Как найти угол между двумя линиями

Содержание

Длина дуги, угол между линиями, площадь области на поверхности

Краткие теоретические сведения

Зная первую квадратичную форму поверхности, мы можем решить три задачи:

1. Найти длину дуги на поверхности:
begin{equation*}
s=intlimits_{t_1}^{t_2}|vec{r’}(t)dt|=intlimits_{P_1}^{P_2}|dvec{r}(u,v)|=intlimits_{P_1}^{P_2}sqrt{I_1}.
end{equation*}
begin{equation*}
s=intlimits_{t_1}^{t_2}sqrt{Eleft(frac{du}{dt}right)^2+2Ffrac{du}{dt}frac{dv}{dt}+Gleft(frac{dv}{dt}right)^2}dt.
end{equation*}

2. Найти угол между двумя линиями на поверхности в точке их пересечения:

Если две линии, лежащие на поверхности с первой квадратичной формой $I_1=E,du^2+2F,du,dv+G,dv^2$, пересекаются в некоторой точке $P$ поверхности и имеют в этой точке направления $(du:dv)$ и $(delta u:delta v)$, то косинус угла между ними определяется по формуле:
begin{gather*}
mbox{cos},varphi = displaystylefrac{I_1(d,delta)}{sqrt{I_1(d)}cdotsqrt{I_1(delta)}} \
mbox{cos},varphi = displaystylefrac{E,du,delta u+F,(du,delta v+delta u,dv)+G,dv,delta v}{sqrt{E,du^2+2F,du,dv+G,dv^2}cdotsqrt{E,delta u^2+2F,delta u,delta v+G,delta v^2}}.
end{gather*}
Говорим, что кривая на поверхности $vec{r}=vec{r}(u,v)$ в точке $(u,v)$ имеет направление $(du:dv)$, если вектор $dvec{r}=vec{r}_udu+vec{r}_vdv$ является касательным вектором кривой в этой точке.

3. Найти площадь области $Omega$ на поверхности:
begin{equation*}
S = iintlimits_{D}sqrt{EG-F^2}du,dv,
end{equation*}
где $D$ — прообраз $Omega$ на плоскости $(u,v)$.

Решение задач

Задача 1 (почти Феденко 684)

Найти длину дуги кривой, заданной уравнениями $v=3u$ на поверхности с первой квадратичной формой
begin{equation*}
I_1=du^2+frac19,mbox{sh}^2u,dv^2
end{equation*}
между точками $M_1(u_1,v_1)$ и $M_2(u_2,v_2)$.

Решение задачи 1

begin{equation*}
E=1, ,, F=0,,, G=frac19,mbox{sh}^2u.
end{equation*}
begin{equation*}
v=3u ,, Rightarrow ,,dv=3du.
end{equation*}
begin{equation*}
I_1=du^2+frac19,mbox{sh}^2ucdot9,du^2=(1+mbox{sh}^2u)du^2=mbox{ch}^2u,du^2.
end{equation*}
begin{equation*}
s=left|intlimits_{u_1}^{u_2} mbox{ch},u,duright| = |mbox{sh},u_2-mbox{sh},u_1|.
end{equation*}

Задача 2 (почти Феденко 682)

Под каким углом пересекаются линии
$$ u+v=a, ,, u-v=a,$$
лежащие на поверхности:
begin{equation*}
x=u,mbox{cos}v, ,, y=u,mbox{sin},v, ,, z=au.
end{equation*}

Решение задачи 2

Первая квадратичная форма данной поверхности:
begin{equation*}
I_1=(1+a^2),du^2+u^2,dv^2.
end{equation*}

Данные линии пересекаются в точке:
begin{equation*}
left{
begin{aligned}
u+v&=a,\
u-v&=a.
end{aligned}
right. quad Rightarrow quad P(u=a,v=0).
end{equation*}

Направления данных линий:
begin{equation*}
du+dv=0, ,, delta u-delta v=0,, Rightarrow
end{equation*}
begin{equation*}
du = -dv, ,, delta u = delta v.
end{equation*}

Подставляем всё в формулу:
begin{gather*}
mbox{cos},varphi = displaystylefrac{(1+a^2),du,delta u + u^2,dv,delta v}{sqrt{(1+a^2),du^2+u^2,dv^2}cdotsqrt{(1+a^2),delta u^2+u^2,delta v^2}} = \
= left( dv = -du, ,, delta v = delta u right) = \
= displaystylefrac{(1+a^2- u^2),du,delta u}{sqrt{(1+a^2+u^2)^2,du,delta u}}= frac{1+a^2-u^2}{1+a^2+u^2}=\
= left(P(u=a,v=0)right) = \
= frac{1}{1+2a^2}.
end{gather*}

Задача 3

Дана поверхность:
$$z=axy.$$
Найти углы между координатными линиями.

Решение задачи 3

Координатные линии на данной поверхности задаются уравнениями: $x=x_0$, $y=y_0$.
Запишем коэффициенты первой квадратичной формы:
begin{align*}
&E=1+(z_x)^2=1+a^2y^2,\
&F=z_xz_y=a^2xy, \
&G=1+(z_y)^2=1+a^2x^2.
end{align*}

Направления координатных линий:
begin{align*}
&x=x_0 ,, Rightarrow dx=0,\
&y=y_0 ,, Rightarrow delta y=0.
end{align*}

Угол между линиями $x=x_0$, $y=y_0$ в точке $(x_0,y_0)$:
begin{align*}
&mbox{cos}, varphi = displaystylefrac{E,dx,delta x + F(dxdelta y+delta xdy)+Gdydelta y}{sqrt{Edx^2+2Fdxdy+Gdy^2}cdotsqrt{Edelta x^2+2Fdelta xdelta y+Gdelta y^2}}=\
&= displaystylefrac{Fdelta xdy}{sqrt{Gdy^2}cdotsqrt{Edelta x^2}}=displaystylefrac{(a^2x_0y_0)delta xdy}{sqrt{(1+a^2x_0^2)dy^2}cdotsqrt{(1+a^2y_0^2)delta x^2}}=\
& = displaystylefrac{a^2x_0y_0}{sqrt{(1+a^2x_0^2) }cdotsqrt{(1+a^2y_0^2) }}.
end{align*}

Задача 4 (Дополнение к Задаче 3)

Как мы вывели в примере выше, угол между координатными линиями равен

begin{equation*}
mbox{cos}, varphi = displaystylefrac{F}{sqrt{EG}}.
end{equation*}

Из формулы следует, что координатная сеть поверхности ортогональна (координатные линии пересекаются под прямым углом), тогда и только тогда, когда $F$=0.

Задача 5 (Феденко 683)

Найти периметр и внутренние углы криволинейного треугольника
$$ u=pm av^2/2,,, v=1,$$
расположенного на поверхности
$$I_1=du^2+(u^2+a^2)dv^2.$$


Вершины треугольника:
begin{align*}
&A(u=0,, v=0),\
&B(u=-frac{a}{2},, v=1), \
&C(u=frac{a}{2},, v=1).
end{align*}

Зная координаты вершин и уравнения сторон, найдем длины дуг, составляющих стороны треугольника $ABC$, и углы между линиями в точках их пересечения, то есть в вершинах треугольника:
begin{align*}
&s_1 = |BC| = a,\
&s_2 = |AC| = frac76 a,\
&s_3 = |BC| = frac76 a,\
&P_{triangle ABC}=s_1+s_2+s_3=frac{10}{3}a.
end{align*}
begin{align*}
&mbox{cos},A = 1, ,, mbox{cos},B=mbox{cos},C=frac23.
end{align*}

The angle is nothing but the figure formed by two rays. If two straight lines meet, then they form two sets of angles. The intersection forms a pair of acute angles and another pair of obtuse angles. The angle values will be based on the slopes of the intersecting lines. Check out the formula to calculate the angle between two straight lines, derivation, example questions with answers in the following sections of this page.

In a plane when two straight and non-parallel lines meet at a point, then it forms two opposite vertical angles. In the formed angles, one is lesser than 90 degrees and the other is greater than 90 degrees. We will find the angle between two straight and perpendicular lines is 90 degrees and parallel lines is zero degrees.

Angle between Two Straight Lines Formula and Derivation

Let us consider θ as the angle between two intersecting straight lines. And those straight lines be y = mx + c, Y = MX + C, then the angle θ is given by

tan θ = ± (frac { (M – m) }{ (1 + mM)} )

Derivation

Angle Between Two Straight Lines

Two straight lines L₁, L₂ are intersecting each other to form acute and obtuse angles.

Let us take the slope measurement can be taken as

tan θ₁ = m₁ and tan θ₂ = m₂

From the figure, we can say that θ = θ₂ – θ₁

Now, tan θ = tan(θ₂ – θ₁)

tan θ = (frac { (tan θ₂ – tan θ₁) }{ (1 + tan θ₁ tan θ₂) } )

Substitute tan θ₁ = m₁, tan θ₂ = m₂

tan θ = (frac { (m₂ – m₁) }{ (1 + m₁ m₂) } )

How to find Angle Between Two Straight Lines?

If three points on a coordinate plane are given, then endpoints of a line are (x₁, y₁) and (x₂, y₂)

The equation of the slope is m = (frac { (y₂ – y₁) }{ (x₂ – x₁) } )

m₁ and m₂ can be calculated by substituting in the formula, then the angle between two lines is given by

tan θ = ± (frac { m₂ – m₁) }{ (1 + m₁ m₂) } )

Also Check:

  • Pairs of Angles
  • Angle of Elevation
  • Angle of Depression

Angle between Two Straight Lines Examples

Example 1:

If A (-2, 1), B (2, 3), and C (-2, -4) are three points, find the angle between two straight lines AB, BC.

Solution:

Given that,

Three points are A (-2, 1), B (2, 3), and C (-2, -4)

The slope of line AB is m = (frac { (y₂ – y₁) }{ (x₂ – x₁) } )

m = (frac { (3 – 1) }{ (2 – (-2)) } )

= (frac { (2) }{ (2 + 2) } )

= (frac { 2 }{ 4 } )

= (frac { 1 }{ 2 } )

Therefore, m₁ = (frac { 1 }{ 2 } )

The slope of line BC is given by

m = (frac { (y₂ – y₁) }{ (x₂ – x₁) } )

m = (frac { (-4 – 3) }{ (-2 – 2) } )

= (frac { -7 }{ -4 } )

= (frac { 7 }{ 4 } )

Therefore, m₂ = (frac { 7 }{ 4 } )

Substituting the values of m2 and m1 in the formula for the angle between two lines when we know the slopes of two sides, we have,

tan θ = ± (frac { (m₂ – m₁) }{ (1 + m₁ m₂) } )

= ± (frac { (frac { 7 }{ 4 } – frac { 1 }{ 2 } ) }{ (1 + frac { 1 }{ 2 }  * frac { 7 }{ 4 }) } )

= ± (frac { 2 }{ 3 } )

Therefore,  θ = tan -1 (⅔)

So, the angle between the lines AB, BC is tan -1 (⅔).

Example 2:

Find the angle between the following lines 4x – 3y = 8, 2x + 5y = 4.

Solution:

Given two straight lines are 4x – 3y = 8, 2x + 5y = 4

Converting the given lines into slope intercept form

4x – 3y = 8

4x = 8 + 3y

3y = 4x – 8

y = (frac { 4x – 8 }{ 3 } )

y = (frac { 4x }{ 3 } – frac { 8 }{ 3 } )

Therefore, the slope of line 4x – 3y = 8 is (frac { 4 }{ 3 } )

2x + 5y = 4

5y = 4 – 2x

y = (frac { 4 – 2x }{ 5 } )

y = (frac { -2x }{ 5 } + frac { 4 }{ 5 } )

Therefore, the slope of the line 2x + 5y = 4 is –(frac { 2 }{ 5 } )

The angle between lines is tan θ = ± (frac { (m₂ – m₁) }{ (1 + m₁ m₂) } )

= ± (frac { (frac { -2 }{ 5 } – frac { 4 }{ 3 } ) }{ (1 + frac { 4 }{ 3 }  * frac { (-2) }{ 5 }) } )

= (frac { -26 }{ 7 } )

θ = tan -1 ((frac { -26 }{ 7 } ))

Example 3:

Find the angle between two lines x + y = 4, x + 2y = 3.

Solution:

The given two lines are x + y = 4, x + 2y = 3.

The slope-intercept form of the first line is

x + y = 4

y = 4 – x

Therefore, slope of x + y = 4 is m₁ = -1

The slope-intercept form of the second line is

x + 2y = 3

2y = 3 – x

y = (frac { (3 – x) }{ 2 } )

y = (frac { 3 }{ 2 } – frac { x }{ 2 } )

Therefore, slope of x + 2y = 3 is m₂ = (frac { -1 }{ 2 } )

The angle between lines is tan θ = ± (frac { (m₂ – m₁) }{ (1 + m₁ m₂) } )

= ± (frac { (frac { -1 }{ 2 } – (-1) ) }{ (1 + frac { -1 }{ 2 }  * (-1)) } )

= (frac { 1 }{ 3 } )

θ = tan-1((frac { 1 }{ 3 } ))

Example 4:

Find the angle between two straight lines x + 2y – 1 = 0 and 3x – 2y + 5 = 0

Solution:

The given lines are x + 2y – 1 = 0 and 3x – 2y + 5 = 0

The slope intercept form of first line is

x + 2y – 1 = 0

2y = 1 – x

y = (frac { 1 – x }{ 2 } )

y = (frac { 1 }{ 2 } – frac { x }{ 2 } )

Therefore, the slope of line x + 2y – 1 = 0 is m₁ = (frac { -1 }{ 2 } )

The slope-intercept form of the second line is

3x – 2y + 5 = 0

3x + 5 = 2y

y = (frac { 3x + 5 }{ 2 } )

y = (frac { 3x }{ 2 } + frac { 5 }{ 2 } )

Therefore, the slope of line 3x – 2y + 5 = 0 is m₂ = (frac { 3 }{ 2 } )

The angle between lines is tan θ = ± (frac { (m₂ – m₁) }{ (1 + m₁ m₂) } )

= ± (frac { (frac { 3 }{ 2 } – frac { (-1 }{ 2 )} ) }{ (1 – frac { 1 }{ 2 }  * frac { (3) }{ 2 }) } )

= 2

θ = tan-1(2)

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

sin φ = | a · b | | a | · | b |

Примеры задач на вычисления угла между прямыми на плоскости

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 — k 2 1 + k 1· k 2 = 2 — (-3) 1 + 2·(-3) = 5 -5 = 1

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор <1; 2>, для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = — 2 3 x ( k 1 = — 2 3 )

x — 2 3 = y 4 => y = 4 3 x — 8 3 ( k 2 = 4 3 )

tg γ = k 1 — k 2 1 + k 1· k 2 = — 2 3 — 4 3 1 + (- 2 3 )· 4 3 = — 6 3 1 — 8 9 = 18

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то <2; 1; -1>- направляющий вектор первой прямой, <1; -2; 0>направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор <3; 4; 5>.

Преобразуем второе уравнение к каноническому вид.

1 — 3 y = 1 + y -1/3 = y — 1/3 -1/3

3 z — 5 2 = z — 5/3 2/3

Получено уравнение второй прямой в канонической форме

x — 2 -2 = y — 1/3 -1/3 = z — 5/3 2/3

<-2; — 1 3 ; 2 3 >- направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 — 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Из выражения (1.3) получим:

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Упростим и решим:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Сделаем преобразования с выражением (1.7):

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Пример 2. Определить, параллельны ли прямые

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Из определения скалярного произведения двух векторов, имеем:

Из уравнения (19) получим

Пример 4. Найти угол между прямыми

Упростим и решим:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Из выражения (2.3) получим:

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Упростим и решим:

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

m1=αm2, p1=αp2, l1=αl2 (2.7)

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

Выражение (2.13) нужно понимать так:

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Длина дуги, угол между линиями, площадь области на поверхности

Краткие теоретические сведения

Зная первую квадратичную форму поверхности, мы можем решить три задачи:

2. Найти угол между двумя линиями на поверхности в точке их пересечения:
Если две линии, лежащие на поверхности с первой квадратичной формой $I_1=E,du^2+2F,du,dv+G,dv^2$, пересекаются в некоторой точке $P$ поверхности и имеют в этой точке направления $(du:dv)$ и $(delta u:delta v)$, то косинус угла между ними определяется по формуле: begin mbox,varphi = displaystylefrac<sqrtcdotsqrt> \ mbox,varphi = displaystylefrac<sqrtcdotsqrt>. end Говорим, что кривая на поверхности $vec=vec(u,v)$ в точке $(u,v)$ имеет направление $(du:dv)$, если вектор $dvec=vec_udu+vec_vdv$ является касательным вектором кривой в этой точке.

3. Найти площадь области $Omega$ на поверхности: begin S = iintlimits_sqrtdu,dv, end где $D$ — прообраз $Omega$ на плоскости $(u,v)$.

Решение задач

Задача 1 (почти Феденко 684)

Найти длину дуги кривой, заданной уравнениями $v=3u$ на поверхности с первой квадратичной формой begin I_1=du^2+frac19,mbox^2u,dv^2 end между точками $M_1(u_1,v_1)$ и $M_2(u_2,v_2)$.

Решение задачи 1

Задача 2 (почти Феденко 682)

Под каким углом пересекаются линии $$ u+v=a, ,, u-v=a,$$ лежащие на поверхности: begin x=u,mboxv, ,, y=u,mbox,v, ,, z=au. end

Решение задачи 2

Первая квадратичная форма данной поверхности: begin I_1=(1+a^2),du^2+u^2,dv^2. end

Данные линии пересекаются в точке: begin left < beginu+v&=a,\ u-v&=a. end right. quad Rightarrow quad P(u=a,v=0). end

Направления данных линий: begin du+dv=0, ,, delta u-delta v=0,, Rightarrow end begin du = -dv, ,, delta u = delta v. end

Задача 3

Дана поверхность: $$z=axy.$$ Найти углы между координатными линиями.

Решение задачи 3

Координатные линии на данной поверхности задаются уравнениями: $x=x_0$, $y=y_0$. Запишем коэффициенты первой квадратичной формы: begin &E=1+(z_x)^2=1+a^2y^2,\ &F=z_xz_y=a^2xy, \ &G=1+(z_y)^2=1+a^2x^2. end

Направления координатных линий: begin &x=x_0 ,, Rightarrow dx=0,\ &y=y_0 ,, Rightarrow delta y=0. end

Задача 4 (Дополнение к Задаче 3)

Как мы вывели в примере выше, угол между координатными линиями равен

Из формулы следует, что координатная сеть поверхности ортогональна (координатные линии пересекаются под прямым углом), тогда и только тогда, когда $F$=0.

Задача 5 (Феденко 683)

Найти периметр и внутренние углы криволинейного треугольника $$ u=pm av^2/2,,, v=1,$$ расположенного на поверхности $$I_1=du^2+(u^2+a^2)dv^2.$$

Вершины треугольника: begin &A(u=0,, v=0),\ &B(u=-frac<2>,, v=1), \ &C(u=frac<2>,, v=1). end

Зная координаты вершин и уравнения сторон, найдем длины дуг, составляющих стороны треугольника $ABC$, и углы между линиями в точках их пересечения, то есть в вершинах треугольника: begin &s_1 = |BC| = a,\ &s_2 = |AC| = frac76 a,\ &s_3 = |BC| = frac76 a,\ &P_<triangle ABC>=s_1+s_2+s_3=frac<10><3>a. end begin &mbox,A = 1, ,, mbox,B=mbox,C=frac23. end

источники:

http://matworld.ru/analytic-geometry/ugol-mezhdu-prjamymi.php

http://vmath.ru/vf5/diffgeom/seminar8

Определение угла между прямыми

Угол между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Определение Угол между прямыми — размер наименьшего из углов, образованных этими прямыми.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

Если две прямые заданы уравнениями с угловым коэффициентом

y = k1x + b1,
y = k2x + b2,

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k1·k2 = 0), то прямые перпендикулярны.

Угол между прямыми

Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

tg α = k1
tg β = k2

Соответственно легко найти угол между прямыми

γ = αβ

tg γ = tg (α — β) = tg αtg β1 + tg α ·tg β = k1k21 + k1·k2

Угол между прямыми через направляющие векторы этих прямых

Угол между прямыми

Если a — направляющий вектор первой прямой и b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано параметрически

x = l t + ay = m t + b

то вектор направляющей имеет вид {l; m}

Если уравнение прямой задано как

A x + B y + C = 0

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = -CB значит точка на прямой имеет координаты K(0, -CB), при y = 0 => x = -CA значит точка на прямой имеет координаты M(-CA, 0). Вектор направляющей KM = {-CA; CB}.

Если дано каноническое уравнение прямой

xx0 l = yy0m

то вектор направляющей имеет вид {l; m}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b). Вектор направляющей KM = {1; k}

Угол между прямыми через векторы нормалей этих прямых

Угол между прямыми

Если a — вектор нормали первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано как

A x + B y + C = 0

то вектор нормали имеет вид {A; B}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то вектор нормали имеет вид {1; —k}

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Угол между прямыми

Если a — направляющий вектор первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = |a · b||a| · |b|

Примеры задач на вычисления угла между прямыми на плоскости

Угол между прямыми

Пример 1. Найти угол между прямыми y = 2x — 1 и y = -3x + 1.

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ =

k1k21 + k1·k2

=

2 — (-3)1 + 2·(-3)

=

5-5

= 1

Ответ. γ = 45°

Угол между прямыми

Пример 2. Найти угол между прямыми y = 2x — 1 и x = 2t + 1y = t.

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор {1; 2}, для второй прямой направляющий вектор {2; 1}

cos φ =

|1 · 2 + 2 · 1|12 + 22 · 22 + 12

=

45 · 5

= 0.8

Ответ. φ ≈ 36.87°

Пример 3 Найти угол между прямыми 2x + 3y = 0 и

x — 23

=

y4

.

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2x + 3y = 0 => y = -23x   (k1 = -23)

x — 23 = y4 => y = 43x — 83   (k2 = 43)

tg γ =

k1k21 + k1·k2

=

-23 — 431 + (-23)·43

=

-631 — 89

= 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a — направляющий вектор первой прямой, а b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если дано каноническое уравнение прямой

xx0 l = yy0m = zz0n

то направляющий вектор имеет вид {l; m; n}

Если уравнение прямой задано параметрически

x = l t + ay = m t + bz = n t + c

то направляющий вектор имеет вид {l; m; n}

Пример 4. Найти угол между прямыми

x = 2t + 1y = tz = -t — 1

и

x = t + 2y = -2t + 1z = 1

.

Решение: Так как прямые заданы параметрически, то {2; 1; -1} — направляющий вектор первой прямой, {1; -2; 0} направляющий вектор второй прямой.

cos φ =

|2 · 1 + 1 · (-2) + (-1) · 0|22 + 12 + (-1)2 · 12 + (-2)2 + 02

=

06 · 5

= 0

Ответ. φ = 90°

Пример 5 Найти угол между прямыми

x — 23

=

y4

=

z — 35

и —

x — 22

= 1 — 3y =

3z — 52

.

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор {3; 4; 5}.

Преобразуем второе уравнение к каноническому вид.

x — 22 = x — 2-2

1 — 3y = 1 + y-1/3 = y — 1/3-1/3

3z — 52 = z — 5/32/3

Получено уравнение второй прямой в канонической форме

x — 2-2 = y — 1/3-1/3 = z — 5/32/3

{-2; -13; 23} — направляющий вектор второй прямой.

cos φ =

3·(-2) + 4·(-13) + 5·2332 + 42 + 52 · (-2)2 + (-13)2 + (23)2

=

-6 — 43 + 1039 + 16 + 25 · 4 + 19 + 49

=

-450 · 41/9

=

12582

=

682205

Ответ. φ ≈ 74.63°

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1) направляющий вектор прямой L1, а q2=(m2, p2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (1.3) получим:

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (1.5) имеет направляющий вектор q1=(m1, p1)=(3, 4), а прямая (1.6) − q2=(m2, p2)=(− 3, 1). Для определения угла между прямыми (1.5) и (1.6) подставим значения m1, p1, m2, p2 в (1.4):

Упростим и решим:

Найдем угол φ

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Ответ.

Угол между прямыми равен:

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Сделаем преобразования с выражением (1.7):

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (1.10) имеет направляющий вектор q1=(m1, p1)=(3, 3), а прямая (1.11) − q2=(m2, p2)=(−2, −2). Тогда

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.14) имеет направляющий вектор q1=(m1, p1)=(3, 1), а прямая (1.15) − q2=(m2, p2)=(−2, 6). Тогда

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

и

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Из определения скалярного произведения двух векторов, имеем:

где |n1| и |n2| модули нормальных векторов n1 и n2 соответственно, φ -угол между векторами n1 и n2.

Из уравнения (19) получим

Пример 4. Найти угол между прямыми

и

Решение. Прямая (1.21) имеет нормальный вектор n1=(A1, B1)=(5, −2), а прямая (1.22) − n2=(A2, B2)=(1, 3). Задача определения угла между прямыми L1 и L2 сводится к определению угла между векторами n1 и n2. Из определения скалярного произведения векторов имеем: (n1,n2)=|n1||n2|cosφ. Тогда

Подставляя значения A1, B1, A2, B2 в (1.23), получим:

Упростим и решим:

Найдем угол φ:

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

и

Решение. Прямая (1.26) имеет нормальный вектор n1=(A1, B1)=(4, 2), а прямая (1.27) − n2=(A2, B2)=(2, 1). Тогда подставляя значения A1, B1, A2, B2 в (1.24), получим

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

и

Решение. Прямая (1.29) имеет нормальный вектор n1=(A1, B1)=(4, −1), а прямая (1.30) − n2=(A2, B2)=(2, 8). Тогда подставляя значения A1, B1, A2, B2 в (28), получим

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

и

где q1=(m1, p1, l1) направляющий вектор прямой L1, а q2=(m2, p2, l2) направляющий вектор прямой L2.

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Из определения скалярного произведения:

где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.

Из выражения (2.3) получим:

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

и

Решение. Прямая (2.5) имеет направляющий вектор q1=(m1, p1, l1)=(1, 1, 3), а прямая (2.6) − q2=(m2, p2, l2)=(− 3, 1, 2). Для определения угла между прямыми (2.5) и (2.6) подставим значения m1, p1, l1, m2, p2, l2 в (2.4):

Упростим и решим:

Найдем угол φ

Ответ.

Угол между прямыми равен:

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Отметим, что любую пропорцию нужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 4), а прямая (2.10) − q2=(m2, p2, l2)=(6, 4, 8). Тогда

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

и

Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(1, 2, 0), а прямая (2.10) − q2=(m2, p2, l2)=(2, 4, 0). Подставляя значения m1, p1, l1, m2, p2, l2 в (2.8), получим

Выражение (2.13) нужно понимать так:

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Пример 3. Определить, перпендикулярны ли прямые

и

Решение. Прямая (2.16) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 1), а прямая (2.17) − q2=(m2, p2, l2)=(4, −6, 0). Тогда

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Понравилась статья? Поделить с друзьями:
  • Как найти атомную массу элемента в физике
  • Как найти работу на юге россии
  • Точки перегиба функции как найти примеры
  • Как в компьютере найти видеоролик
  • Как найти длину окружности с радиусом 2см