Как найти угол между касательными равен

Угол между касательными.

В этой статье мы рассмотрим, как решать задачи на нахождение угла между касательными.

Угол между касательными.

Пусть дана функция y=f(x) и через точку A(x;y) к графику этой функции проведены две касательные. Найти тангенс угла между прямыми:

угол между касательными

Угол между прямыми — это меньший из двух углов, образованных этими прямыми. В нашем случае это угол alpha.

Чтобы найти угол alpha рассмотрим треугольник ABC:

угол между касательными

В треугольнике ABC угол gamma — внешний угол треугольника, он равен сумме двух углов, не смежных с ним: {gamma}={alpha}+{beta}. Отсюда {alpha}={gamma}-{beta}

Но угол gamma — это угол между касательной AC и положительным направлением оси OX, следовательно, tg(gamma)=f{prime}(x_1)=k_1:

угол между касательными

Угол beta — это угол между касательной AB и положительным направлением оси OX, следовательно, tg(beta)=f{prime}(x_2) =k_2:

угол между касательными

Итак, tg(alpha)=tg({gamma}-{beta})={tg(gamma)-tg(beta)} /{1+tg(gamma)*tg(beta)}={k_1-k_2}/{1+k_1{k_2}}

Мы помним, что угол между прямыми всегда острый, и его тангенс должен быть больше нуля. В общем случае tg(alpha) вполне может быть отрицательным, поэтому

формула для нахождения тангенса угла между касательными y=k_1x+b_1 и y=k_2x+b_2 выглядит так

Решим задачу:

Найти тангенс большего угла между касательными, проведенными из точки  A(-2;-4) к параболе y=x^2+2x-3.

Заметим, что в этой задаче нужно найти тангенс большего угла между касательными, то есть тангенс тупого угла. Тангенсы смежных углов равны по модулю, но противоположны по знаку. Следовательно, нам нужно найти тангенс угла между касательными, и в ответе записать это значение со знаком «-«.

Нужно найти коэффициенты наклона касательных, проведенных к параболе из точки A(-2;-4). Но сначала найдем абсциссы точек касания x_1 и x_2.

Вспомним, как находить уравнение касательной, проведенной к графику функции из данной точки, не принадлежащей графику.

Пусть x_0 — абсцисса точки касания.

f(x_0)= {x_0}^2+2x_0-3

f{prime}(x)=2x+2

f{prime}(x_0)=2x_0+2

Уравнение касательной, проведенной из точки A(-2;-4) имеет вид:

-4=f(x_0)+f{prime}(x_0)(-2-x_0)

Подставим выражения для f(x_0) и f{prime}(x_0) в уравнение касательной. Получим уравнение относительно x_0:

-4={x_0}^2+2x_0-3+(2x_0+2)(-2-x_0)

Решим это уравнение. Упростим правую часть:

-4=-{x_0}^2-4x_0-7

{ x_0}^2+4x_0+3=0

x_1=-1;~~x_2=-3

Итак, мы нашли абсциссы точек касания: x_1=-1;~~x_2=-3

Найдем коэффициенты наклона касательных, проведенных к параболе y=x^2+2x-3. Для этого найдем, чему равны значения производной функции в точках касания.

f{prime}(-1)=2(-1)+2=0=k_1

f{prime}(-3)=2(-3)+2=-4=k_2

tg{alpha}=delim{|}{{k_1-k_2}/{1+k_1*k_2}}{|}=delim{|}{{0-(-4)}/{1+k_1*k_2}}{|}=4

Тангенс большего угла между касательными равен -tg{alpha}=-4

Ответ: -4

И.В. Фельдман, репетитор по математике.

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Углы, связанные с окружностью.

Центральный угол — угол, вершина которого совпадает с центром окружности.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают её.

Вписанный угол в два раза меньше центрального , опирающегося на ту же дугу.

Все вписанные углы , опирающиеся на одну и ту же дугу равны.

Все вписанные углы , опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

Все вписанные углы , опирающиеся на диаметр, прямые.

Любые два вписанных угла , опирающиеся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°.

Угол между пересекающимися хордами измеряется полусуммой дуг, заключенных между его сторонами.

Угол между секущими, пересекающимися вне окружности, измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательной и секущей, пересекающимися вне окружности, измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательными к окружности измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательной и хордой, проходящей через точку касания, равняется половине центрального угла, опирающегося на данную хорду:

Касательная к окружности

О чем эта статья:

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

источники:

http://anasta8ia.ru/angles-associated-with-the-circle/

http://skysmart.ru/articles/mathematic/kasatelnaya-k-okruzhnosti

Как найти угол между касательными

Прямая линия, имеющая с окружностью одну общую точку, является касательной к окружности. Другая особенность касательной – она всегда перпендикулярна радиусу, проведенному в точку касания, то есть касательная и радиус образуют прямой угол. Если из одной точки А проведены две касательных к окружности АВ и АС, то они всегда равны между собой. Определение угла между касательными (угол АВС) производится с помощью теоремы Пифагора.

Как найти угол между касательными

Инструкция

Для определения угла необходимо знать радиус окружности ОВ и ОС и расстояние точки начала касательной от центра окружности — О. Итак, углы АВО и АСО равны 90 градусов, радиус ОВ, например 10 см, а расстояние до центра окружности АО равно 15 см. Определите длину касательной по формуле в соответствии с теоремой Пифагора: АВ = квадратный корень из АО2 – ОВ2 или 152 — 102 = 225 – 100 = 125;

Как найти <strong>угол</strong> между касательными

Извлеките квадратный корень. Получится 11.18 см. Поскольку угол ВАО представляет собой sin или отношение сторон ВО и АО вычислите его значение: Sin угла ВАО = 10 : 15 = 0.66

Затем, пользуясь таблицей синусов, найдите данное значение, которое соответствует примерно 42 градусам. Таблица синусов используется для решения различных задач – физических, математических или инженерных. Остается выяснить величину угла ВАС, для чего следует величину данного угла удвоить, то есть, получится примерно 84 градусов.

Величина центрального угла соответствует угловой величине дуги, на которую он опирается. Величину угла можно также определить с помощью транспортира, приложив его к чертежу. Так как подобные вычисления относятся к тригонометрии, то можно воспользоваться тригонометрическим кругом. С его помощью можно переводить градусы в радианы и наоборот.

Как известно, полный круг составляет 360 градусов или 2П радиан. На тригонометрическом круге отображены значения синусов и косинусов основных углов. Стоит напомнить, что значение синуса находится на оси Y, а косинуса на оси Х. Значения синуса и косинуса находятся в промежутке от -1 до 1.

Определить значения тангенса и котангенса угла можно поделив синус на косинус, а котангенса наоборот – косинуса на синус. Тригонометрический круг позволяет определить знаки всех тригонометрических функций. Так, синус — это нечетная функция, а косинус – четная. Тригонометрический круг позволяет понять, что синус и косинус – периодические функции. Как известно, период равен 2П.

Видео по теме

Источники:

  • угол между двумя касательными

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти угол между касательными

Прямая линия, имеющая с окружностью одну общую точку, является касательной к окружности. Другая особенность касательной – она всегда перпендикулярна радиусу, проведенному в точку касания, то есть касательная и радиус образуют прямой угол. Если из одной точки А проведены две касательных к окружности АВ и АС, то они всегда равны между собой. Определение угла между касательными (угол АВС) производится с помощью теоремы Пифагора.Как найти угол между касательными

Для определения угла необходимо знать радиус окружности ОВ и ОСи расстояние точки начала касательной от центра окружности — О. Итак, углы АВО и АСО равны 90 градусов, радиус ОВ, например 10 см, а расстояние до центра окружности АО равно 15 см. Определитедлину касательной по формуле в соответствии с теоремой Пифагора:АВ = квадратный корень из АО2 – ОВ2 или 152- 102 = 225 – 100 = 125;Как найти угол между касательными

Извлеките квадратныйкорень. Получится 11.18 см. Поскольку угол ВАО представляет собой sin или отношение сторон ВО и АО вычислите его значение:Sin углаВАО = 10 : 15 = 0.66

Затем, пользуясь таблицей синусов, найдите данное значение, которое соответствует примерно 42 градусам. Таблица синусов используется для решения различных задач – физических, математических или инженерных. Остается выяснить величину угла ВАС, для чего следует величину данного угла удвоить, то есть, получится примерно 84 градусов.

Величина центрального угла соответствует угловой величине дуги, на которую он опирается. Величину угла можно также определить с помощью транспортира, приложив его к чертежу. Так как подобные вычисления относятся к тригонометрии, то можно воспользоваться тригонометрическим кругом. С его помощью можно переводить градусы в радианы и наоборот.

Как известно, полный круг составляет 360 градусов или 2П радиан. На тригонометрическом круге отображены значения синусов и косинусов основных углов. Стоит напомнить, что значение синуса находится на оси Y, а косинуса на оси Х. Значения синуса и косинуса находятся в промежутке от -1 до 1.

Определить значения тангенса и котангенса угла можно поделив синус на косинус, а котангенса наоборот – косинуса на синус. Тригонометрический круг позволяет определить знаки всех тригонометрических функций. Так, синус — это нечетная функция, а косинус – четная. Тригонометрический круг позволяет понять, что синус и косинус – периодические функции. Как известно, период равен 2П.

Как измеряется угол между касательной и секущей?

Величина угла, образованного касательной и секущей касательной и секущей, равна половине разности величин дуг, заключённых между сторонами этого угла.

Чему равен угол между касательной и секущей проведенных из одной точки?

Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними. Касательная перпендикулярна радиусу, проведенному в точку касания.

Как измеряется угол между касательной и хордой?

Угол между касательной и хордой равен половине дуги, заключённый между ними, .

Чему равен угол между двумя секущими проведенными из одной точки?

Теорема об угле между секущими Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Как найти угол образованный двумя секущими?

Градусная мера угла, образованного двумя секущими к окружности, равна полуразности градусных мер дуг, которые он высекает на окружности.

Какие из следующих утверждений верны 1 вписанные углы опирающиеся на одну и ту же хорду?

1) «Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.» — неверно, вписанные углы, опирающиеся на одну и ту же хорду окружности, равны, если их вершины лежат по одну сторону от хорды.

Как найти касательную по секущей?

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Почему при проведении секущей и касательной из одной точки возникают подобные треугольники?

Если из одной точки к окружности проведены секущая и касательная, то произведение всей секущей на ее внешнюю часть равно квадрату отрезка касательной. , и это значит, что треугольники МСА и МВС подобны по двум углам.

Чему равна касательная?

Свойства касательной Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Как найти угол между двумя дугами?

Угол между пересекающимися хордами окружности равен полусумме дуг, заключенных между ними.

Чему равен угол между двумя касательными проведенными из одной точки?

Угол между двумя касательными, проведенными из одной точки, равен половине высекаемых ими дуг, откуда имеем: 0,5(360° − 2x) = 122°.

Что такое Центральные и вписанные углы?

Центральный угол — это угол, вершина которого лежит в центре окружности. Центральный угол равен градусной мере дуги, на которую он опирается. Определение вписанного угла: Вписанный угол — это угол, вершина которого лежит на окружности.

Когда вписанный в окружность угол равен 30 то дуга окружности на которую?

4) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.

Сколько градусов дуга окружности?

У каждой дуги есть градусная мера. Сумма градусных мер двух дуг с общими концами равна 360 ° . Если отрезок, соединяющий концы дуги, является диаметром окружности, то дугу называют полуокружностью. Градусная мера полуокружности равна 180 ° .

Чему равен квадрат касательной?

Квадрат касательной равен произведению секущей на ее внешнюю часть. Факт 2. Отрезки касательных, проведенных из одной точки к окружности, равны.

Чему равен квадрат секущей?

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Чему равен квадрат отрезка касательной?

Квадрат касательной равен произведению секущей на ее внешнюю часть. Отрезки касательных, проведенных из одной точки к окружности, равны.

Понравилась статья? Поделить с друзьями:
  • Как найти песню по содержанию
  • Как исправить двери на холодильнике если они не
  • Как в смарт часы исправить время
  • Как найти ютуб на телефоне самсунг
  • Как найти процент вероятности формула