Как найти угол между скрещивающимися параллельными прямыми

Как известно из курса планиметрии, две прямые в плоскости могут пересекаться (имеют общую точку) или быть параллельными (не имеют общую точку).
В пространстве мы можем найти множество примеров ситуаций, когда две прямые не пересекаются, но они и не параллельны.

shutterstock_1012974355.jpg

Рис. (1). Дороги на земле и на эстакадах не пересекаются.

Скрещивающиеся прямые — это прямые, которые не лежат в одной плоскости и не имеют общих точек.

Теорема «Признак скрещивающихся прямых»

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство
Рассмотрим прямую (AB), лежащую в плоскости, и прямую (CD), которая пересекает плоскoсть в точке (D), не лежащей на прямой (AB).

Taisnes_plaknes1.png

Рис. (2). Скрещивающиеся прямые.

1. Допустим, что прямые (AB) и (CD) всё-таки лежат в одной плоскости.
2. Значит, эта плоскость идёт через прямую (AB) и точку (D), то есть, она совпадает с плоскостью (α).
3. Это противоречит условиям теоремы, по которым прямая (CD) не находится в плоскости (α), а пересекает её.
Теорема доказана.

В пространстве прямые могут пересекаться, скрещиваться или быть параллельными.
Paralelas.png 

Рис. (3). Параллельные прямые.

Krustiskas.png
Рис. (4). Пересекающиеся прямые.
Skersas.png

Рис. (5). Скрещивающиеся прямые.

Теорема

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Доказательство
Рассмотрим скрещивающиеся прямые (AB) и (CD).
Taisnes_plaknes2.png

Рис. (6). Доказательство теоремы.

1. Через точку (D) можно провести прямую (DE), параллельную (AB).
2. Через пересекающиеся прямые (CD) и (DE) можно провести плоскость (α).
3. Так как прямая (AB) не лежит в этой плоскости и параллельна прямой (DE), то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через (CD), будет пересекаться с (DE) и (AB), которая ей параллельна.
 Теорема доказана.

1. Если прямые параллельны, то угол между ними — 

.
2. Углом между двумя пересекающимися прямыми называют  величину меньшего из углов, образованных этими прямыми. Если все углы равны, то эти прямые перпендикулярны (образуют угол

90°

).
3. Углом между двумя скрещивающимися прямыми называют угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

Обрати внимание!

Провести соответственные прямые, параллельные данным скрещивающимся прямым, можно через любую точку. Иногда удобно выбрать эту точку на одной из данных скрещивающихся прямых и провести через эту точку прямую, параллельную другой из скрещивающихся прямых.

Пример:

Cube1.png

Рис. (7). Куб.

Найти угол между 

AB

и

B1D1

.

Выберем точку 

B

на прямой 

AB

и проведём через 

B

прямую 

BD

параллельно

B1D1

.

Cube2.png

Рис. (8). Куб с дополнительными построениями.

Угол между 

AB

и

BD

 — 

45°

, так как 

ABCD

— квадрат.

Соотвeтственно, угол между

AB

и

B1D1

 — тоже

45°

.

Угол между скрещивающимися прямыми и расстояние между ними. Расстояние от точки до плоскости и от прямой до параллельной ей плоскости

Скрещивающиеся прямые не параллельны и не пересекаются. Они лежат в параллельных плоскостях, и поместить их в одну плоскость невозможно.

Скрещивающиеся прямые

Часто в задачах требуется найти угол между скрещивающимися прямыми. Как это сделать?

Угол между прямыми, лежащими в одной плоскости, найти нетрудно. Можно измерить его транспортиром. Можно найти из какого-нибудь треугольника по теореме синусов или косинусов.

Пусть скрещивающиеся прямые a и b лежат в параллельных плоскостях α и β . Проведем в плоскости β прямую с, параллельную прямой а. Угол между прямыми а и b равен углу между прямыми b и с.

Угол между скрещивающимися прямыми

Можно сказать, что угол между скрещивающимися прямыми — это угол между параллельными им прямыми, лежащими в одной плоскости.

Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра.

Расстояние между скрещивающимися прямыми

Другими словами, расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, в которых они лежат.

Дадим еще два полезных определения.

Расстояние от точки до плоскости — это длина перпендикуляра, опущенного из точки на плоскость.

Расстояние от прямой до параллельной ей плоскости — длина перпендикуляра, опущенного на плоскость из любой точки этой прямой.

Заметим, что расстояние от точки до плоскости или угол между скрещивающимися прямыми иногда проще найти с помощью координатно-векторного метода.

Читаем дальше: Теорема о трех перпендикулярах.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Угол между скрещивающимися прямыми и расстояние между ними. Расстояние от точки до плоскости и от прямой до параллельной ей плоскости» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

11
Авг 2013

Категория: Справочные материалы

Углы в пространстве

2013-08-11
2014-03-03

Угол между пересекающимися прямыми

Углом между пересекающимися прямыми, называется наименьший из   углов, образованных при пересечении этих прямых (если при пересечении образовались четыре равных угла, то прямые перпендикулярны).

ь

Угол между скрещивающимися прямыми

Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

(Одну из прямых можно  вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

угол между скрещивающимися прямыми

Угол между прямой и плоскостью

Угол между прямой и плоскостью – угол между прямой и ее проекцией на плоскость

угол между прямой и плоскостью

Угол между плоскостями

Угол между плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.

Этот угол не зависит от выбора такой плоскости.

Угол между двумя параллельными плоскостями принимается равным нулю.

угол между плоскостями

Автор: egeMax |

Нет комментариев

Скрещивающиеся прямые

Как определяется угол между скрещивающимися прямыми?

Ты можешь спросить, а чего тут определять? Угол, он и в Африке (то есть в пространстве) – угол!

И действительно, если прямые лежат в одной плоскости, то угол между ними ищется так же, как и на плоскости:

Наименьший из двух углов, образованных при пересечении.

Но что же делать, если прямые совсем не пересекаются?

Читай эту статью и всё узнаешь!

Скрещивающиеся прямые — коротко о главном

Если прямые лежат в разных плоскостях (т.е. не пересекаются), нужно через произвольную точку на одной прямой (например, прямая ????) провести прямую, параллельную другой прямой (например, прямую ????′, где ????′||????.

Скрещивающиеся прямые — подробнее

Как найти угол, если прямые не пересекаются?

Вот, например: прямые ( displaystyle a) и ( displaystyle b) скрещиваются. Какой угол между ними?

Чтобы это определить, делаем так: через произвольную точку одной прямой (например ( displaystyle b)), нужно провести прямую ( displaystyle {a}’||a).

И тогда угол между ( displaystyle a) и ( displaystyle b) будет равен (по определению!) углу между ( displaystyle {{a}’}) и ( displaystyle b).

Да, но как это применить в задачах? Давай посмотрим.

Решение задач на угол между скрещивающимися прямыми

В кубе ( displaystyle ABCD{{A}_{1}}{{B}_{1}}{{C}_{1}}{{D}_{1}}) найти угол между ( displaystyle AC) и ( displaystyle D{{C}_{1}}).

Решаем:

Прямые ( displaystyle AC) и ( displaystyle D{{C}_{1}}) не пересекаются, но нужно как-то найти угол между ними.

Пользуемся правилом: через точку ( displaystyle {{C}_{1}}) проведем прямую ( displaystyle {{A}_{1}}{{C}_{1}}). Она будет параллельна ( displaystyle AC).

Значит, угол между ( displaystyle AC) и ( displaystyle D{{C}_{1}}) равен углу между ( displaystyle {{A}_{1}}{{C}_{1}}) и ( displaystyle D{{C}_{1}}). Осталось его найти.

Смотри: ( displaystyle {{A}_{1}}{{C}_{1}}), ( displaystyle {{A}_{1}}D) и ( displaystyle D{{C}_{1}}) – диагонали граней куба, поэтому ( displaystyle {{A}_{1}}{{C}_{1}}={{C}_{1}}D={{A}_{1}}D), то есть ( displaystyle Delta {{A}_{1}}{{C}_{1}}D) – равносторонний.

Поэтому ( displaystyle angle {{A}_{1}}{{C}_{1}}D=60{}^circ ).

Ответ: ( displaystyle 60{}^circ ).

Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике

Задачи на скрещивающиеся прямые и углы между ними попадаются сплошь и рядом в этом вебинаре.

ЕГЭ 8. Куб. Параллелепипед. Призма – расстояния и углы в пространстве

На этом уроке мы на примере самых простых объемных фигур научимся находить важнейшие вещи в стереометрии — расстояния и углы в пространстве.

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Учебник

Геометрия, 10 класс

Угол между скрещивающимися прямыми в пространстве

Скрещивающиеся прямые    не параллельны,    не имеют общих точек,    не пересекаются.

    

Признаки Скрещивающихся прямых

  1. 1-ая прямая лежит в плоскости, а 2-ая пересекает плоскость в точке не из 1-ой, то прямые скрещивающиеся.
  2. Через каждую из скрещивающихся прямых проходит плоскость, параллельная другой прямой. Единственная.
  3. Скрещивающиеся   $a$   и   $b$ :      есть пара пареллельных плоскостей $alpha$   и   $beta$,   таких что   $ain alpha$,     $bin beta$

Задача 1:            В прямоугольном параллелепипеде     $ABCDMNKL$     найти угол между

скрещивающимися прямыми   $AN$   и   $BK$, если известны ребра      $BA=36$,    $BN=15$,   $BC=20$

  • Как находить угол между двумя стереометрическими объектами? по алгоритму параллельных переносов, совмещений.
  • Свойство инвариантности углов при параллельном переносе    стереометрических объектов — прямых, плоскостей:
  • Если объекты $A$   и   $B$ параллельны соответственно $A’$   и   $B’$,   то углы между парами равные:          $angle left(A;Bright)=angle left(A’;B’right)$
  • В нашем случае,   $BKparallel AL$,   поэтому равны углы    $angle left(AN;BKright)=angle left(AN;ALright)=angle NAL$
  • Перетащим    $BK$ по плоскости   $BKLA$ вдоль   $BA$   до совмещения с точкой $A$. Тогда $BK$ совметится с отрезком $AL$.
  • Итак, мы ищем угол $angle NAL$.   Найдем его через теорему косинусов    в треугольнике   $ANL$    для угла   $angle NAL$ :
  • ***                       $NL^2=AN^2+AL^2-2cdot ANcdot NLcdot cos angle NAL$
  • Стороны   $AN$,   $NL$ и $AL$ можем признать диагоналями граней — прямоугольников, значит, найти их по теоремам Пифагора.
  • Решение:       $AN=sqrt{36^2+15^2}=39$        $AL=sqrt{20^2+15^2}=25$         $NL=sqrt{36^2+20^2}=4cdot sqrt{106}$
  • Из теоремы косинусов      $cos angle NAL=frac{AN^2+AL^2-NL^2}{2cdot ANcdot AL}=frac{39^2+25^2-16cdot 106}{2cdot 39cdot 25}=frac{450}{1950}=frac{3}{13}$          Ответ:    $angle NAL=arccos frac{3}{13}$
  • Признак:                    $NAL$      плоскость угла:           $ANin NAL$      и      $BKparallel NAL$

case I                      case II       

Алгоритм: нахождение угла между прямыми путем параллельного переноса     (демонстрация по II, прямые $AN$, $BK$   ):

1-ый шаг:    Выбираем точку, в которой хотим совместить прямые. Например, точку   $Z$ — середину отрезка   $BK$.

2-ой шаг:    Для прямой $AN$   определим плоскость «скольжения» — плоскость, содержащая эту прямую и точку   $Z$.   Это   $ANC$

3-ий шаг:    Двинем прямую $AN$ по плоскости $ANC$ оставаясь параллельно «как стержень». Она совместится с отрезком $ZX$.

4-ый шаг:    Что за точка $X$ ?           угол    $angle XZB$ — именно то, что нам нужно:      $angle XZB=angle left(XZ;BKright)=angle left(AN;BKright)$.

Признак:    — увидеть ту главную плоскость угла , которая параллельна обеим скрещивающимся прямым.   Здесь это    $XZB$.

Задача 2:     В правильной треугольной призме все ребра 1. Найти косинус угла   $angle left(AB;CMright)$

  • $ABCMNK$ правильная призма:    в основании правильный   $bigtriangleup ABC$ , ребро $BN$ перпендикулярно основанию.
  • Нужен угол между $AB$ и $CM$. Выберем Точкой совмещения $M$.       Прямая $CM$ уже проходит через нее.
  • Прямая $AB$ и точка $M$   лежат в плоскости $ABNM$. Значит, $ABNM$ — плоскость сколжения. $AB$ перейдет в   $MN$.
  • Путем параллельного совмещения $AB$ с   $MN$ мы устоновили, что искомый угол — это    $angle CMN$.
  • Косинус угла $angle CMN$ можно найти по теореме косинусов треугольника $CMN$:      $cos angle CMN=frac{CM^2+MN^2-CN^2}{2cdot CMcdot MN}$
  • Признак:                    $CMN$      плоскость угла:           $ABparallel CMN$      и      $MCin CMN$

k задачe 2 к задаче 3    

Задача 3:     В правильном тетраэдре   $DABC$    все ребра 1 см. Найти угол между $AD$ и $BC$.

  • Для нахождения угла, совместим «движениями» наши прямые в точку $O$ — основание высоты $DO$ .
  • В правильном тетраэдре в основании равносторонный треугольник    $DABC$, высота пирамиды попадает в центр окружностей.
  • Точка $O$ — пересечение высот, медиан, биссектрис. $O$ лежит на высоте $AH$ ,    $DH$ — высота грани $BDC$.
  • В точке $O$ проведем прямую    параллельную прямой   $BC$. Им будет линия   $MN$
  • В точке $O$ проведем прямую    $OK$, параллельную   $AD$. Она будет лежат в плоскости   $ADH$ Значит, $Kin DH$.
  • Итак, «взамен» наших    $AD$   и   $BC$   мы получили прямые    $OK$     и     $MN$ :     $OKparallel AD$, $MNparallel BC$
  • по свойству углов при параллельном переносе             $angle left(AD;BCright)=angle left(OK;MNright)=angle MOK$
  • Найти   $angle MOK$ ?   Легко! учтите, что у нас правильный тетраэдр и находите.
  • Признак:                    $MONK$      плоскость угла:           $ADparallel MONK$      и      $BCparallel MONK$

Алгоритм: вычисление   угла   в пространстве или плоскости

  1. В каком треугольнике этот угол?     узнать стороны треугольника и найти угол по теореме косинусов.
  2. Если треугольник окажется равнобедренным, то провести высоту и найти угол прямоугольного треугольника.
  3. А если треугольник прямоугольный, то написать   cos   или   sin   или   tg    этого угла и найти как   arc !

Задача 4:     В кубе $ABCD{A_1}{B_1}{C_1}{D_1}$ все ребра равны 1. Точка   $Q$ — середина ребра . Точка $K$

делит ребро $D_1D$ в соотношении   1 : 3 считая от вершины $D_1$, а точка $M$ делит $C_1C$ в соотношении

5 : 2 считая от вершины $C_1$. Найти угол между скрещивающимися прямыми    $BQ$   и    $KM$ .

     

  • Параллельными переносами добъемся совмещения в точке $B$. Для этого, перенесем   $KM$ в два этапа.
  • Сперва соскользим   $KM$ по грани   $DD_1C_1C$    вдоль $C_1C$ до вершины $C$. Получим   отрезок    $CYparallel MK$
  • Затем,   $CY$   протащим параллельно себе вдоль пути $CB$ и перейдем к отрезку    $BXparallel CY$.
  • В итоге получили то, что надо:    $KM$    параллельна     $BX$, потому как   $MKparallel CYparallel BX$.
  • Требуемый угол     $angle left(MK;BQright)=angle left(BX;BQright)=angle XBQ$.    Найдем его через треугольник $bigtriangleup XBQ$
  • В теореме косинусов нам нужны стороны этого треугольника. Вычислим постепенно, шаг за шагом, зная ребро куба 1:
  • Из отношения    $frac{D_1K}{DK}=frac{1}{3}Rightarrow D_1K=frac{1}{4} DK=frac{3}{4}$.                Из отношения    $frac{C_1K}{CM}=frac{5}{2}Rightarrow C_1M=frac{5}{7} CM=frac{2}{7}$
  • $MKparallel CYRightarrow KY=MC$        отрезок   $DY=D_1D-D_1K-KY=1-frac{1}{4}-frac{2}{7}=frac{13}{28}$
  • $BXparallel CYRightarrow BX=DY=frac{13}{28}$.         По условию задачи     $B_1Q=frac{1}{2}$.
  • Нужные нам стороны треугольника     $bigtriangleup XBQ$     являются гипотенузами    прямоугольных треугольников.
  • Зная все катеты, как части ребер, по теореме Пифагора найдем стороны   $XB$,   $BQ$,   $XQ$.
  • Нужный угол   $angle XBQ$ вычислим из теоремы косинусов         $XQ^2=XB^2+BQ^2-2cdot XBcdot BQcdot cos angle XBQ$   
  • наконец:     $cos angle XBQ=frac{XB^2+BQ^2-XQ^2}{2cdot XBcdot BQ}$                         $angle XBQ=arccos frac{XB^2+BQ^2-XQ^2}{2cdot XBcdot BQ}$
  • Признак:                    $XBQ$      плоскость угла:           $KMparallel XBQ$      и      $BQin XBQ$

Задача 5:     В правильной треугольной призме    $ABCMNK$ все ребра равны 2. Точка   $D$   делит

ребро $MN$ в отношении   3 : 2    считая от вершины $M$. Найдите угол между прямыми   $AD$    и    $BK$.

                      

  • Чтоб найти угол между скрещивающимися прямыми, нужно «подвигать параллельно»    $AD$    и    $BK$ до совмещения.
  • Если двинуть $AD$ так, чтоб точка $D$ совпала с $K$ — т.е. скользить по плоскости   $ADK$, но тогда другой конец $D$ вне рисунка.
  • Достроим призму до параллелепипеда $ABCYMNKZ$ и все нужные отрезки, «движения», плоскости будут внутри!
  • $AD$ скользит по плоскости   $ADK$ и совпадет с $XK$. Точка $X$, конечно, окажется на ребре   $YC$
  • по построению:    $Xin CDK$ плоскости;        $ADparallel XK$ ,     $XCparallel AB$ . Значит,    $XK$ параллельна   $AD$
  • Угол между прямыми    $angle left(AD;BKright)=angle left(XK;BKright)=angle XKB$.      Надо найти угол $angle XKB$.
  • Угол $XKB$ ищем , как обычно, через треугольник $bigtriangleup XKB$,   с помощью теоремы косинусов.
  • Для этого надо найти стороны этого треугольника.   Сторону $BK$ найдем по Пифагору для треугольника    $bigtriangleup BKC$.
  • $XC=MD$, найдем   $MD$ из отношения   3 : 2 для   $MN$ . Затем, по Пифагору    $bigtriangleup XKC$ найдем $XK$.
  • С вычислением $XB$ придется повозится через теорему косинусов треугольника $bigtriangleup XBC$, две его стороны известны.
  • А что с углом $angle XCB$? по условию    $bigtriangleup ABC$ равносторонный, значит в параллелограмме   $angle YCB=120$ градусов.
  • Ну и финально: как только найдем все стороны   $bigtriangleup XKB$, мы найдем и его угол $angle XKB$ — то что надо!
  • Признак:                    $XKB$      плоскость угла:           $ADparallel XKB$      и      $BKin XKB$

Упражнения:

Понравилась статья? Поделить с друзьями:
  • Delays detected как исправить
  • Как найти арендное помещение
  • Как найти нод 221 247
  • 5 разовое питание как составить меню
  • Как найти свой скин в роблоксе