Как найти угол если известна скорость

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.


Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Связь со вторым законом Ньютона

Как вывести формулу центростремительного ускорения

Движение по циклоиде*

Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела в теории и на примерах решения задач.

Угловая скорость

Угловой скоростью называют скорость вращения тела, определяющуюся приращением угла поворота тела за некоторый промежуток (единицу) времени.

Обозначение угловой скорости: ω (омега).

Рассмотрим некоторое твердое тело, вращающееся относительно неподвижной оси.

С этим телом свяжем воображаемую плоскость П, которая совершает вращение вместе с заданным телом.
Угловая скорость вращающегося тела
Вращательное движение определяется двугранным углом φ между двумя плоскостями, проходящими через ось вращения. Изменение этого угла с течением времени есть закон вращательного движения:

Положительным считается угол, откладываемый против хода часовой стрелки, если смотреть навстречу выбранному направлению оси вращения Oz. Угол измеряется в радианах.

Быстрота изменения угла φ (перемещения плоскости П из положения П1 в положение П2) – это и есть угловая скорость:

Приняв вектор k как единичный орт положительного направления оси, получим:

Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.

Формулы угловой скорости

Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:

  1. если известно количество оборотов n за единицу времени t:
    Формула угловой скорости по заданным оборотам
  2. если задан угол поворота φ за единицу времени:
    Формула угловой скорости от угла поворота
  3. если известна окружная скорость точки тела v и расстояние от оси вращения до этой точки r:

Размерности угловой скорости:

  • Количество оборотов за единицу времени [об/мин], [c-1].
  • Угол поворота за единицу времени [рад/с].

Определение угловой скорости

Пример: Диск вращается относительно своего центра.
Известна скорость v некоторой точки A, расположенной на расстоянии r от центра вращения диска.
Угловая скорость вращения диска
Определить величину и направление угловой скорости диска ω, если v = 5 м/с, r = 70 см.

Таким образом, угловая скорость диска составляет 7,14 оборотов в секунду. Направление угловой скорости можно определить по направлению скоростей её точек.

Вектор скорости точки A стремится повернуть диск относительно центра вращения против хода часовой стрелки, следовательно, направление угловой скорости вращения диска имеет такое же направление.

Другие примеры решения задач >

Угловое ускорение

Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:


Обозначение: ε (Эпсилон)

Единицы измерения углового ускорения: [рад/с2], [с-2]

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает (вращение ускоряется), а при отрицательном — уменьшается (вращение замедляется).

Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:

Расчет углового ускорения

Пример: По заданному значению касательной составляющей полного ускорения aτ точки B, расположенной на расстоянии r от центра вращения колеса.
Пример расчета углового ускорения колеса
Требуется определить величину и направление углового ускорения колеса ε, если aτ = 10 м/с2, r = 50 см.

Угловое ускорение колеса в заданный момент времени составляет 20 оборотов за секунду в квадрате. Направление углового ускорения определяется по направлению тангенциального ускорения точки.

Здесь, угловое ускорение направлено противоположно направлению угловой скорости вращения колеса. Это означает, что вращение колеса замедляется.

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это  радиан:

Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость

ω = 1,5 с-1 = 9,42 рад/с.

Смотрите также:

  • Примеры расчета угловой скорости и ускорения
  • Скорости и ускорения точек вращающегося тела
Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF18273

Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза
б) уменьшить в 2 раза
в) увеличить в 4 раза
г) уменьшить в 4 раза


Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 22k

Кинематика — это специальный раздел теоретической механики. Направление сформировалось несколько позднее, чем статика и динамика: во второй половине XIX столетия. Первые исследования в области кинематики были посвящены огнестрельному оружию. Ученые стремились понять процесс полета снаряда, производили расчет траектории его движения. В дальнейшем кинематика как научное направление получило широкое распространение и существенно повлияло на развитие технического прогресса.

Кинематика — описание

Кинематика является разделом механики, цель которого — изучение механического движения тел с пренебрежением к причинам, вызывающим это движение.

Механика представляет собой научную область физики, которой посвящены исследования механического движения тел. Основной целью данного направления служит определение точного положения тела в пространстве в любой момент времени. Важным понятием этого раздела является материальная точка в виде тела с определенной массой и размерами, которыми можно пренебречь для решения задачи при наличии следующих условий:

  1. Путь, который преодолевает тело, существенно больше, чем его размеры.
  2. Расстояние между телами значительно превышает их размеры.
  3. Объект совершает поступательное движение.

Движение тела рассматривают в системе отсчета, состоящей из системы координат и прибора, измеряющего время. Траекторией называют линию, которую объект описывает, совершая движение. Путь является скалярной величиной, определяемой как длина траектории. Перемещением обозначают вектор, который соединяет начальное и конечное положение тела, преодолеваемое им в течение определенного промежутка времени.

Совершая движение, тело может только увеличивать пройденный путь, при этом перемещение увеличивается или уменьшается. К примеру, уменьшение перемещения наблюдается во время обратного движения тела. Если объект движется прямолинейно в одном направлении, то путь определяется модулем перемещения. В случае криволинейного движения — путь превышает перемещение. При рассмотрении замкнутой траектории перемещение будет равно нулю.

Теория и формулы

Благодаря многолетним исследованиям в области кинематики ученым удалось вывести определенные закономерности движения тела. С помощью справедливых уравнений представляется возможным ответить на многие вопросы о разных характеристиках, которые изменяются либо остаются постоянными во время движения объектов.

Путь, время, скорость

Расстояние представляет собой удаленность одной точки положения тела от другой. Тело преодолевает путь, который представляет собой важную характеристику механического движения. Общепринятым обозначением пути является латинская буква s. Данный параметр измеряют метрами и километрами, если речь идет о больших расстояниях.

Скорость представляет собой путь, который тело преодолело в течение единицы времени. В качестве единицы времени часто используют 1 час, 1 минуту, 1 секунду. Для расчета скорости необходимо определить отношение пути к времени движения. В случае, когда в условиях задачи расстояние измеряется в метрах, а время пути — в секундах, то скорость следует рассчитывать в метрах в секунду (м/с). Для обозначения скорости используют латинскую букву (v).

Нередко требуется определить время пути. Данный параметр обозначают с помощью латинской буквы (t).

Важно отметить, что скорость, путь и время взаимосвязаны. При известных характеристиках скорости и времени можно определить расстояние, которое преодолело тело. Путь в данном случае равен произведению скорости и времени, рассчитывается по формуле:

(s=vtimes t)

При известных величинах времени и расстояния достаточно просто определить скорость движения тела, руководствуясь следующим уравнением:

(v=frac{s}{t})

Равномерное движение

Равномерным движением называют движение тела, которое совершает равные перемещения в течение любых равных промежутков времени.

Мячи

Источник: goodfon.ru

Скорость при равномерном движении определяется как отношение перемещения ко времени, в течение которого данное перемещение было совершено. Уравнение имеет следующий вид:

(vec{v}=frac{vec{s}}{t})

(vec{v}=const)

Проекция вектора скорости на ось ОХ выглядит таким образом:

(v_{x}=frac{s_{x}}{t})

(v_{x}=const)

Если вектор скорости спроецировать на ось координат, то она будет равна быстроте изменения данной координаты:

(v_{x}=frac{x-x_{0}}{t})

Прямолинейное равноускоренное движение

Прямолинейным равноускоренным движением называют движение по прямой траектории, для которого характерно постоянное ускорение.

Ускорение для прямолинейного равноускоренного движения обозначают следующим образом:

(vec{a}=const)

При таком движении можно наблюдать увеличение или уменьшение скорости. Чтобы определить скорость, необходимо выполнить следующий расчет:

(vec{v}=vec{v}_{0}+vec{a}t)

Если тело разгоняется в проекции оси ОХ, то скорость можно определить по формуле:

(v_{x}=v_{0x}+a_{x}t)

a>0, движение является равноускоренным.

Направление 1

Источник: fizi4ka.ru

Во время торможения в проекции на ось ОХ скорость рассчитывают следующим образом:

(v_{x}=v_{0x}-a_{x}t)

а<0, движение является равнозамедленным.

Направление 2

Источник: fizi4ka.ru

Графически зависимость ускорения от времени, то есть график ускорения во время равноускоренного движения тела, можно представить в виде:

Зависимость

Источник: fizi4ka.ru

График ускорения, характеризующий равноускоренное движение тела, представляет собой прямую, которая параллельна оси времени:

  • график 1 находится над осью t, тело совершает разгон, ах>0;
  • график 2 размещен под осью t, тело тормозит, ах<0.

Графически скорость или проекция скорости изображается в виде зависимости скорости от времени:

Графически скорость

Источник: fizi4ka.ru

Графически скорость, характерная для равноускоренного движения тела, имеет вид прямой. График 1 направлен вверх, тело будет совершать равноускоренное движение в положительном направлении оси ОХ:

(v_{0x}>0)

(a_x>0)

(a_{1x} = tg α )

График 2 направлен вниз, тело будет двигаться равнозамедленно в положительном направлении оси ОХ:

(v_{0x}>0)

(a_x<0)

(a_{2x} = tg α )

График 3 направлен вниз, тело свершает равноускоренное движение против оси ОХ:

(v_{0x}<0)

(a_x<0)

Исходя из графика зависимости скорости от времени, определяют перемещение, которое тело преодолело в течение определенного промежутка времени (t_2-t_1). В этом случае целесообразно рассчитать площадь фигуры, расположенной под графиком. Формула для определения перемещения при равноускоренном движении имеет вид:

(S_{x}=v_{0x}t+frac{a_{x}t^{2}}{2})

(S_{x}=frac{v^{2}-v_{0}^{2}}{2a})

Перемещение в n-ую секунду во время равноускоренного движения можно определить по формуле:

(S_{n}=frac{a}{2}left(2n-1 right))

Определить координату тела, которое совершает равноускоренное движение, можно с помощью справедливого уравнения:

(x=x_{0}+v_{0x}t+frac{a_{x}t^{2}}{2})

Движение тела, брошенного вертикально вверх (вниз)

Во время падения тела вниз вектор его скорости направлен в ту же сторону, что и вектор ускорения свободного падения.

Баскетбол

Источник: goodfon.ru

Формулы, описывающее это движения, имеют следующий вид:

(vec{v} ↑↑vec{g})

(h=v_{0}t+frac{gt^{2}}{2})

(v=v_{0}+gt)

(h=frac{v^{2}-v_{0}^{2}}{2g})

В случае, когда тело падает вниз и его начальная скорость равна нулю, (v_0=0). Время падения при этом можно рассчитать по формуле:

(t=sqrt{frac{2h_{0}}{g}})

(h) является начальной высотой.

Для брошенного вверх тела будут справедливы следующие равенства:

(h=v_{0}t-frac{gt^{2}}{2})

(v=v_{0}-gt)

(h=frac{v^{2}-v_{0}^{2}}{-2g})

В максимальной верхней точке тело, брошенное вверх, будет обладать нулевой скоростью, (v=0). Для расчета времени подъема можно воспользоваться формулой:

(t=frac{v_{0}}{g})

Свободно падающее тело

Свободным падением называют движение тела в условиях безвоздушного пространства под действием силы тяжести.

В условиях свободного падения ускорения тел с разной массой будут равны. Данный параметр называют ускорением свободного падения. Оно всегда направлено к центру нашей планеты, то есть вертикально вниз. Величина обозначается латинской буквой g, а единицами измерения являются м/с2.

Ускорение свободного падения равно 9,8 м/с2. В задачах по физике допускается использовать значение g=10 м/с2.

Движение по окружности с постоянной по модулю скоростью

Движением по окружности при постоянной по модулю скоростью называют простейшим видом криволинейного движения.

Траектория такого движения будет представлена в виде окружности. Вектор скорости тела приобретает направление по касательной к окружности. Модуль скорости тела при изменении времени остается постоянным, а направление движения в каждой точке изменяется. Из этого можно сделать вывод, что движение по окружности представляет собой движение с ускорением. В свою очередь ускорение, изменяющее направление скорости, носит название центростремительного.

Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростримительное ускорение

Источник: fizi4ka.ru

Центростремительное ускорение является характеристикой быстроты изменения направления вектора линейной скорости. Параметр обозначается, как ацс. Единицами измерения центростремительного ускорения служат м/с2. Формула для расчета следующая:

(а_{цс} = frac{v^{2}}{R})

Движение тела по окружности при постоянной по модулю скорости называют периодическим движением. Таким образом, его координата будет повторяться через одинаковые периоды времени. Периодом называют время, в течение которого тело совершает один полный оборот. Обозначается величина как Т. Единицами измерения периода являются секунды, с. Для расчета справедливо равенство:

(T=frac{t}{N})

(N) является количеством оборотов, (t) — временем, за которое тело совершает обороты.

Частота вращения представляет собой количество оборотов за единицу времени. Обозначается параметр в виде латинской буквы (ν). Единицами измерения являются (с^{-1}) (Гц).

(nu=frac{N}{t})

Период и частота являются взаимно обратными величинами:

(T=frac{1}{nu})

(nu =frac{1}{T})

Линейная скорость представляет собой скорость движения тела по окружности. Параметр обозначают латинской буквой v, единицами измерения являются м/с. Линейная скорость направлена по касательной к окружности и рассчитывается по формуле:

(v=frac{2pi times R}{T})

(R) является радиусом окружности.

Угловой скоростью называют физическую величину, которая определяется как отношение угла поворота и времени, за которое тело совершает этот поворот. Обозначают параметр как ω. Единицами измерения угловой скорости являются рад/с. Угловая скорость определяется по формуле:

(omega =frac{varphi }{t})

(varphi) представляет собой угол поворота.

Угловая скорость

Источник: fizi4ka.ru

Направление угловой скорости определяют с помощью правила правого винта или буравчика. В случае, когда вращательное движение винта соотносится с направлением движения тела по окружности, то поступательное движение винта и направление угловой скорости совпадают. Связь параметров движения тела по окружности представлена следующими формулами:

(v=omega R)

(omega =frac{v}{R})

(a_{сц} = omega ^{2}R)

(omega = frac{2pi }{T})

(omega = 2pi v)

Во время равномерного движения тела по окружности точки, расположенные на радиусе, перемещаются с равной угловой скоростью, так как радиус за одно и то же время поворачивается на одинаковый угол. В это время линейная скорость разных точек радиуса отличается в зависимости от того, насколько близко или далеко от центра они размещены:

(v_{1}=omega r)

(v_{2}=omega R)

(frac{v_{1}}{v_{2}}=frac{r}{R})

Угловая скорость 2

Источник: fizi4ka.ru

При рассмотрении равномерного движения двух соединенных тел можно наблюдать отсутствие отличий в линейных скоростях, но при этом угловые скорости тел будут различны в зависимости от радиуса тела:

(omega _{1}=frac{v}{R_{1}})

(omega _{2}=frac{v}{R_{2}})

(frac{omega _{1}}{omega _{2}}=frac{R_{1}}{R_{2}})

Окружности

Источник: fizi4ka.ru

Движение тела, брошенного под углом к горизонту

Движение тела, которое бросили под углом к горизонту, можно представить в виде суперпозиции двух движений:

  1. Равномерного горизонтального перемещения.
  2. Равноускоренного движения вертикально при ускорении свободного падения.

Движение тела

Источник: fizi4ka.ru

Формула скорости будет иметь следующий вид:

(v_{0x}=v_{x}=v_{0} cos alpha =const)

(v_{0y}=v_{0}sin alpha)

(v_{y}=v_{0}sin alpha-gt)

Уравнение координаты обладает следующим видом:

(x=v_{0}cos alpha times t)

(y=v_{0}sin alpha times t-frac{gt^{2}}{2})

Скорость тела в любое время будет равна:

(v=sqrt{v_{x}^{2}+v_{y}^{2}})

Найти угол между вектором скорости и осью ОХ можно по формуле:

(tan beta =frac{v_{y}}{v_{x}}=frac{v_{0}sin alpha -gt}{v_{0}cos alpha })

Время подъема на максимальную высоту равно:

(t=frac{v_{0}sin alpha }{g})

Максимальную высоту подъема можно рассчитать с помощью формулы:

(h_{max}=frac{v_{0}^{2}sin ^{2}alpha}{2g})

Время полета соответствует уравнению:

(t=frac{2v_{0}sin alpha }{g})

Максимальную дальность полета можно рассчитать по формуле:

(L_{max}=frac{v_{0}^{2}sin 2alpha }{g})

Движение тела, брошенного горизонтально

Движение тела, которое бросили горизонтально, представлено в виде суперпозиции двух движений:

  1. Равномерное горизонтальное движение со скоростью v0=v0x.
  2. Равноускоренное вертикальное движение при ускорении свободного падения g с нулевой начальной скоростью.

Движение тела 2

Источник: fizi4ka.ru

Уравнение скорости:

(v_{x}=v_{0x}=const)

(v_{y}=g_{y}t=-gt)

Мяч

Источник: implus.com

Уравнение координаты:

(x=v_{0x}t=v_{x}t)

(y=frac{g_{y}t^{2}}{2}=h_{0}-frac{gt^{2}}{2})

Скорость тела в любое время будет определяться по формуле:

(v=sqrt{v_{x}^{2}+v_{y}^{2}})

Дальность полета тела соответствует уравнению:

(l=v_{0x}t=v_{0x}sqrt{frac{2h_{0}}{g}})

Вычислить угол между вектором скорости и осью ОХ можно с помощью формулы:

(tan beta =frac{v_{y}}{v_{x}}=frac{-gt}{v_{0x}})

Задачи по кинематике, их решение

Задача 1

Рассмотрим путь велосипедиста из одного населенного пункта в другой. Половина расстояния была преодолена со скоростью 12 км/ч ((v_1)). Далее половину оставшегося времени он ехал со скоростью 6 км/ч ((v_2)). Остаток расстояния путник преодолел пешком со скоростью 4км/ч ((v_3)). Необходимо рассчитать среднюю скорость на всем пути следования велосипедиста.

Решение

Данный пример относится к теме равномерного прямолинейного движения одного тела. Процесс можно изобразить схематично:

Решение

Источник: pandia.ru

(S = S_1 + S_2 + S_3)

(t = t_1 + t_2 + t_3)

На каждый отрезок пути необходимо составить уравнение движения:

(S_1 = v_1t_1)

(S_2 = v_2t_2)

(S_3 = v_3t_3)

Далее можно представить дополнительные условия задачи:

(S_1 = S_2 + S_3)

(t_2 = t_3)

(v_{sr}=frac{S}{t}=frac{S_{1}+S_{2}+S_{3}}{t_{1}+t_{2}+t_{3}})

Следует преобразить формулу и подставить числовые значения:

(v_{sr}=frac{2S_{1}}{frac{S_{1}}{v_{1}}+frac{2S_{1}}{v_{2}+v_{3}}}=frac{2v_{1}left(v_{2}+v_{3} right)}{2v_{1}+v_{2}+v_{3}})

(v_{sr}=frac{2times 12left(6+4 right)}{2times 12+6+4}=7)

Ответ: средняя скорость составляет (7) км/ч.

Задача 2

Тело подбросили вертикально вверх. Начальная скорость при этом составила 3,13 м/с ((v_0)). В момент, когда данное тело достигло максимальную высоту полета, из начального пункта подбросили второе тело с такой же начальной скоростью, как у первого. Необходимо определить на каком расстоянии от точки бросания встретятся тела. Сопротивлением воздуха при решении можно не учитывать.

Решение

Схематично перемещение тел можно представить следующим образом:

Задача 2

Источник: pandia.ru

Формула, описывающая движение тела, которое подбросили вверх, необходима для вычисления координаты движущегося тела в любое время. Для первого тела справедливо уравнение:

(h=v_{0}t_{1}-frac{gt_{1}^{2}}{2})

Для второго тела можно представить следующую формулу:

(h=v_{0}t_{2}-frac{gt_{2}^{2}}{2})

Следующую формулу можно составить на основании условия задачи, в котором указано, что  второе тело бросили позднее первого на время максимального подъема:

(t_{1}-t_{2}=frac{v_{0}}{g})

Объединяя уравнения в систему из трех формул относительно величины (h) получим:

(h=frac{3}{4}frac{v_{0}^{2}}{2g})

(h=frac{3}{4}frac{3.13^{2}}{2*9.8}=0.37)

Ответ: тела встретятся на высоте (0,37) м.

Задача 3

Камень, находясь в свободном падении, вторую часть пути преодолел за 1 секунду. Необходимо вычислить высоту (h), с которой упал камень.

Решение

Ось Y системы координат, в которых падает камень, направлена вертикально вниз. В качестве начала координат можно принять точку, из которой камень упал. Закон перемещения данного тела в проекции на ось будет обладать следующим видом:

(h=v_{0}t+frac{gt^{2}}{2})

(h=frac{gt^{2}}{2})

(v=v_{0}t+gt)

(v=gt)

Время падения камня рассчитывается по формуле:

(t=sqrt{frac{2h}{g}})

Для середины пути, который преодолел камень, справедливы уравнения:

(frac{h}{2}=frac{gt_{1}^{2}}{2})

(t_{1}=sqrt{frac{h}{g}})

Время (t_2), которое потребовалось телу на преодоление второй половины пути, указанное в условии задачи, рассчитывается по формуле:

(t_{2}=t-t_{1}=sqrt{frac{2h}{g}}-sqrt{frac{h}{g}})

(t_{2}^{2}=frac{h}{g}left(sqrt{2} -1right)^{2})

Исходя из данного уравнения, можно вычислить высоту:

(t_{2}^{2}=frac{h}{g}left(sqrt{2} -1right)^{2})

(h=frac{t_{2}^{2}g}{left(sqrt{2}-1 right)^{2}}=frac{9,81}{0,17}=57,7)

Ответ: камень упал с высоты (57,7) м.

Решение задач по кинематике основано на простых формулах. Успешность результата зависит от умения грамотно применять справедливые уравнения в том или ином случае. Бывают ситуации, когда в процессе изучения физики возникают некоторые трудности. Простым решением будет обратиться к порталу Феникс.Хелп.

iSopromat.ru

Пример решения задачи по определению нормального, касательного и модуля полного ускорения точки, а также, угла с вектором скорости, точки, движущейся по окружности заданного радиуса и известному закону заданному уравнением.

Задача

Точка движется по окружности радиуса R=4 м, закон ее движения определяется уравнением s=4,5t 3 ( s в метрах, t в секундах).

Определить модуль полного ускорения и угол φ его с вектором скорости в тот момент t1, когда скорость будет равна 6 м/с (рисунок 1.6).

Решение

Дифференцируя s по времени, находим модуль вектора скорости точки


Подставляя в это выражение значение скорости, получим 6=13,5t1 2 , откуда находим

Касательное ускорение для любого момента времени равно

Так как для окружности радиус кривизны ρ=R, то нормальное ускорение для любого момента времени равно

Модуль вектора полного ускорения точки равен

Угол между вектором полного ускорения и вектором скорости определим следующим образом:

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

источники:

http://ru.onlinemschool.com/math/library/vector/angl/

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

Понравилась статья? Поделить с друзьями:
  • Как в телефоне сяоми найти записанный разговор
  • Как найти знакомство с иностранцем
  • Как хорошо найти человека по душе
  • Как найти соответственные углы в равных треугольниках
  • Как найти где прячутся тараканы