показывает, сколько оборотов делает объект за заданный период времени. Дело в том, что радиан, используемый для расчётов – это угол в окружности, когда длина дуги равна радиусу. Соответственно в целой окружности находится 2 π радианов. Число же π – иррациональное, и его нельзя свести ни к десятичной, ни к простой дроби. Поэтому в том случае, если происходит равномерное вращение, проще считать его в частоте. Она измеряется в об/мин – оборотах в минуту.

Если же дело касается не длительного промежутка времени, а лишь того, за который происходит один оборот, то здесь используется понятие периода обращения. Она показывает, как быстро совершается одно круговое движение. Единицей измерения здесь будет выступать секунда.

Связь угловой скорости и частоты вращения либо периода обращения показывает следующая формулы:

ω = 2 π / T = 2 π *f,

где:

  • ω – угловая скорость в рад/с;
  • T – период обращения;
  • f – частота вращения.

Получить любую из этих трёх величин из другой можно с помощью правила пропорций, не забыв при этом перевести размерности в один формат (в минуты либо секунды)

Чему равна угловая скорость в конкретных случаях?

Приведём пример расчёта на основе приведённых выше формул. Допустим, имеется автомобиль. При движении на 100 км/ч его колесо, как показывает практика, делает в среднем 600 оборотов за минуту (f = 600 об/мин). Рассчитаем угловую скорость.

Для начала переведем об/мин в об/с. Для этого разделим 600 на 60 (число секунд в минуте) и получим 10 об/с . Попутно мы получили и период обращения: эта величина является обратной по отношению к частоте и при измерении в секундах 0,1 с.

Далее используем формулу:

ω = 2 π *f

Поскольку точно выразить π десятичными дробями невозможно, результат примерно равен будет 62,83 рад/с.

Связь угловой и линейной скоростей

На практике часто приходится проверять не только ту скорость, с какой изменяется угловое положение у вращающейся точки, но и скорость её самой применительно к линейному движению. В приведённом выше примере были сделаны расчёты для колеса – но колесо движется по дороге и либо вращается под действием скорости автомобиля, либо само ему эту скорость обеспечивает. Значит, каждая точка на поверхности колеса помимо угловой будет иметь и линейную скорость.

Рассчитать её проще всего через радиус. Поскольку скорость зависит от времени (которым будет период обращения) и пройденного расстояния (которым является длина окружности), то, учитывая приведённые выше формулы, угловая и линейная скорость будут соотноситься так:

V = ωR

Где:

  • V – линейная скорость;
  • R – радиус.

Из формулы очевидно, что чем больше радиус, тем выше и значение такой скорости. Применительно к колесу с самой большой скоростью будет двигаться точка на внешней поверхности протектора (R максимален), но вот точно в центре ступицы линейная скорость будет равна нулю.

Ускорение, момент и связь их с массой

Помимо приведённых выше величин, с вращением связано ещё несколько моментов. Учитывая же, сколько в автомобиле крутящихся деталей разного веса, их практическое значение нельзя не учесть.

Равномерное вращение – это важная вещь. Вот только нет ни одной детали, которая бы всё время крутилась равномерно. Число оборотов любого крутящегося узла, от коленвала до колеса, всегда в конечном итоге растёт, а затем падает. И та величина, которая показывает, насколько выросли обороты, называется угловым ускорением. Поскольку она производная от угловой скорости, измеряется она в радианах на секунду в квадрате (как линейное ускорение – в метрах на секунду в квадрате).

С движением и её изменением во времени связан и другой аспект – момент импульса. Если до этого момента мы могли рассматривать только чисто математические особенности движения, то здесь уже нужно учитывать то, что каждая деталь имеет массу, которая распределена вокруг оси. Он определяется соотношением начального положения точки с учётом направления движения – и импульса, то есть произведения массы на скорость. Зная момент импульса, возникающий при вращении, можно определить, какая нагрузка будет приходиться на каждую деталь при её взаимодействии с другой

Шарнир как пример передачи импульса

Характерным примером того, как применяются все перечисленные выше данные, является шарнир равных угловых скоростей (ШРУС) . Эта деталь используется прежде всего на переднеприводных автомобилях, где важно не только обеспечить разный темп вращения колёс при повороте – но и при этом их управляемость и передачу на них импульса от работы двигателя.

ПОСМОТРЕТЬ ВИДЕО

Конструкция этого узла как раз и предназначена для того, чтобы:

  • уравнивать между собой, как быстро вращаются колёса;
  • обеспечивать вращение в момент поворота;
  • гарантировать независимость задней подвеске.

В результате все формулы, приведённые выше, учитываются в работе ШРУС.

Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF18273

Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза
б) уменьшить в 2 раза
в) увеличить в 4 раза
г) уменьшить в 4 раза


Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 22.1k

1.Равномерное
движение по окружности

2.Угловая скорость
вращательного движения.

3.Период вращения.

4.Частота вращения.

5.Связь линейной
скорости с угловой.

6.Центростремительное
ускорение.

7.Равнопеременное
движение по окружности.

8.Угловое ускорение
в равнопеременном движении по окружности.

9.Тангенциальное
ускорение.

10.Закон равноускоренного
движения по окружности.

11. Средняя угловая
скорость в равноускоренном движении
по окружности.

12.Формулы,
устанавливающие связь между угловой
скоростью, угловым ускорением и углом
поворота в равноускоренном движении
по окружности.

1
.Равномерное
движение по окружности

– движение, при котором материальная
точка за равные интервалы времени
проходит равные отрезки дуги окружности,
т.е. точка движется по окружности с
постоянной по модулю скоростью. В этом
случае скорость равна отношению дуги
окружности, пройденной точкой ко времени
движения, т.е.

и называется
линейной скоростью движения по окружности.

Как и в криволинейном
движении вектор скорости направлен по
касательной к окружности в направлении
движения (Рис.25).

2. Угловая
скорость в равномерном движении по
окружности

– отношение угла поворота радиуса ко
времени поворота:

В равномерном
движении по окружности угловая скорость
постоянна. В системе СИ угловая скорость
измеряется в(рад/c).
Один радиан – рад это центральный угол,
стягивающий дугу окружности длиной
равной радиусу. Полный угол содержит

радиан, т.е. за один оборот радиус
поворачивается на угол

радиан.

3. Период
вращения

интервал времени Т, в течении которого
материальная точка совершает один
полный оборот. В системе СИ период
измеряется в секундах.

4. Частота
вращения

число оборотов

,
совершаемых за одну секунду. В системе
СИ частота измеряется в герцах ( 1Гц =
1
)
. Один герц – частота, при которой за
одну секунду совершается один оборот.
Легко сообразить, что

Если за время t
точка совершает n
оборотов по окружности то

.

Зная период и
частоту вращения, угловую скорость
можно вычислять по формуле:

или

5 Связь
линейной скорости с угловой
.
Длина дуги окружности равна

где
центральный
угол, выраженный в радианах, стягивающий
дугу


радиус
окружности. Теперь линейную скорость
запишем в виде


,
где

.

Ч
асто
бывает удобно использовать формулы:

или

Угловую скорость часто называют
циклической частотой, а частоту

линейной
частотой.

6. Центростремительное
ускорение
.
В равномерном движении по окружности
модуль скорости остаётся неизменным

,
а направление её непрерывно меняется
(Рис.26). Это значит, что тело, движущееся
равномерно по окружности, испытывает
ускорение, которое направлено к центру
и называется центростремительным
ускорением.

Пусть за промежуток
времени

прошло путь равный дуге окружности

.
Перенесём вектор

,
оставляя его параллельным самому себе,
так чтобы его начало совпало с началом
вектора

в точке В. Модуль изменения скорости
равен

,
а модуль центростремительного ускорения
равен

На Рис.26 треугольники
АОВ и ДВС равнобедренные и углы при
вершинах О и В равны, как углы с взаимно
перпендикулярными сторонами АО
и
ОВ

Это значит, что треугольники АОВ и ДВС
подобные. Следовательно

Если

то
есть интервал времени

принимает сколь угодно малые значения,
то дугу

можно
приближенно считать равной хорде АВ,
т.е.

.
Поэтому можем записать

Учитывая,
что ВД=
,
ОА=R
получим

Умножая обе части последнего равенства
на

,
получим

и далее выражение для модуля
центростремительного ускорения в
равномерном движении по окружности:


.
Учитывая,
что

получим две часто применяемые формулы:

,

.

Итак, в равномерном
движении по окружности центростремительное
ускорение постоянно по модулю.

Легко сообразить,
что в пределе при

,
угол

.
Это значит, что углы при основании ДС
треугольника ДВС стремятся значению


,
а вектор изменения скорости
становится
перпендикулярным к вектору скорости

,
т.е. направлен по радиусу к центру
окружности.

7. Равнопеременное
движение по окружности

– движение по окружности, при котором
за равные интервалы времени угловая
скорость изменяется на одну и ту же
величину.

8. Угловое
ускорение в равнопеременном движении
по окружности

– отношение изменения угловой скорости
к интервалу времени

,
в течении которого это изменение
произошло, т.е.


,

где

начальное
значение угловой скорости,

конечное
значение угловой скорости,

угловое ускорение, в системе СИ измеряется
в

.
Из последнего равенства получим формулы
для вычисления угловой скорости

и

,
если

.

Умножая обе части
этих равенств на

и учитывая, что


,



тангенциальное ускорение, т.е. ускорение,
направленное по касательной к окружности
, получим формулы для вычисления линейной
скорости:

и

,
если

.

9. Тангенциальное
ускорение

численно равно изменению скорости в
единицу времени и направлено вдоль
касательной к окружности. Если

>0,

>0,
то движение равноускоренное. Если

<0
и

<0
– движение.

10. Закон
равноускоренного движения по окружности
.
Путь, пройденный по окружности за время

в равноускоренном движении, вычисляется
по формуле:


.

Подставляя сюда

,


,

сокращая на

,
получим закон равноускоренного движения
по окружности:


,
или

,
если

.

Если же движение равнозамедленное, т.е.

<0,
то


.

1
1.Полное
ускорение в равноускоренном движении
по окружности
.
В равноускоренном движении по окружности
центростремительное ускорение с
течением времени возрастает, т.к.
благодаря тангенциальному ускорению
возрастает линейная скорость. Очень
часто центростремительное ускорение
называют нормальным и обозначают как

.
Так как

полное ускорение в данный момент
определяют по теореме Пифагора

(Рис.27).

12. Средняя
угловая скорость в равноускоренном
движении по окружности
.
Средняя линейная скорость в равноускоренном
движении по окружности равна

.
Подставляя сюда

и

и сокращая на

получим


.

Если

,
то

.

12. Формулы,
устанавливающие связь между угловой
скоростью, угловым

ускорением
и углом поворота в равноускоренном
движении по окружности
.

Подставляя в
формулу

величины

,

,

,
,

и сокращая на

,
получим


.

Если

,
то

и далее

,


.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти углы прямоугольного треугольника онлайн
  • Как найти косинус угла между двумя плоскостями
  • Как самостоятельно составить налоговую декларацию
  • Как найти два последовательных целых числа
  • Как исправить ошибку при установки стим