Как найти углы прямоуг треугольника

Как найти углы прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти углы прямоугольного треугольника

Чтобы найти углы прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы найти острые углы прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для угла α:
    • угол β
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов
  • для угла β:
    • угол α
    • длины катетов a и b
    • длину гипотенузы (с) и длину одного из катетов

Введите их в соответствующие поля и получите результат.

Найти угол α зная угол β и наоборот

Если ∠β = , то ∠α =

0

Если ∠α = , то ∠β =

0

Формула

α = 90° — β

β = 90° — α

Найти углы прямоугольного треугольника зная катеты

Катет a =
Катет b =

∠α =

0

∠β =

0

Чему равны острые углы (α и β) прямоугольного треугольника если известны оба катета (a и b)?

Формулы

или так:

α = arctg(a/b)

β = arctg(b/a)

Пример

Для примера определим чему равны углы α и β в градусах если катет a = 5 см, а катет b = 2 см:

∠α = arctg(5/2) = arctg(2.5) ≈ 68.2°

∠β = arctg(2/5) = arctg(0.4) ≈ 21.8°

Найти углы прямоугольного треугольника по катету и гипотенузе

Гипотенуза c =
Катет =

∠α =

0

∠β =

0

Чему равны острые углы (α и β) прямоугольного треугольника если известны гипотенуза c и один из катетов (a или b)?

Формулы

sin(α) = a/c

sin(β) = b/c

cos(α) = b/c

cos(β) = a/c

или так:

α = arcsin(a/c) = arccos(b/c)

β = arcsin(b/c) = arccos(a/c)

Пример

Для примера определим чему равны углы α и β в градусах если гипотенуза c = 6 см, а катет b = 3 см:

∠α = arccos(3/6) = arccos(0.5) = 60°

∠β = arcsin(3/6) = arcsin(0.5) = 30°

См. также

Сделано для людей! Красавцы. Спасибо человеческое!

  • reply

Спасибо хороший сайт

  • reply

Расчет лестниц секундное дело сейчас, спасибо создателям сайта

  • reply

Всё работает нормально.

  • reply

Странно! Находил углы двумя способами, по двум катетам и по катету и гипотенузе при одинаковых значениях получил разные углы.)))

  • reply

Супер помогли, и не понятно, как это делается. Если один катет 170, а другой 110, поделив их получаем 1,54. Это что? По вашим расчетам правильный угол 57 градусов. И как он получается?

  • reply

1,54 это значение тангенса угла, прилежащего к катету, находящегося в знаменателе

  • reply

Не совсем понятно как рассчитывать углы. Ввёл данные катетов, программа запрашивает величину углов! Я для того и обратился к программе, чтобы она мне рассчитала величину углов! А она меня запрашивает

  • reply

Большое спасибо! Рассчитали лестницу на 2 этаж за полминуты!

  • reply

Спасибо, очень помогает в расчетах

  • reply

Спасибо крышу посчитал за пару минут

  • reply

Спасибо, за онлайн-расчёт. Углы для спусков на ножах рассчитываю. Класс!

  • reply

Что б я делал без этой услуги?! Рассчитал стропила за минуту!

  • reply

Спасибо.Строим крышу.

  • reply

Считаю крышу, очень удобный сервис !
Спасибо !

  • reply

Спасибо! Пригодилось для нахождения угла конуса (на работе)

  • reply

Единственный сайт где углы отображены графически, все остальные (особо одаренные) не додумались. Благодарю!

  • reply

Спасибо большое, а то школьные знания с годами выветрились)))

  • reply

Спасибо. Быстро, вовремя, без загвоздка.

  • reply

Отличная программа, очень помогло

  • reply

Спасибо, сайт очень выручил. Делали перила для лестницы)))

  • reply

Удобно работать, спасибо

  • reply

Спасибо, очень пригодилось!

  • reply

Очень удобно. Спасибо!

  • reply

Спасибо. Очень удобно. Хорошо продуман интерфейс.

  • reply

Простой и нормальный сайт

  • reply

Отличный сайт. Спасибо за помощь

  • reply

Укажите размеры:

Результат:

Решение:

Скопировать

Ссылка на страницу с результатом:

# Теория

Прямоугольный треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние, при этом один из углов прямой (равен 90°).

β
α

a
b
c

Тангенс угла tg(α) — это тригонометрическая функция выражающая отношение противолежащего катета a к прилежащему катету b.

Формула тангенса

tg alpha = dfrac{a}{b}

  • tg α — тангенс угла α
  • a — противолежащий катет
  • b — прилежащий катет

Арктангенс — это обратная тригонометрическая функция. Арктангенсом числа x называется такое значение угла α, выраженное в радианах, для которого tg α = x. Вычислить арктангенс, означает найти угол α, тангенс которого равен числу x.

Углы треугольника

Сумма углов треугольника всегда равна 180 градусов:

angle alpha + angle beta + angle gamma = 180°

Так как у прямоугольного треугольника один из углов равен 90°, то сумма двух других углов равна 90°.

Поэтому, если известен один из острых углов треугольника, второй угол можно посчитать по формуле:

angle alpha = 90° — angle beta

angle beta = 90° — angle alpha

Острый угол — угол, значение которого меньше 90°.

У прямоугольного треугольника один угол прямой, а два других угла — острые.


Похожие калькуляторы:

Войдите чтобы писать комментарии

Triangles are three-sided closed polygons formed by the intersection of three lines. It is encountered a lot in everyday life. It is one of the basic shapes of geometry. It has three sides, three angles, and three vertices. A Right Angled Triangle is one where one of the angles is always equal to 90°. Pythagoras Theorem is derived for Right-angled triangles, Which states that the square of the hypotenuse (the longest side) is equal to the sum of the squares of base and perpendicular.

Given the length of at least two sides of a Right-Angled triangle, we can find the value of any angle of the right-angled triangle. For this, we use various trigonometric functions like sine, cosine, tangent, cotangent, sec, and cosec. These help us to relate the angles of a right-angled triangle with its sides.

Properties

  • There is a right-angle vertex among the three vertices
  • The side opposite to the right-angled vertex is called the hypotenuse.
  • The length of the sides follows the Pythagoras theorem, which states

hypotenuse2 = base2 + altitude2

  • The hypotenuse is the longest side of a right-angled triangle.
  • The angles other than the right angle are acute angles since the value is less than 90o

Trigonometric functions

ABC is a right-angled triangle with ∠B as right-angle

  • cosθ: This gives the ratio of the base by the hypotenuse of a right-angled triangle.

cosθ = base / hypotenuse

  • sinθ: This gives the ratio of altitude by the hypotenuse of a right-angled triangle.

sinθ = altitude / hypotenuse

  • tanθ: It is the ratio of altitude by the base of a right-angled triangle.

tanθ = altitude / base

  • cotθ: It is the inverse of tanθ
  • secθ: It is the inverse of cosθ
  • cosecθ: It is the inverse of sinθ

To find the angles of a right-angled triangle, we can take the trigonometric inverse of the ratio of given sides of the triangle.

Example:

If sinθ = x, then we can write

θ = sin-1x.

This returns the angle for which the sine value of the angle is x.

Similarly, there exists cos-1θ, tan-1θ, cot-1θ, sec-1θ, and cosec-1θ

Sample Problems

Question 1. Given a right-angled triangle, with base equals 10cm and hypotenuse equals 20cm. Find the value of the base angle.

Solution:

Given, Base = 10cm

Hypotenuse = 20cm

Let, the value of the base angle be θ. We can write

cosθ = base / hypotenuse = 10/20 = 1/2

θ = cos-1(1/2) = 60o

Thus, the value of base angle is 60o.

Question 2. Find the value of angles of a right angles triangle, given that one of the acute angles is twice the other.

Solution:

Since we know the sum of all the three angles in a triangle is 180o.

Since one of the angles is 90o and one of the acute angles is twice the other, we can consider them as θ and 2θ.

So, we can write

90o + θ + 2θ = 180o

3θ = 180o – 90o

3θ = 90o

θ = 90o/3 = 30o

2θ = 2 × 30o = 60o

So, the angles are 30o, 60o, and 90o.

Question 3. Find the value of the angle of elevation of a ladder of length 5m, given that base of the ladder is at a distance of 3m from the wall.

Solution:

Since the ladder acts as a hypotenuse of a right angles triangle and base distance equals 3m, we can write

Hypotenuse = 5m

Base = 3m

Let the angle of elevation be θ. So, we can write

cosθ = Base / Hypotenuse = 3/5

θ = cos-1(3/5)

θ = 53o

Thus, the value of the angle of elevation is 53o.

Question 4. Find the value of hypotenuse, given the length of the altitude is 8m and the base angle equals 30o.

Solution:

Given, the base angle is equal to 30o and altitude equals 8m, we can apply the sine function to find the length of the hypotenuse.

sin30o = altitude / hypotenuse

hypotenuse = altitude / sin30o

Since the value of sin30o equals 1/2, we can write

hypotenuse = altitude / (1/2) = 2 × altitude

Thus, hypotenuse = 2 × 8 = 16m

Thus, the length of the hypotenuse is equal to 16m.

Last Updated :
18 Aug, 2022

Like Article

Save Article

В прямоугольном треугольнике один из углов равен 90°, соответственно два других угла дают в сумме тоже 90°. Поэтому зная один из острых углов, можно определить и второй:
α=90°-β


Используя отношения синусов, косинусов, тангенсов и котангенсов можно найти угол в прямоугольном треугольнике, зная любые две стороны:
Зная два катета:
Зная катет и гипотенузу: или

Понравилась статья? Поделить с друзьями:
  • Как найти работу девушке в декрете
  • Как найти мощность в электротехнике формула
  • Как найти номер заблокированной карты сбербанка
  • Как можно найти друга на карте
  • Как найти человека или его родственников