Как найти угол между базисными векторами

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Угол между векторами. Ортогональные проекции векторов

Угол между векторами

Углом между двумя ненулевыми векторами называется угол между равными им векторами, имеющими общее начало, не превосходящий по величине числа .

Пусть в пространстве даны два ненулевых вектора и (рис.1.22). Построим равные им векторы и . На плоскости, содержащей лучи и , получим два угла . Меньший из них, величина которого не превосходит , принимается за угол между векторами и .

Поскольку направление нулевого вектора не определено, то не определен и угол между двумя векторами, если хотя бы один из них нулевой. Из определения следует, например, что угол между ненулевыми коллинеарными векторами либо равен нулю (если векторы одинаково направлены), либо равен (если векторы противоположно направлены).

Ортогональные проекции векторов

Движение по любой прямой может быть в двух направлениях. Ориентированной прямой называется прямая, на которой выбрано направление, т.е. одно из направлений считается положительным, а противоположное — отрицательным. Для измерения длин отрезков на прямой задается масштабный отрезок, который принимается за единицу.

Ориентированная прямая с заданным масштабным отрезком называется осью.

Любой ненулевой вектор , принадлежащий прямой, называется направляющим вектором для данной прямой, поскольку задает на ней ориентацию. Направление вектора принимается за положительное, а направление противоположного вектора — за отрицательное. Кроме того, длину вектора — можно принять за величину масштабного отрезка на этой прямой. Поэтому можно сказать, что любой ненулевой вектор определяет ось — прямую, содержащую этот вектор, задавая на ней направление и масштабный отрезок.

Ортогональной проекцией вектора на ось, задаваемую вектором , называется его проекция на ось вдоль прямой (или вдоль плоскости), перпендикулярной данной оси. Ортогональную проекцию вектора на ось, задаваемую вектором , будем обозначать .

Ортогональную проекцию вектора на прямую (см. разд. 1.2.2 и рис. 1.13) будем обозначать .

Ортогональную проекцию вектора а на плоскость (см. разд. 1.2.2 и рис. 1.14) будем обозначать .

Разность между вектором и его ортогональной проекцией называют ортогональной составляющей:

— — ортогональная составляющая вектора относительно вектора ;

— — ортогональная составляющая вектора относительно прямой ;

— — ортогональная составляющая вектора относительно плоскости .

На рис. 1.23 изображены ортогональные проекции вектора :

— на прямую (или на ось , задаваемую вектором ) вдоль прямой (рис.1.23,а);

— на прямую (или на ось , задаваемую вектором ) вдоль плоскости (рис.1.23,б);

— на плоскость вдоль прямой (рис.1.23,в).

На рис. 1.23 изображены ортогональные составляющие вектора :

— относительно оси (вектора ): (рис.1.23,а);

— относительно плоскости (рис.1.23,в).

Для ортогональных проекций справедлива следующая теорема (см. теорему 1.1 в разд. 1.5).

Теорема 1.2 (об ортогональных проекциях вектора).

1. Если на плоскости заданы две взаимно перпендикулярные прямые и , то любой вектор на плоскости можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е. (рис. 1.24,а).

2. Если в пространстве заданы три попарно перпендикулярные прямые и , пересекающиеся в одной точке, то любой вектор в пространстве можно однозначно представить в виде суммы своих ортогональных проекций на эти прямые, т.е. (рис. 1.24,6).

3. Квадрат длины вектора на плоскости или в пространстве равен сумме квадратов длин своих ортогональных проекций, т.е.

Первые два утверждения представляют собой частные случаи теоремы 1.1. Третье утверждение следует из теоремы Пифагора (для треугольника (рис. 1.24,а) или треугольников и (рис. 1.24,6)).

В формулировке теоремы 1.2 прямые можно заменить осями, задаваемыми попарно ортогональными векторами.

На рис.1.24,а проекции вектора на оси одновременно являются ортогональными составляющими: и . На рис. 1.24,6 вектор является проекцией вектора на плоскость , содержащую прямые и : , а вектор является ортогональной составляющей вектора относительно плоскости .

Алгебраическое значение длины проекции

Пусть – угол между ненулевым вектором и осью, задаваемой вектором , т.е. угол между ненулевыми векторами и .

Алгебраическим значением длины ортогональной проекции вектора на ось, задаваемую вектором , называется длина его ортогональной проекции , взятая с положительным знаком, если угол не превышает , и с отрицательным знаком, если угол больше , т.е.:

Например, для проекций, изображенных на рис. 1.25, 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAE8AAAAVBAMAAAD1D64kAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMA/cBBpYEhURAxkWFx4MHQtTUEJQAAAVlJREFUKM9jYKAAsBGrkKsATaB5AhZVRUpK+mKoQty3/LCpZDCu3YAqYDiB9QZWq4tBBHsEnO/PwCaNx6X7l8FYcgwMIgwMJlomWhOYnZarNECFmZ3KDMAMOzeogBQDgzwDQ46gZ4s420GRwANQhRsNHB9AWHbOEIWiDAyCDGDFFxuYJKZCTWSWZjAMgOoxUUZWKMTAsLCA6QNIqBWIeQWAZsJcl/IYVWFgAJMCA0No6FpQWDgwOMI9lHId6kYUhQwMJ4D44AGGe3B1YKvZ5MAeBylUnABRCAIHDdhEmZCdyMBwiYFNBkgJTuAWYeAHupEtBBTHiQX94qVgeSNPWDgk8IAiVd7LMYBVUFCBYVMCyFieW55fNEDS+9zgieTOQgOw1ZAY5xC3WQBJZJygkGJfhoikORUMEDeCAbvoTvypVB4a0twK+FPppkcvoTpucDoQl7CnRuOTBQA/mUGNQvQK+QAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />, поскольку угол между векторами и острый, a , так как угол между векторами и тупой.

Некоторые свойства проекций векторов переносятся на алгебраические значения их длин, в частности:

1. — алгебраическое значение длины ортогональной проекции суммы векторов равно сумме алгебраических значений длин ортогональных проекций слагаемых;

2. — алгебраическое значение длины ортогональной проекции произведения вектора на число равно произведению этого числа на алгебраическое значение длины ортогональной проекции вектора

1. Из определения алгебраического значения длины ортогональной проекции следует (см. также рис.1.25), что , т.е. алгебраическое значение длины ортогональной проекции ненулевого вектора на ось равна произведению длины этого вектора на косинус угла между вектором и осью.

Ортогональную проекцию вектора на ось, задаваемую вектором , можно представить в виде

Если — единичный вектор, то .

2. Равенство можно использовать как определение косинуса угла между ненулевыми векторами и (или, что то же самое, косинуса угла между осями, заданными ненулевыми векторами и (рис. 1.26)).

3. Углом между ненулевым вектором и прямой называется угол между вектором и его ортогональной проекцией на прямую . Величина угла может быть найдена по формуле

4. Углом между ненулевым вектором и плоскостью называется угол между вектором и его ортогональной проекцией на плоскость . Величина угла может быть найдена по формуле

Пример 1.7. Основания и равнобокой трапеции равны и соответственно; точка — середина стороны (рис. 1.27). Найти алгебраические значения длин ортогональных проекций векторов и на ось, задаваемую вектором .

Решение. Пусть — высота трапеции, — точка пересечения прямых и . По свойству равнобокой трапеции ; из равенства треугольников и .

Обозначим через искомые алгебраические значения длин ортогональных проекций.Тогда из равенств

и свойства 1 алгебраических значений длин проекций следует:

источники:

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

http://mathhelpplanet.com/static.php?p=ugol-mezhdu-vektorami-i-ortogonalnye-proektsii-vektorov

Лекция №3

Длина вектора в
ортонормированном базисе. Угол между
векторами.

Скалярное
произведение векторов

При решении задач,
связанных с вычислением длин отрезков
(векторов) или величин углов удобнее
рассматривать так называемые
ортонормированные базисы.

Определение
3.1
.
Базис

называется ортонормированным, если его
векторы удовлетворяют двум условиям:
;

.

Теорема
3.2.
Длина
вектора
,
заданного координатами в ортонормированном
базисе

вычисляется по формуле

Доказательство.

  1. Пусть

    и
    .
    Отложим векторы

    от некоторой точки О плоскости. Построим
    прямоугольник

    так, чтобы лучи

    и

    содержали бы векторы
    ,
    а
    .

  2. По теореме Пифагора
    имеем:

    ,

  3. Так как

    и
    ,
    то
    .
    Значит,
    .

Пусть векторы

и

— ненулевые векторы. Отложим от
произвольной точки О векторы
,

и рассмотрим лучи

и
.

Определение
3.3.
Углом
между векторами

и

называется угол между лучами их
содержащими

и
,
если эти лучи не совпадают.

Если лучи

и
совпадают,
то угол между ними считается равным
нулю.

Угол между векторами

и
обозначается
так:
.

Так как два угла,
стороны которых сонаправлены, равны,
то угол между векторами не зависит от
выбора точки О.

Определение
3.4.
Скалярное
произведение векторов равно произведению
длин этих векторов на косинус угла между
ними:
.

Из формулы заключаем,
что

тогда и только тогда, когда векторы

и

перпендикулярны. Это утверждение
справедливо и в том случае, когда хотя
бы один из векторов

и

— нулевой. Скалярное произведение
.
Число

называется скалярным квадратом вектора

и обозначается через
.
Таким образом,
.

Теорема 3.5.
Скалярное произведение двух векторов

и
,
заданных в ортонормированном базисе,
есть число, равное сумме произведений
соответствующих координат, т.е.
.

Доказательство.

I.
Пусть векторы

и

не нулевые и не коллинеарные.

1. Рассмотрим
треугольник
:

  • по определению
    разности векторов имеем:
    ;

  • по теореме косинусов
    имеем:

  • Значит,

    или

  • Так как
    ,
    то

    и

    (*)

2. Распишем равенство
(*) в координатах:

Таким образом,

II.
Пусть векторы

и

ненулевые и коллинеарные.

  1. По теореме о
    коллинеарных векторах существует такое
    ,
    что
    ,
    следовательно

  2. Найдем скалярное
    произведение векторов

    и

    по определению 3.4:

Следствие 3.6.
Векторы

и
,
заданные в ортонормированном базисе,
взаимно перпендикулярны тогда и только,
когда
.

Следствие 3.7.
Косинус
угла между ненулевыми векторами

и
,
заданными
в ортонормированном базисе, вычисляется
по формуле:

Свойства
скалярного умножения 3.8.


Для
любого действительного числа

и произвольных векторов
,


и

справедливы следующие равенства:

3.8.1.

3.8.2.

и

3.8.3.

3.8.4.


Ограничимся
доказательством свойства 3.8.3. Остальные
доказываются аналогично.

Доказательство
свойства 3.8.3.

Так как вектор

имеет координаты
,
то по формуле скалярного произведения
в ортонормированном базисе имеем:
=

=
=
.

Геометрический
смысл координат вектора.

  1. Пусть в
    ортонормированном базисе задан некоторый
    вектор
    .
    Его можно разложить по базису:

2.
Умножим обе части разложения вектора

скалярно на
,
.
Имеем:
.

3. Учитывая, что
,
имеем:

Определение
3.5

Косинусы
углов

между вектором

и базисными векторами
,

называются направляющими косинусами
вектора

в ортонормированном базисе.

Если
,
то

Соседние файлы в папке вопрос 1

  • #
  • #
  • #

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

|a| = √32 + 42 = √9 + 16 = √25 = 5
|b| = √42 + 32 = √16 + 9 = √25 = 5

Найдем угол между векторами:

cos α a · b  =  24  =  24  = 0.96
|a| · |b| 5 · 5 25

Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.

Решение: Найдем скалярное произведение векторов:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2
|b| = √52 + 52 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α a · b  =  40  =  40  =  4  = 0.8
|a| · |b| 5√2 · 5√2 50 5

Примеры вычисления угла между векторами для пространственных задач

Пример 3. Найти угол между векторами a = {3; 4; 0} и b = {4; 4; 2}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5
|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6

Найдем угол между векторами:

cos α a · b  =  28  =  14
|a| · |b| 5 · 6 15

Пример 4. Найти угол между векторами a = {1; 0; 3} и b = {5; 5; 0}.

Решение: Найдем скалярное произведение векторов:

a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

|a| = √12 + 02 + 32 = √1 + 9 = √10
|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α =

a · b|a| · |b|

=

5√10 · 5√2

=

12√5

=

510

= 0.1√5

Угол между векторами

Иногда студенты при решении задач аналитической геометрии сталкиваются с вопросом: «Как найти угол между векторами?». Чтобы решить такую задачу нужно сначала найти косинус угла между ними, а затем и сам угол. Для этого применяется такая формула: $$ phi = arccos(cos phi) $$

Если воспользоваться данной формулой, то сначала нужно найти угол между векторами $ cos phi $. Затем находим арккосинус от косинуса угла $ phi $. А чему равен $ cos phi $? Для его нахождения необходимо воспользоваться следующими формулами.

Формула

Если векторы расположены на плоскости и координаты их заданы в виде: $ overline{a} = (a_x; a_y) $ и $ overline{b} = (b_x; b_y) $, то найти угол между ними можно так:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{a_xcdot b_x + a_y cdot b_y}{sqrt{a_x ^2 + a_y ^2}cdot sqrt{b_x ^2 + b_y ^2}} $$

Если вектора находятся в пространстве и координаты каждого из них заданы в виде: $ overline{a} = (a_x; a_y; a_z) $ и $ overline{b} = (b_x; b_y; b_z) $, то вычислить косинус угла следует по формуле:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{a_xcdot b_x + a_y cdot b_y + a_z cdot b_z}{sqrt{a_x ^2 + a_y ^2 + a_z ^2}cdot sqrt{b_x ^2 + b_y ^2 + b_z ^2}} $$

Пояснение. В числителе расположено скалярное произведение векторов $ overline{a} $ и $ overline{b} $. Оно равно сумме произведений соответствующих координат. В знаменателе перемножаются модули (длины) векторов.

Примеры решений

Пример 1
Найти угол между векторами $ overline{a} = (2;4) $ и $ overline{b} = (3;1) $
Решение

Сначала находим косинус угла между векторами по формуле:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{2cdot 3 + 4 cdot 1}{sqrt{2^2 + 4^2} cdot sqrt{3^2 + 1^2} } = frac{10}{sqrt{20} cdot sqrt{10}} = $$

$$ = frac{10}{sqrt{200}} = frac{1}{sqrt{2}} = frac{sqrt{2}}{2} $$

Теперь искомый угол $ phi $ находим по другой формуле:

$$ phi = arccos (cos phi) = arccos (cos frac{sqrt{2}}{2}) = 45^0 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Угол между двумя векторами равен $ phi = 45^0 $
Пример 2
Найти угол $ phi $ между двумя векторами $ overline{a} = (8;-11;7) $ и $ overline{b} = (-2;-7;8) $
Решение

Подставляем координаты в формулу и вычисляем:

$$ cos phi = frac{8cdot (-2) + (-11)cdot (-7) + 7cdot 8}{sqrt{8^2+(-11)^2+7^2} cdot sqrt{(-2)^2+(-7)^2+8^2} } = $$

$$ = frac{-16+77+56}{sqrt{234} cdot sqrt{117}} = frac{117}{sqrt{234} cdot sqrt{117}} = $$

$$ = frac{sqrt{117}}{sqrt{234}} = frac{1}{sqrt{2}} = frac{sqrt{2}}{2} $$

Далее находим сам угол $ phi $ с помощью арккосинуса:

$$ phi = arccos frac{sqrt{2}}{2} = 45^0 $$

Ответ
Угол $ phi = 45^0 $


1.6.9. Как найти угол между векторами в координатах?

Теперь у нас есть полная информация, чтобы ранее выведенную формулу косинуса

угла между векторами  выразить через

координаты векторов :

Косинус угла между векторами плоскости  и ,

заданными в ортонормированном базисе , выражается формулой:
.

Косинус угла между векторами пространства , заданными в ортонормированном базисе , выражается формулой:

Возвращаемся к нашим треугольникам:

Задача 31

Даны три вершины треугольника . Найти .

Решение: по условию чертёж выполнять не требуется, но всё-таки:

Из чертежа совершенно очевидно, что угол  треугольника совпадает с углом между векторами  и , иными словами: , и дальнейшее понятно. Найдём векторы и их длины:

Вычислим скалярное произведение:

Таким образом:

Именно такой порядок выполнения задания рекомендую «чайникам». Более подготовленные читатели могут записать вычисления

«одной строкой»:

Косинус получился «плохим» (не табличным), однако, это не окончательный ответ задачи, и поэтому, к слову, не имеет особого

смысла избавляться от корня в знаменателе.

Найдём сам угол:  

Если посмотреть на чертёж, то результат вполне правдоподобен. Для проверки можно использовать Алгебраический

Калькулятор (см. Приложения) или даже измерить угол транспортиром (у кого он есть). Только не

повредите покрытие монитора =)

Ответ:
В ответе не забываем, что спрашивалось про угол треугольника (а не про угол между векторами), не забываем

указать точный ответ:  и приближенное значение

угла: , найденное с помощью

калькулятора.

Задача 32

В пространстве задан треугольник координатами своих вершин , .

Найти угол между сторонами  и

Это пример для самостоятельного решения, и, конечно же, задачка творческая, повторяем взаимосвязь между углом и знаком скалярного произведения:

Задача 33

При каком значении  угол между векторами  будет: а) острым, б) прямым, в) тупым?

Решение и ответ в конце книги.

Следующий небольшой параграф будет посвящен ортогональным проекциям векторов, в которых тоже «замешано» скалярное произведение:

1.7.1. Как найти проекцию вектора на вектор?

1.6.8. Если векторы заданы суммами векторов с известными координатами

| Оглавление |



Автор: Aлeксaндр Eмeлин

Понравилась статья? Поделить с друзьями:
  • Как найти код для office
  • Как исправить битые сектора на ssd диске
  • Как найти должника арбитражный суд
  • Vba как найти минимальное число
  • Как найти значение многочлена в точке