Как найти угол четырехугольника по координатам вершин

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов углы являются внешними.

Каждый внутренний угол выпуклого четырёхугольника меньше Градусная мера внутреннего угла невыпуклого четырёхугольника может быть больше

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Доказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Теорема 1. Противоположные стороны параллелограмма конгруэнтны.

Теорема 2. Противоположные углы параллелограмма конгруэнтны.

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника.

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны.

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом.

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если то параллелограмм является ромбом.

Доказательство теоремы 1.

Дано: ромб.

Докажите, что

Доказательство (словестное): По определению ромба При этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что равнобедренный. Медиана (так как ), является также и биссектрисой и высотой. Т.е. Так как является прямым углом, то . Аналогичным образом можно доказать, что

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны.

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны.

План доказательства теоремы 2

Дано: равнобедренная трапеция.

Докажите:

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если тогда Запишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку проведем параллельную прямую к прямой

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике через точку — середину стороны проведите прямую параллельную Какая фигура получилась? Является ли трапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Можно ли утверждать, что

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине

Доказательство. Пусть дан треугольник и его средняя линия Проведём через точку прямую параллельную стороне По теореме Фалеса, она проходит через середину стороны т.е. совпадает со средней линией Т.е. средняя линия параллельна стороне Теперь проведём среднюю линию Т.к. то четырёхугольник является параллелограммом. По свойству параллелограмма По теореме Фалеса Тогда Теорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство: Через точку и точку середину проведём прямую и обозначим точку пересечения со стороной через

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке радиусом 3 единицы. Вычислите значение выражения Есть ли связь между значением данного выражения и координатой точки

Координаты середины отрезка

1) Пусть на числовой оси заданы точки и и точка которая является серединой отрезка

то а отсюда следует, что

2) По теореме Фалеса, если точка является серединой отрезка то на оси абсцисс точка является соответственно координатой середины отрезка концы которого находятся в точках и

3) Координаты середины отрезка с концами и точки находятся так:

Убедитесь, что данная формула верна в случае, если отрезок параллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки как показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Шаг 4. На сторонах другого квадрата отметьте отрезки как показано на рисунке и отрежьте четыре прямоугольных треугольника.

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах:

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если то, — прямоугольный.

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа являются Пифагоровыми тройками, то и числа также являются Пифагоровыми тройками.

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой —

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой.

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, , стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: =40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В + CD (по неравенству треугольника). Тогда . Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) . Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Решение:

(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично (АВ CD, ВС-секущая), (ВС || AD, CD — секущая), (АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Доказательство. по стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). по трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Углы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм.

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). по двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, как внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Но углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. по двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, как вертикальные. Из равенства треугольников следует: ВС= AD и Но углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике.

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Можно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что . по трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что . Поскольку в параллелограмме противоположные углы равны, то: . По свойству углов четырёхугольника,

Следовательно, : 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать:

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому .

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором (рис. 96). Докажем, что ABCD— ромб. по двум сторонами и углу между ними.

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, по условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки и Проведите с помощью чертёжного угольника и линейки через точки параллельные прямые, которые пересекут сторону ВС этого угла в точках При помощи циркуля сравните длины отрезков Сделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано:

Доказать:

Доказательство. Проведём через точки прямые параллельные ВС. по стороне и прилежащим к ней углам. У них по условию, как соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что и как противоположные стороны параллелограммов

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Отложим на луче АС пять равных отрезков: АА,Проведём прямую . Через точки проведём прямые, параллельные прямой . По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия , так как точки М и N — середины сторон АВ и ВС.

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: (рис. 122), AD = BD, СЕ= BE.

Доказать:

Доказательство. 1) Пусть DE- средняя линия . Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: . По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно,

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Поэтому . КР— средняя линия треугольника ADC. Поэтому КР || АС и

Получаем: MN || АС и КР || АС, отсюда MN || КР, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку = 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать:

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. no стороне и прилежащим к ней углам. У них CF = FD по условию, как вертикальные, внутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и равнобедренный. Поэтому соответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом.

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: — вписанный в окружность с центром О (рис. 188 — 190).

Доказать:

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом . По свойству внешнего угла треугольника, — равнобедренный (ОВ= OA = R). Поэтому измеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:

Из доказанного в первом случае следует, что измеряется половиной дуги AD, a — половиной дуги DC. Поэтому измеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда:

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°.

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). как вписанные, опирающиеся на дугу АС (следствие 1). Поэтому , так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно,

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, (рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около (рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо:

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность.

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Доказать:

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует:

Тогда

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225).

Докажем, что . В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, . По свойству равнобокой трапеции,

Тогда и, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения центры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника вписанного в окружность. Действительно,

Следовательно, четырёхугольник — вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Love Soft

Инструменты пользователя

Инструменты сайта

Боковая панель

Навигация

Загрузки всякие

Связь

Содержание

Четырехугольник

Мнемоника

для запоминания условий, для того чтобы можно было вписать или описать окружность в четырехугольнике, у меня в опорном конспекте (и отложилось, фактически само по себе, в голове): две картинки: дорожный знак «кирпич», на котором написано 180. И вторая картинка, это инопланетянин в квадратном шлеме с плюсами вместо ушей. Ну и чем более абсурдный образ, тем лучше. Я никогда не перепутаю эти условия потому что, например, знак «кирпич» — окружность снаружи, а надпись 180 – означает суму противоположных углов.

Окружность вписанная в четырехугольник

Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.

Наоборот: если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.

Центр вписанной окружности лежит на пересечении биссектрис углов четырехугольника.

Почему нельзя вписать окружность?

в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.

Треугольник всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например, длинный прямоугольник. Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

Задача

Окружность, описанная около четырехугольника

Если около выпуклого четырехугольника описана окружность, то сумма его противоположных углов равна ∠ϕ+∠γ=180∘.

И наоборот: Если сумма двух противоположных углов выпуклого четырехугольника равна ∠ϕ+∠γ=180∘, то около него можно описать окружность.

Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам.

Около выпуклого четырехугольника описана окружность ⇔ ∠α=∠β.

Площадь вписанного четырехугольника вычисляется по формуле

где a, b, c, d – его стороны, p — полупериметр

Задача 1

Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции.

Задача 2

Стороны AB, BC, CD, AD четырехугольника ABCD стягивают дуги описанной окружности, градусные меры которых равны соответственно 95 ∘ ,49 ∘ ,71 ∘ ,145 ∘ . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Угол B четырехугольника равен вписанному углу ABC. Этот угол опирается на дугу ADC, равную 145 ∘ +71 ∘ =216 ∘ . Так как вписанный угол равен половине дуги, на которую он опирается, то ∠B=∠ABC=108 ∘ .

Задача 3

Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB,BC,CD,DA, градусные величины которых относятся соответственно как 4:2:3:6. Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.

Так как дуги AB,BC,CD,DA относятся как 4:2:3:6, то можно принять дугу AB за 4x, дугу BC за 2x, дугу CD за 3x и дугу DA за 6x. Так как все эти дуги в совокупности дают целую окружность, градусная мера которой равна 360∘, то 4x+2x+3x+6x=360∘, откуда x=24∘. Угол A равен вписанному углу BAD, опирающемуся на дугу BCD, равную 2x+3x=5x=120∘. Так как вписанный угол равен половине этой дуги, то ∠A=60∘.

Центр тяжести

Центр тяжести системы материальных точек — обозначим через $m_k$ — массы точек, $x_k, y_k, z_k$ — координаты точек.

К каждой из точек приложен вектор величины $m_k$, все векторы параллельны и направлены в одну сторону.

Центр этих векторов есть точка с координатами $$M_x = sum m_k x_k, M_y = sum m_k y_k, M_z = sum m_k z_k$$

Если все точки имеют одинаковую массу, то $M = sum m_k$ — масса всей системы, тогда

$$M_x = M sum x_k, M_y = M sum y_k, M_z = M sum z_k$$

В математике и физике барицентр или геометрический центр области — это среднее арифметическое положений всех точек фигуры.

Неформально — это точка равновесия фигуры, вырезанной из картона в предположении, что картон имеет постоянную плотность и гравитационное поле постоянно по величине и направлению.

Центр масс (и центр тяжести в постоянном гравитационном поле) является средним арифметическим всех точек с учётом локальной плотности или удельного веса. Если физический объект имеет постоянную плотность, то его центр масс совпадает с барицентром фигуры той же формы.

Геометрический барицентр выпуклого объекта всегда лежит внутри объекта. Невыпуклый объект может иметь барицентр, лежащий вне фигуры. Барицентр кольца или миски, например, лежат вне фигуры.

Барицентр объекта лежит на пересечении всех его гиперплоскостей симметрии. Барицентры многих фигур (правильный многоугольник, правильный многогранник, цилиндр, прямоугольник, ромб, окружность, сфера, эллипс, эллипсоид, суперэллипс, суперэллипсоид, и т.д.) можно найти исходя исключительно из этого принципа.

В частности, барицентром параллелограмма является пересечение диагоналей. Вообще говоря, это неверно для других четырёхугольников.

Распределительное свойство центров тяжести

Если разделить систему материальных точек S на дне части S’ и S«, то ее центр тяжести есть в то же время центр тяжести двух масс М’ и М» систем S’ и S«, помещенных соответственно в центрах тяжести этих двух систем.

Центр тяжести четырехугольника

Центр тяжести площади четырехугольника определяется пересечением двух прямых, которые мы получаем, используя распределительное свойство центров тяжести.

Сначала делим четырехугольник диагональю на два треугольника. Центр тяжести четырехугольника лежит на прямой, соединяющей центры тяжести этих треугольников. Это первая искомая прямая.

Вторая искомая прямая получается аналогичным образом — разбивая четырехугольник на треугольники второй диагональю.

Центроид (барицентр или центр масс) произвольного четырёхугольника лежит в точке пересечения средних линий четырёхугольника и отрезка, соединяющего середины диагоналей, и делит все три отрезка пополам.

Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершины.

Метод отвеса

Барицентр однородной плоской фигуры, такой как на рисунке ниже, можно найти экспериментально с использованием отвеса и булавки. Пластина удерживается булавкой, вставленной ближе к периметру так, чтобы пластина могла свободно вращаться. Отмечаем на пластине прямую, которую образует отвес, прикреплённый к булавке. Проделываем то же самое с другим положением булавки. Пересечение двух прямых даст барицентр.

Метод балансировки

Барицентр выпуклой двумерной фигуры можно найти путём балансировки на меньшей фигуре, например на вершине узкого цилиндра. Барицентр будет находиться где-то внутри области контакта этих фигур. В принципе, последовательным уменьшением диаметра цилиндра можно получить местоположение барицентра с любой точностью. На практике потоки воздуха делают это невозможным, однако используя наложение областей балансировки и усреднение, можно получить нужную точность.

С помощью геометрического разложения

Барицентр плоской фигуры можно вычислить, разделив её на конечное число более простых фигур.

Рассмотрим пример. Фигуру на рисунке легко разделить на квадрат и треугольник с положительным знаком площади и круглое отверстие с отрицательным знаком площади.

Квадрат — пересечение диагоналей $(5, 5)$. Площадь 100.

Прямоугольный треугольник — отложить по трети катета от вершины прямого угла $(10+10/3,10/3) = (13.33; 3.33)$. Площадь 50.

Окружность — центр $(2.5; 12.5)$. Площадь $6.25pi = 19.63$

Та же формула применима для любого трёхмерного объекта, только вместо площадей берут объёмы частей тела.

Центр тяжести объекта в форме буквы L

Делим на два прямоугольника, находим центры каждого из них как пересечение диагоналей, соединяем. Барицентр фигуры должен лежать на этом отрезке AB.

Делим фигуру на два прямоугольника другим способом. Находим барицентры этих двух прямоугольников. Проводим отрезок, соединяющий центры. Барицентр фигуры должен лежать на этом отрезке CD.

Барицентр должен лежать как на отрезке AB, так и на отрезке CD, очевидно, что он является точкой пересечения этих двух отрезков — точкой O. Точка O не обязана лежать внутри фигуры.

Барицентр

это цетр масс двух и более тел, которые вращаются друг около друга.

Чем массивнее одно из двух тел, тем ближе к нему барицентр. Для системы Луна-Земля барицентр расположен примерно на расстоянии 4 671 км от центра Земли, радиус планеты 6 378 км.

Барицентрическая система отсчета

International Celestial Reference System (ICRS, Международная небесная система координат или Международная система астрономических координат) — с 1998 года стандартная небесная система координат.

Началом отсчёта является барицентр Солнечной системы. Координаты в этой системе максимально приближены к экваториальным эпохи J2000.0 (расхождение составляет доли секунды дуги)

Оси системы зафиксированы в пространстве относительно квазаров, которые считаются наиболее удалёнными объектами наблюдаемой Вселенной. Их предполагаемое собственное движение настолько мало, что им можно пренебречь. Внедрение системы обусловлено необходимостью повышения точности астрономических измерений до 0,05″.

Полученная система координат независима от вращения Земли.

Барицентрические координаты

Пусть дан треугольник ABC. Тогда любую точку P в плоскости треугольника можно представить как центр некоторых масс α, β, γ, помещенных в его вершины A, B, C.

Тройка чисел (α, β, γ) называется барицентрическими координатами точки P относительно треугольника.

Барицентрические координаты точки определены с точностью до ненулевого множителя: все тройки (kα, kβ, kγ) при любом k ≠ 0 задают одну и ту же точку P. Любые три числа с ненулевой суммой являются барицентрическими координатами некоторой точки. Иногда барицентрическими координатами называют ту из пропорциональных троек, у которой сумма чисел равна единице. Соответствие между такими тройками и точками плоскости взаимно-однозначно.

Если точка P лежит внутри треугольника ABC, то ее барицентрические координаты пропорциональны площадям треугольников PAB, PBC и PCA. Для точек вне треугольника это тоже верно, только нужно брать ориентированные площади.

Случай двух тел

Два тела взаимодействуют только друг с другом. Тела вращаются поэллиптической орбите пример двойные звезды.

Как найти углы четырехугольника по координатам

Сразу скажу, что я не математик, я бы решала так:
Дано:
Четырёхугольник ‘ABCD’, имеющий две диагонали ‘AC’ и ‘BD’, пересекающиеся в точке ‘О’.
Известны все углы у его вершин `ABC`, `BCD`, `CDA`, `DAB` и ещё углы `OAD`, `OAB`, `OCB` и `OCD`.
Нужно найти:
Углы между диагоналями четырёхугольника: т.е., углы ‘АОВ’, ‘АОD’, ‘DOC’, ‘COB’.

Я думаю, что решение данных задач станет возможно, если добавить условие, что в данном четырехугольнике одна пара связанных углов равна между собой.

В таком случае, мой вариант части решения:

Подсказка:
читать дальше Т.к. все диагонали в данном четырехугольнике пересекаются, то мы имеем дело с выпуклым четырехугольником (в противном случае, все диагонали не смогли бы пересечься).
Согласно свойству связанных углов выпуклого четырёхугольника https://mathvox.ru/geometria/mnogougolniki/glava-2-chetirehugolniki-i-ih-svoistva/ugli-vipuklogo-chetirehugolnika-svoistvo-3/ «Если в выпуклом четырёхугольнике одна пара связанных углов равна,
(Например, угол ‘BCA’ = углу ‘BDA’),
то вторая пара связанных углов (‘ABD’ и ‘АСD’) также будут равны между собой.

Если посмотреть на задачу шире, то, углы между диагоналями четырёхугольника (АОВ’, ‘АОD’, ‘DOC’, ‘COB’) ОДНОВРЕМЕННО являются также углами треугольников (‘АОB’, ‘BOC’, ‘COD’, ‘DOA’).
Что мы знаем о треугольниках?
«Сумма ВСЕХ УГЛОВ любого вида треугольников равна 180 градусам».

Поиск угла ‘АОD’
Далее вычислим один из углов диагоналей четырехугольника (он же угол, входящий в состав одного из треугольников) на примере треугольника ‘АOD’:

Сумма всех углов треугольника ‘OAD’ =
угол ‘OAD’ + угол ‘ADO’ + угол ‘AOD’=180 градусов.

По условию задачи мы знаем:
1. Чему равен угол ‘OAD’ (согласно условию задачи).
Неизвестны углы ‘ADO’ и ‘AOD’.

2. Вычисляем угол ‘ADO’:
Снова расширяем своё видение.
Мы знаем:
1. Чему равен угол ‘CDA’ (согласно условию задачи), составной частью которого является угол ‘ADO’.
T. е., угол ‘CDA’ = угол ‘AOD’ + угол ‘ADO’.

2. Вычисляем значение угла ‘АDO’:
Угол ‘АDO’ = углу ‘BDA’.
Согласно свойству связанных углов выпуклого четырёхугольника:
угол ‘BDA’ = углу ‘BCA’, а угол ‘ВСА’ = углу «OCB’.
Т.о., угол ‘ADO’ = углу ‘OCB’ (значение угла ‘OCB’ мы знаем по условию задачи).

3. Угол ‘AOD’ = (угол ‘ОAD’ +угол ‘АDO’) — 180 градусов.
Поздравляем, первый угол ‘АОD’ — найден! .

Поиск угла ‘DOC’
Треугольник ‘DOC’ имеет углы: ‘ОСD’, ‘СDO’ и ‘DOC’.
Мы знаем:
1. Чему равен угол ‘ОСD’ (по условию задачи).

2. Вычислим чему равен угол ‘СDO’:
Угол ‘СDO’ входит в состав угла ‘CDA’, вместе с углом ‘АDO’.
Т.о., угол ‘СDO’ = угол ‘СDA’ — угол ‘АDO’.
3. Вычислим чему равен угол ‘DOC’:
Угол ‘DOC’ = (угол ‘OCD’ + угол ‘CDO’) — 180 градусов.
и т.д.

источники:

http://xlench.bget.ru/doku.php/mat/geom/quad

http://diary.ru/~eek/p220852004_kak-najti-ugly-mezhdu-diagonalyami-chetyryohugolnika.htm

Как найти углы четырёхугольника

Для решения этой задачи методами векторной алгебры, вам необходимо знать следующие понятия: геометрическая векторная сумма и скалярное произведение векторов, а также следует помнить свойство суммы внутренних углов четырехугольника.

Как найти углы четырёхугольника

Вам понадобится

  • — бумага;
  • — ручка;
  • — линейка.

Инструкция

Вектор – это направленный отрезок, то есть величина, считающаяся заданной полностью, если задана его длина и направление (угол) к заданной оси. Положение вектора больше ничем не ограничено. Равными считаются два вектора, обладающие одинаковыми длинами и одним направлением. Поэтому при использовании координат векторы изображают радиус-векторами точек его конца (начало располагается в начале координат).

По определению: результирующим вектором геометрической суммы векторов называется вектор, исходящий из начала первого и имеющего конец в конце второго, при условии, что конец первого, совмещен с началом второго. Это можно продолжать и далее, строя цепочку аналогично расположенных векторов.
Изобразите заданный четырехугольник ABCD векторами a, b, c и d в соответствии рис. 1. Очевидно, что при таком расположении результирующий вектор d=a+ b+c.

Как найти углы четырёхугольника

Скалярное произведение в данном случае удобнее всего определить на основе векторов a и d. Скалярное произведение, обозначаемое (a, d)= |a||d|cosф1. Здесь ф1 – угол между векторами a и d.
Скалярное произведение векторов, заданных координатами, определяется следующими выражением:
(a(ax, ay), d(dx, dy))=axdx+aydy, |a|^2= ax^2+ ay^2, |d|^2= dx^2+ dy^2, тогда
cos Ф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2)).

Основные понятия векторной алгебры в привязке к поставленной задаче, приводят к тому, что для однозначной постановки этой задачи достаточно задание трех векторов, расположенных, допустим, на AB, BC, и CD, то есть a, b, c. Можно конечно сразу задать координаты точек A, B, C, D, но этот способ является избыточным (4 параметра вместо 3-х).

Пример. Четырехугольник ABCD задан векторами его сторон AB, BC, CD a(1,0), b(1,1), c(-1,2). Найти углы между его сторонами.
Решение. В связи с изложенным выше, 4-й вектор (для AD)
d(dx,dy)=a+ b+c={ax+bx +cx, ay+by+cy}={1,3}. Следуя методике вычисления угла между векторами а
cosф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2))=1/sqrt(10), ф1=arcos(1/sqrt(10)).
-cosф2=(axbx+ayby)/(sqrt(ax^2+ ay^2)sqrt(bx^2+ by^2))=1/sqrt2, ф2=arcos(-1/sqrt2), ф2=3п/4.
-cosф3=(bxcx+bycy)/(sqrt(bx^2+ by^2)sqrt(cx^2+ cy^2))=1/(sqrt2sqrt5), ф3=arcos(-1/sqrt(10))=п-ф1.
В соответствии с замечанием 2 — ф4=2п- ф1 — ф2- ф3=п/4.

Видео по теме

Обратите внимание

Замечание 1. В определении скалярного произведения используется угол между векторами. Здесь, например, ф2 — это угол между АВ и ВС, а между a и b этот угол п-ф2. сos(п- ф2)=- сosф2. Аналогично для ф3.
Замечание 2. Известно, что сумма углов четырехугольника равна 2п. Поэтому ф4=2п- ф1 — ф2- ф3.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.



  • 0




Дан четырёхугольник с вершинами А(1;4), В(6;4), С(1;-2), D(6;-2). Найти угол между его диагоналями.

  • Комментариев (0)



  • 0


По координатам вершин видно, что АВ параллельна CD, причем чтобы получилась замкнутая ломаная линия, образующая этот четырехугольник, его обозначение: четырехугольник АВDC с диагоналями AD и ВС.
Координаты диагонали АD{(6-1);(-2-4)}={5;-6},
модуль |AD|=√(25+36)=√61.
Координаты диагонали BC{(1-6);(-2-4)}={-5;-6},
модуль |BC|=√61.
Угол α между вектором a и b находится по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
Берем меньший из двух смежных углов.
Cosα=(-25+36)/61=11/61 ≈0,18.
α=arccos(0,18)≈79,6°

RE: Дан четырёхугольник с вершинами А(1;4), В(6;4), С(1;-2), D(6;-2). Найти угол между его диагоналя...

  • Комментариев (0)

7 / 7 / 1

Регистрация: 28.11.2010

Сообщений: 57

1

Найти углы четырехугольника по известным координатам

20.06.2012, 10:44. Показов 6671. Ответов 5


Студворк — интернет-сервис помощи студентам

Привет народ помогите с алгоритмом поиска углов. Есть четырехугольник с известными координатами, мне необходимо определить какая координата относится к какому углу. Пример p(0,0) = верхний левый угол. А p(100,100) = правый нижний угол и т.д.



0



Programming

Эксперт

94731 / 64177 / 26122

Регистрация: 12.04.2006

Сообщений: 116,782

20.06.2012, 10:44

Ответы с готовыми решениями:

Найти периметр четырехугольника по координатам его углов
Задан четырехугольник — действительные числа x1, y1, x2, y2, x3, y3, x4, y4. Требуется определить…

Как найти углы четырехугольника
public double Square(){
double diagonals = Diagonales();
Point…

Найти из точек четырехугольника — площадь, далее уже углы в градусах треугольника
В задании нужно найти из точек четырехугольника — площадь, далее уже углы в градусах треугольника….

Найти площадь четырехугольника по координатам точки
Дaны четыре тoчки на плoскoсти, обрaзующие выпyклый чeтырехугольник и тoчка внyтри этoго…

5

848 / 190 / 18

Регистрация: 01.08.2011

Сообщений: 505

20.06.2012, 10:52

2

скалярное произведение в помощь:
https://www.cyberforum.ru/cgi-bin/latex.cgi?(a,b) = |a|cdot |b| cdot cos phi



1



7 / 7 / 1

Регистрация: 28.11.2010

Сообщений: 57

20.06.2012, 11:10

 [ТС]

3

Сорри не уточнил. Нужные именно не углы как углы. А положение угла в пространстве . то есть беру координату и определяю какой это угол, верхний левый или же верхний правый, а может это нижний правый, в таком духе.



0



-=ЮрА=-

Заблокирован

Автор FAQ

20.06.2012, 11:15

4

Цитата
Сообщение от Dangelo
Посмотреть сообщение

Сорри не уточнил. Нужные именно не углы как углы. А положение угла в пространстве . то есть беру координату и определяю какой это угол, верхний левый или же верхний правый, а может это нижний правый, в таком духе.

— ну зннаки углов и покажут какой это был угол, лишь бы стороны задавал в одном направлении АВ — ВС — СD — DA тогда углы будут в пределах 0-180, вот по их величинам и смотри какой он есть. Вот тебе готовый код в помощь Вычисление косинуса угла между векторами, в чем ошибка



1



7 / 7 / 1

Регистрация: 28.11.2010

Сообщений: 57

20.06.2012, 11:56

 [ТС]

5

в том то и дело что у меня набор не упорядоченных координат, и для того что бы упорядочить я и хочу знать положение углов .



0



-=ЮрА=-

Заблокирован

Автор FAQ

20.06.2012, 11:59

6

Цитата
Сообщение от Dangelo
Посмотреть сообщение

в том то и дело что у меня набор не упорядоченных координат, и для того что бы упорядочить я и хочу знать положение углов .

— кто тебе мешает его сделать?У тебя есть 1-ая и 3-я точки из этого набора, ну понял этот момент???



0



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

20.06.2012, 11:59

Помогаю со студенческими работами здесь

Найти координаты по расстоянию и двум известным координатам
дано
x,y,x1,x2,y1,y2,r1,r2

нужно решить систему.
пользователь вводит x1,x2,y1,y2,r1,r2…

Найти наибольшую медиану треугольника по известным координатам вершин
Найти наибольшую медиану треугольника , если известно координаты его вершин

найти площадь выпуклого четырёхугольника по координатам его вершин
найти площадь выпуклого четырёхугольника по координатам его вершин А(x1,y1) B(x2,y2) C (x3,y3)…

Подпрограммы: найти наибольшую медиану треугольника, по известным координатам вершин
Найти наибольшую медиану треугольника , если известно координаты его вершин .Помогите решить ….

по координатам вершин треуголника найти его углы
Здравствуйте, я новичек в паскале и пока не очень хорошо умею работать с этой программой, моя…

Найти внутренние углы многоугольника по координатам вершин
Всем добрый день. У класса Фигура есть метод, работающий с его коллекцией вершин. Метод должен…

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

6

Вот тут хорошо расписано.

Сначала надо триангулировать четырехугольник. Потом, центр масс каждого треугольника — среднее арифметическое координат. Далее, остается найти центр масс двух точек — центров масс треугольников, где в каждой точке лежит масса равная площади треугольника.

Чтобы это работало и с невыпуклыми многоугольниками надо считать площадь треугольников через векторное произведение сторон, разрешая таким образом отрицательные площади у треугольников снаружи вашей фигуры.

Итоговая фромула (в векторах):

C = ((p1+p2+p3)/3*(p1p2*p1p3)+(p3+p4+p1)/3*(p1p3*p1p4))/((p1p2*p1p3)+(p1p3*p1p4))

Тут pi — i-ая вершина четырехугольника, pipj — вектор между точками i и j. pipj*pkpl — векторное произведение двух векторов.

Понравилась статья? Поделить с друзьями:
  • Как найти специалиста по похудению
  • Как найти файлы с одинаковым именем
  • Как найти код для активации windows 10
  • Как составить самое длинное слово
  • Как исправить сухую курицу