Как найти угол между двумя биссектрисами

Как найти угол между биссектрисами треугольника?

Задача.

В треугольнике ABC угол C равен α, AD и BE — биссектрисы, пересекающиеся в точке O.

Найти угол AOB.

ugol-mezhdu-bissektrisami-treugolnikaРешение:

1) Так как сумма углов треугольника равна 180°, то в треугольнике ABC

∠BAC+∠ABC+∠C=180°, отсюда

∠BAC+∠ABC=180°-∠C,

∠BAC+∠ABC=180°-α.

2) Так как AD и BE — биссектрисы углов ∠BAC и ∠ABC, то

    [ angle BAO = frac{1}{2}angle BAC,angle ABO = frac{1}{2}angle ABC, ]

    [ angle BAO + angle ABO = frac{1}{2}angle BAC + frac{1}{2}angle ABC = ]

    [ = frac{1}{2}(angle BAC + angle ABC) = frac{1}{2}(180^o - alpha ) = 90^o - frac{alpha }{2}. ]

3) Для треугольника AOB

∠BAO+∠ABO+∠AOB=180°,

∠AOB=180°-(∠BAO+∠ABO),

    [ angle AOB = 180^o - (90^o - frac{alpha }{2}) = 90^o + frac{alpha }{2}.]

Замечание.

В треугольнике AOB ∠BOD — внешний угол при вершине O. Следовательно,

    [ angle BOD = angle BAO + angle ABO = 90^o - frac{alpha }{2}. ]

Вывод:

Один уз углов, образованный при пересечении биссектрис двух углов треугольника, равен сумме 90° и половины третьего угла,

другой — разности 90° и половины третьего угла.

Запоминать для экзамена эти соотношения необязательно. Достаточно самостоятельно провести аналогичные рассуждения.

Биссектриса угла

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы угла треугольников и других фигур.

Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… 

Нам же знание этих свойств поможет решить некоторые задания ЕГЭ!

Приступим!

Биссектриса угла — коротко о главном

Биссектриса угла — это линия, делящая угол пополам.

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Теорема 1. Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.

Теорема 2. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

Теорема 3. Биссектриса угла параллелограмма отсекает равнобедренный треугольник.

Теорема 4. Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.

Теорема 5. Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.

Теорема 6. Отношение отрезков, на которые биссектриса делит противоположную сторону, такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.

( displaystyle frac{x}{y}=frac{a}{b})

А теперь подробнее…

Определение биссектрисы угла

Помнишь шутку: «Биссектриса это крыса, которая бегает по углам и делит угол пополам»?

Так вот, настоящее определение биссектрисы угла очень похоже на эту шутку — биссектриса действительно делит пополам угол (а не отрезок, например):

Биссектриса угла – это линия, делящая угол пополам.

Или еще вот такое определение биссектрисы:

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

А вот определение биссектрисы треугольника:

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Тебе встретилась в задаче биссектриса? Постарайся применить одно (а иногда можешь и несколько) из следующих потрясающих свойств.

Биссектриса равнобедренного треугольника

Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой, и высотой.

Но представляешь, это ещё не всё. Верна ещё и обратная теорема:

Если в треугольнике биссектриса, проведённая из какого-то угла, совпадает с медианой или с высотой, то этот треугольник равнобедренный.

Мы скоро докажем обе этих теоремы, а пока твердо запомни:

Биссектриса совпадает с высотой и медианой только в равнобедренном треугольнике!

Зачем же это твердо запоминать? Как это может помочь?

А вот представь, что у тебя задача:

Дано: ( AB=5,~angle ~ABD=~angle DBC,~AD=DC. )

Найти: ( displaystyle BC. )

Ты тут же соображаешь, (displaystyle BD ) биссектриса и, о чудо, она разделила сторону ( displaystyle AC ) пополам! (по условию…).

Если ты твердо помнишь, что так бывает только в равнобедренном треугольнике, то делаешь вывод, что AB=BC и значит, пишешь ответ: BC=5.

Здорово, правда? Конечно, не во всех задачах будет так легко, но знание обязательно поможет!

Доказательство теорем о совпадении биссектрисы с медианой и высотой в равнобедренном треугольнике

Почему в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Как это доказать?

Смотри: у ( triangle ABL ) и ( triangle CBL ) равны стороны ( AB ) и ( BC ), сторона ( BL ) у них вообще общая и ( angle 1=angle 2). (( BL ) – биссектриса!)

И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними.

Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему «Треугольник») и заключаем, что ( triangle ABL=triangle CBL ), а значит ( AL )= ( CL ) и ( angle 3=angle 4 ).

( AL ) = ( CL ) – это уже хорошо – значит, ( BL ) оказалась медианой.

А вот что такое ( angle 3=angle 4 )?

Готов дальше?

Будет немного сложнее, но пока мы отвлечемся на термины — повторим что такое биссектриса, медиана и высота, чем они похожи и чем они отличаются.

Биссектриса, медиана, высота — определения и отличия

Кстати, а помнишь ли ты все эти термины? Чем они отличаются друг от друга?

Если нет, не страшно. Сейчас разберемся.

  • Основание равнобедренного треугольника – это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно – это сторона ( AC. );
  • Медиана – это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова ( AC ) пополам. Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.;
  • Высота – это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Чем биссектриса, медиана и высота похожи между собой?

Биссектриса, медиана и высота – все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной.

Чем биссектриса, медиана и высота отличаются между собой?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Вернемся к нашим баранам — к свойствам биссектрисы…

Угол между биссектрисами любого треугольника

B ( triangle ABC )проведем две биссектрисы ( AO )и ( OC ). 

Они пересеклись. Какой же угол получился у точки ( O )?

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ( 180{}^circ ) ?

Применим этот потрясающий факт. С одной стороны, из ( triangle ABC ):

( angle A+angle B+angle C=180{}^circ ), то есть ( angle B=180{}^circ text{ }-text{ }left( angle A+angle C right) ).

Теперь посмотрим на ( triangle AOC ):

( angle 2+angle 6+angle 3=180{}^circ )

Но биссектрисы, биссектрисы же!

( angle 2=frac{angle A}{2}; angle 3=frac{angle C}{2} )

Значит ( left( triangle AOC right) )

( frac{angle A}{2}+angle 6+frac{angle C}{2}=180{}^circ ), то есть

( angle 6=180{}^circ -frac{angle A}{2}-frac{angle C}{2} );

(  angle 6=180{}^circ -frac{angle A+angle C}{2} )

Вспомним про ( triangle ABC : angle A+angle C=180{}^circ -angle B )

Значит, ( angle 6=180{}^circ -frac{180{}^circ -angle B}{2}=90+frac{angle B}{2} )

Теперь через буквы

(  angle AOC=90{}^circ +frac{angle B}{2} )

Не удивительно ли?

Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!

Ну вот, две биссектрисы мы посмотрели. А что, если их три?! Пересекутся ли они все в одной точке?

Или будет так:

Биссектриса угла – геометрическое место точек, равноудалённых от сторон угла

Ленивые математики как обычно в двух строчках спрятали четыре.

Итак, что же значит, «Биссектриса – геометрическое место точек»? А это значит, что выполняются сразу два утверждения:

  1. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.
  2. Если у какой-нибудь точки расстояния до сторон угла равны, то эта точка обязательно лежит на биссектрисе.

Видишь разницу между утверждениями 1 и 2? Если не очень, то вспомни Шляпника из «Алисы в стране чудес»: «Так ты еще чего доброго скажешь, будто «Я вижу то, что ем» и «Я ем то, что вижу», — одно и то же!»

Итак, нам нужно доказать утверждения 1 и 2, и тогда утверждение: «биссектриса – это геометрическое место точек, равноудаленных от сторон угла» будет доказано!

Почему же верно 1?

Возьмём любую точку на биссектрисе и назовём её ( displaystyle A. )

Опустим из этой точки перпендикуляры ( displaystyle ) AB и ( displaystyle AC ) на стороны угла.

А теперь… Приготовились вспоминать признаки равенства прямоугольных треугольников! Если ты их подзабыл, то загляни в раздел «Прямоугольный треугольник».

Итак… Два прямоугольных треугольника: ( displaystyle AOC ) и ( displaystyle AOB. ) У них:

Почему же верно 2?

Возьмем какую-то точку ( displaystyle E) внутри угла, для которой расстояние до сторон угла равны.

И соединим точки ( displaystyle E) и ( displaystyle O).

Теперь ( displaystyle triangle EOC=triangle EOB) как прямоугольные по катету и гипотенузе.

Значит, ( displaystyle angle 1=angle 2), то есть ( displaystyle E) лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что:

  • Окружность касается сторон угла – значит, ( displaystyle AC=AB). (Правда, для этого нужно ещё знать, что радиус, проведённый в точку касания, перпендикулярен касательной)
  • А раз ( displaystyle AC=AB), то ( displaystyle AO) – точно биссектриса!

И можно пользоваться равенством ( displaystyle angle 1=angle 2).

Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её ( displaystyle O).

Эта точка лежит на биссектрисе ( displaystyle AD). Что из этого следует? 

Правильно! ( displaystyle OK=OM)!

Точка ( displaystyle O) лежит ещё и на биссектрисе ( displaystyle CE), поэтому ( displaystyle OK=ON).

Что мы тут оба раза применяли?

Да пункт 1, конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось ( displaystyle OK=OM) и ( displaystyle OK=ON).

Но посмотри внимательно на эти два равенства! Ведь из них следует, что:

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например, некоторые из них:

Случай 1

Биссектриса угла параллелограмма отсекает равнобедренный треугольник.

Здорово, правда? Давай поймём, почему так.

С одной стороны, ( displaystyle angle 1=angle 2) — мы же проводим биссектрису!

Но, с другой стороны, ( displaystyle angle 2=angle 3) — как накрест лежащие углы (вспоминаем тему «Параллельные прямые»).

И теперь выходит, что:

Случай 2

Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону ( displaystyle AC) за точку ( A). Теперь получилось два угла ( displaystyle A):

  • ( displaystyle angle 1) – внутренний угол ( displaystyle triangle ABC)
  • ( displaystyle angle 2) – внешний угол ( displaystyle triangle ABC) – он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для ( displaystyle angle 1), и для ( displaystyle angle 2). Что же получится?

А получится прямоугольный ( displaystyle triangle ALK)!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма ( displaystyle angle 1+angle 2+angle 3+angle 4)?

Случай 3

Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

( angle 1+angle 2+angle 3+angle 4=180{}^circ ) (как соответственные при параллельных основаниях).

И опять, ( angle 2+angle 3 ) составляют ровно половину от суммы ( angle 1+angle 2+angle 3+angle 4=180{}^circ )

Значит, ( angle 2+angle 3=90{}^circ ).

Вывод:

Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

( displaystyle frac{x}{y}=frac{a}{b})

То есть:

Отношение отрезков, на которые биссектриса поделила сторону ( displaystyle AB), такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова – выход в «космос» — дополнительное построение!

Проведём прямую ( BKparallel AC).

Зачем? Сейчас увидим.

Продолжим биссектрису ( displaystyle CD) до пересечения с прямой ( displaystyle BK).

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 – получается, что ( angle 1=angle 2) (( displaystyle CD) – биссектриса)

( angle 2=angle 3) — как накрест лежащие

( Rightarrow angle 1=angle 3) и ( BC=BL)

Значит, ( BL) – это тоже ( a).

А теперь посмотрим на треугольники ( ACD) и ( BLD).

Что про них можно сказать?

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника. Самое сложное кончилось – будет проще.

Угол между биссектрисами треугольника

Пусть ( AO) и ( CO) – биссектрисы. 

Найдём ( angle AOC) (помним, что сумма углов треугольника равна ( displaystyle 180{}^circ )).

( angle text{ }!!~!!text{ AOC}=180{}^circ -text{ }!!~!!text{ }frac{angle A}{2}-frac{angle text{C}}{2}=180{}^circ -frac{angle text{A}+angle text{C}}{2}=180{}^circ -frac{180{}^circ -angle text{B}}{2})

Получаем, что 

( angle text{ }!!~!!text{ AOC}=90{}^circ +frac{angle B}{2})

Это знание можно применить в тех задачах, где участвуют две биссектрисы и дан лишь угол ( B), а искомые величины выдерживаются через ( angle AOC) или, наоборот, ( angle AOC) дан, а нужно найти что-то с участием угла ( B).

Основные знания о биссектрисе закончились. Комбинируя эти факты, ты найдёшь ключ к любой задаче о биссектрисе!

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

См. также биссектриса угла.

БИССЕКТРИСА УГЛА ТРЕУГОЛЬНИКА

Биссектриса треугольника – отрезок биссектрисы угла, соединяющий вершину этого угла с точкой на противолежащей стороне.

У биссектрис угла треугольника есть масса свойств, которые описываются через свойства треугольника. Это поможет в решении задач.

Свойства биссектрис треугольника

  • Биссектриса треугольника, проведенная из данной вершины, тождественна биссектрисе соответствующего угла. Биссектриса угла треугольника, выходящая из его вершины, делит этот угол треугольника пополам 

  • Все три биссектрисы треугольника пересекаются в одной точке, которая расположена всегда в плоскости треугольника и является центром вписанной окружности. Примечание. Имеются ввиду биссектрисы внутренних углов треугольника.
    Все три биссектрисы треугольника пересекаются в одной точке, которая расположена всегда в плоскости треугольника и является центром вписанной окружности

Свойства биссектрис равнобедренного треугольника

  • У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса), и третья биссектриса одновременно является медианой и высотой того угла, из которого она выходит.

  • В равнобедренном треугольнике две биссектрисы равны, а третья биссектриса является его медианой и высотой
    В равнобедренном треугольнике две биссектрисы равны, а третья биссектриса является его медианой и высотой. У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают

  • Одна и только одна биссектриса внешнего угла неравностороннего треугольника может быть параллельна противоположной стороне — основанию, если треугольник равнобедренный

Свойства биссектрис равностороннего треугольника

  • У равностороннего треугольника все три биссектрисы внешних углов параллельны противоположным сторонам

  • У равностороннего треугольника все три внутренние биссектрисы равны
  • У равностороннего треугольника все три «замечательные» линии (высота, биссектриса и медиана) совпадают и три «замечательных» точки (точки ортоцентра, центра тяжести и центра вписанной и описанной окружностей) находятся в одной точке пересечения «замечательных» линий, т.е. тоже совпадают.

Формулы нахождения биссектрисы угла

Рисунок для пояснения формул нахождения длины биссектрисы в треугольнике

Формулы нахождения длины биссектрисы угла через длины сторон треугольника и угол между сторонами

a, b, c — стороны треугольника, при этом биссектриса проведена из угла, находящегося между сторонами a, b
α,β,γ — углы треугольника, противолежащие сторонам a,b,c соответственно
p — полупериметр треугольника (половина суммы всех его сторон)
ca, cb — отрезки, на которые биссектрисой, проведенной из угла c разбита сторона c

lc — длина биссектрисы, проведенной к стороне c из угла γ.

Длина биссектрис треугольника может быть выражена через равенство с квадратом суммы всех его сторон.

квадрат суммы сторон треугольника может быть выражен через длину биссектрис и сторон этого треугольника

Формулы нахождения расстояния от угла до точки пересечения биссектрис

Рисунок, поясняющий формулу определения расстояний от угла до дочки пересечения биссектрис, радиусов вписанной и описанной окружностей треугольника

Формулы, описывающие взаимоотношения длины отрезка биссектрисы до центра пересечения биссектрис треугольника, радиусов вписанной и описанной окружностей и длин сторон этого треугольника

где

lco — длина отрезка, лежащего на биссектрисе от вершины угла до центра пересечения биссектрис
r — радиус окружности, вписанной в треугольник
R — радиус описанной окружности
a, b, c — стороны треугольника, при этом биссектриса проведена из угла, находящегося между сторонами a, b
γ — угол треугольника, противолежащий стороне c 
p — полупериметр треугольника (половина суммы всех его сторон) 

Примеры решения задач

Примечание. В данном уроке изложены задачи по геометрии о биссектрисе. Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. Почти наверняка курс будет дополнен.

Задача.

Луч AD является биссектрисой угла A. На сторонах угла A отмечены точки B,C так что угол ADC равен углу ADB. Доказать, что AB=AC.

Биссектриса угла

Решение.
Рассмотрим треугольники ADB и ADC. Сторона AD у них общая, углы DAC и DAB равны, так как биссектриса AD делит угол А пополам, а углы ADC и ADB равны по условию задачи. Таким образом, треугольники ADB и ADC равны по стороне и двум углам.

Следовательно AB = AC.


0
 

 Биссектриса угла |

Описание курса

| Биссектриса внешнего угла 

В данной статье репетитор по математике и физике отвечает на вопрос, чему равен угол между биссектрисами смежных углов. Как оказалось, этот вопрос волнует многих школьников, которым предстоит сдавать ЕГЭ или ОГЭ по математике. Интересно то, что этот материал изучается в 7 классе, когда школьники только начинают своё знакомство с премудростями геометрии. Дочитайте эту статью до конца, и вы не только узнаете чему равен угол между биссектрисами смежных углов, но и поймёте, как это можно очень легко доказать.

Чему равен угол между биссектрисами смежных углов

Начать нужно, конечно, с определения смежных углов. Смежными называются углы, которые как бы дополняют друг друга до развёрнутого. Проще всего продемонстрировать это с помощью рисунка. Если нарисовать прямую AB, отметить на ней между точками A и B точку C и провести из неё луч CD, то углы ACD и DCB будут являться смежными. На рисунке они отмечены одной и двумя дугами:

Смежные углы

Ну и понятно, что поскольку смежные углы дополняют друг друга до развёрнутого угла, то в сумме они равны 180^{circ}.

Проведём теперь биссектрисы этих смежных углов. Напомню, что биссектрисой называется «крыса, которая бегает по углам и делит угол пополам». Это такая запоминалочка для семиклассников, чтобы лучше запомнить. А если более строго, так сказать, по-научному, то биссектриса — это луч, исходящий из вершины угла и делящий его пополам. Ну и если нарисовать биссектрисы обоих углов (на рисунке снизу это зелёные линии CE и CF), то даже визуально заметно, что угол между ними составит 90^{circ}:

Угол между биссектрисами смежных углов является прямым

Кто-то может мне возразить, сказав, что это случайно так получилось и что можно перерисовать рисунок так, что биссектрисы уже не будут взаимно перпендикулярны. Но нет! В том то и дело, что можно взять какие угодно смежные углы и угол между биссектрисами этих смежных углов обязательно будет прямым. Это удивительный факт, не правда ли?!

Но на самом деле, если вы уже были с ним раньше знакомы, то не на столько уж удивительный. Потому что на самом деле доказательство у этого факта довольно-таки простое. Обозначим равные углы FCB и DCF за alpha, а равные углы DCE и ECA за beta:

Доказательство того, что угол между биссектрисами смежных углов равен 90 градусам

Если посмотреть на рисунок, то все эти углы вместе образуют развёрнутый угол, то есть в сумме все они равны 180^{circ}. То есть имеет место равенство:

    [ 2alpha + 2beta = 180^{circ}. ]

Если разделить обе части этого равенства на 2, то получится:

    [ alpha + beta = 90^{circ}. ]

То есть два уголочка в центре дают в сумме 90^{circ} вне зависимости от величины каждого из этих углов. То есть угол ECF — прямой. Что и требовалось доказать.

Вот такой замечательный факт из элементарной геометрии. И таких фактов очень много. На своих занятиях я рассказываю о них своим ученикам. Помимо того, что это просто интересно, это ещё и очень пригодится в будущем при сдаче различных экзаменов по математике, в первую очередь ОГЭ и ЕГЭ.

Материал подготовил репетитор по математике, Сергей Валерьевич

Понравилась статья? Поделить с друзьями:
  • Starbound как найти глитчей
  • Химия как составить молекулярную формулу
  • Как по быстрому найти деньги
  • Как найти курсы на работа россии
  • Статус 0хс00000е9 как исправить