Как найти угол наклона кривой проведя касательную

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Cправочник репетитора по математике предназначен для учащихся 5-11 классов и для преподавателей математики. Последние найдут в нем несколько оригинальных подходов к подаче и оформлению теоретических конспектов, упрощающих работу школьников с математическими понятиями и законами.

Касательная к графику функции.

Школьное определение касaтельной: прямая y=f (x) называется касательной к графику функции f (x) в точке x_0 если она проходит через точку A(x_0;f(x_0)) и имеет угловой коэффициент f.

Строгое определение касательной (из курса математического анализа) : прямая y=kx+b называется касательной к графику функции f(x) в точке x_0 , если при vartriangle x=x-x_0rightarrow 0 разность f(x)-f(x_0) есть бесконечно малая величина, более высокого порядка малости чем vartriangle x

Иллюстрация касательной m к графику функции y=f(x) в точке x_0:

Справочник репетитора по математике. Касательная к графику функции

Геометрический смысл производной: Значение производной функции y=f(x) в точке x_0 равнo угловому коэффициенту касательной, проведенной к y=f(x) в точке x_0, то есть tgalpha=k=f, где k — угловой коэффициент касательной.

Комментарий репетитора по математике: угол наклона касательной определяется как направленный положительный угол, то есть тот самый угол, который вы привыкли откладывать на тригонометрическом круге от положительного направления оси OX против часовой стрелки. Поэтому, если если касательная отклонена влево от вертикального положения, ваш угол наклона окажется тупым, то есть принадлежащим промежутку [0;pi] . Так как тангенс любого такого угла (угла второй четверти) отрицательный, то отрицательной окажется и производная.

Общая форма уравнения касательной: y= f
Окончательная форма уравнения касательной :
y=kx+b

Полезные факты для решения задач на касательную:

1) две наклонный прямые параллельны, тогда и только тогда, когда их угловые коэффициенты равны.

2) две наклонный прямые перпендикулярны тогда и только тогда, когда произведение их угловых коэффициентов равно -1.

Как найти угол наклона касательной по ее угловому коэффициенту:

Если k=f, то alpha = arctg(k)
Если k=f, то alpha = pi + arctg(k)

Достаточный признак возрастания функции: если все значения производной некоторой функции положительны внутри промежутка, то функция внутри него строго возрастает.

Замечание репетитора по математике: если концы промежутка являются точками непрерывности функции (один или оба), то их можно присоденить к указанному промежутку возрастания.

Достаточный признак убывания функции: если все значения производной некоторой функции отрицательны внутри промежутка, то функция внутри него строго убывает.

Замечание репетитора по математике: если функция непрерывна на концах промежутка (на одном или на обоих), то эти концы можно присоединить к указанному промежутку убывания.

Блиц вопросы к репетитору:

Что такое критическая точка? Внутренняя точка области определения функции называется критической, если производная в этой точке либо не сущуствует, либо она равна нулю.

Что такое стационарная точка: Если у критической точки производная равна нулю — она называется стационарной точной.

Экстремумы

Минимум функции.
Определение: Точка x_0 называется точкой минимума функции f(x), если в некотором промежутке I оси ОХ, содержащем x_0 для всех точек x in I выполняется неравенство f(x) geqslant f(x_0) . В этом случае число f(x_0) называется минимумом функции в точке x_0 (или локальным минимумом).

Фрагмент графика функции, имеющей точку минимума:

Справочник репетитора по математике. Минимум функции.

Комментарий репетитора по математики к рисунку: знаки — и + на оси OХ показывают на отрицательные/положитлеьные значения производной в левой/правой окрестности точки x_0. Стрелки указывают на возрастание и убывание функции в этих крестностях. Я советую репетиторам математики включать в теоретические памятки для учеником именно такую (интегрированную) иллюстрацию минимума.

Максимум функции.
Определение:Точка x_0 называется точкой максимума функции f(x), если в некотором промежутке I оси ОХ, содержащем x_0 для всех точек x in I выполняется неравенство f(x) leqslant f(x_0) . В этом случае число f(x_0) называется максимумом функции в точке x_0 (или локальным максимумом).

Фрагмент графика функции, имеющей точку максимума:

Cправочник репетитора по математике. Максимум функции.

Комментарий репетитора по математике: все обозначения и опорные знаки для подачи материала преподавателем аналогичны случаю с минимумом.

Экстремум — общее название минимума и максимума. Точка экстремума — общее название для точки минимума и точки максимума. На всех рисунках f(x_0) — экстремум, а x_0  — точка экстремума.

Необходимое условие существования экстремума: если x_0  — точка экстремума и в этой точке существует производная, то она равна нулю, то есть f . В этом случае касательная, проведенная к графику функции будет параллельна оси ОХ.

Достаточное условие существования экстремума: если функция y=f (x) непрерывна в точке x_0 и при переходе через x_0 производная меняет знак , то x_0 — точка экстремума.

Признак минимума функции: если функция y=f (x) непрерывна в точке x_0 и производная меняет знак с минуса на плюс, то x_0  — точка минимума.

Справочник репетитора по математике. Признак минимума функции.

Признак максимума функции: если функция y=f (x) непрерывна в точке x_0 и производная меняет знак с плюса на минус , то x_0  — точка максимума.

Справочник репетитора по математике. Признак максимума функции.

Алгоритм нахождения наибольшего и наименьшего значения функции y=f (x) на отрезке [a;b], на которм она непрерывна

1) Найдите производную f от данной функции
2) Найдите стационарные точки, решив уравнение f
2*) В редких случаях функция может иметь точки, в которых производной не существует. Их тоже нужно выявить.
3) Выберите из всех найденных точек те, которые попадают в исследуемый отрезок
4) Найдите значения данной функции в выбранных точках
5) Выберите среди них наименьшее и наибольшее

План исследования функции с применением производной. Построение графика.
1) Найдите производную y=f
2) Разложите ее на множители (если это возможно) или приведите все ее дроби к общему знаменателю, а затем разложите числитель. Тем самым вы ее готовите к дальнейшему исследованию методом интервалов
2) Определите у функции критические и стационарные точки, приравнивая числитель и знаменатель ее производной к нулю
2*) Точки, в которых производной не существует (обычно это нули знаменателя) отесите в группу тех, в которых функция будет иметь вертикальные асимптоты
3) Отметьте все найденные точки на оси Х и раставьте методом интервалов на образовавшихся промежутках знаки производной
4) Определите промежутки монотонности (промежутки возрастания и убывания) и над каждым из них поставьте соответствующую стрелку в соответствии с видом этой монотонности
5) Определите через признак минимума и максимума (или по характеру расположения стрелок) соответствующие точки экстремумов и найдите значения функции в этих точках
6) Нанесите их на координатной плоскости и также по характеру стрелок проведите через эти точки график.

Замечание репетитора по математике: аккуратнее выполняйте рисунок вблизи асимптот. График функции не должен их пересекать и обрываться рядом с ними. Плавно приближайте его к асимтоте пока на это хватает выделенного пространства системы координат.

Удачи в изучении математики!
Колпаков Александр Николаевич, репетитор по математике, Москва, Строгино.

Виртуальный математический справочник профессионального репетитора — преподавателя.

В этой статье мы разберем все типы задач на нахождение уравнения касательной.

Вспомним геометрический смысл производной: если к графику функции y=f(x) в точке x_0  проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси OX) равен производной функции в точке x_0 .

уравнения касательной

k=tg{alpha}=f^{prime}(x_0)

Возьмем на касательной произвольную точку  с координатами ( x;y):

уравнения касательной

И рассмотрим прямоугольный треугольник ABC:

уравнения касательной

В этом треугольнике tg{alpha}={BC}/{AB}={y-f(x_0)}/{x-x_0}=f{prime}(x_0)

Отсюда {y-f(x_0)}= f{prime}(x_0)(x-x_0)

Или

y=f(x_0)+ f{prime}(x_0)(x-x_0)

Это и есть уравнение касательной, проведенной к графику функции y=f(x) в точке x_0.

Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти f(x_0) и f{prime}(x_0).

Есть три основных типа задач на составление уравнения касательной.

1. Дана точка касания  x_0

2. Дан коэффициент наклона касательной, то есть значение производной функции y=f(x) в точке x_0.

3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.

Рассмотрим каждый тип задач.

1. Написать уравнение касательной к графику функции f(x)=x^3-2x^2+3  в точке x_0=1.

а) Найдем значение функции в точке x_0=1.

f(1)=1^3-2*1^2+3=2.

б) Найдем значение производной в точке x_0=1. Сначала найдем производную функции y=f(x)

f{prime}(x)=3x^2-4x

f{prime}(1)=3*1^2-4*1=-1

Подставим найденные значения в уравнение касательной:

y=2+(-1)(x-1)

Раскроем скобки в правой части уравнения. Получим: y=-x+3

Ответ: y=-x+3.

2. Найти абсциссы точек, в которых касательные к графику функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2 параллельны оси абсцисс.

Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси OX равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2 в точках касания равно нулю.

а) Найдем производную функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2.

y{prime}=x^3-8x^2+15x

б) Приравняем производную к нулю и найдем значения x, в которых касательная параллельна оси OX:

x^3-8x^2+15x=0

x(x^2-8x+15)=0

Приравняем каждый множитель к нулю, получим:

x_1=0;~~x_2=3;~~x_3=5

Ответ: 0;3;5

3. Написать уравнения касательных к графику функции y={3x-4}/{2x-3}, параллельных  прямой y=-x+3.

Касательная параллельна прямой y=-x+3. Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.

Это второй тип задач на нахождение уравнения касательной.

Итак, у нас дана функция y={3x-4}/{2x-3} и значение производной в точке касания.

а) Найдем точки, в которых производная функции y={3x-4}/{2x-3} равна -1.

Сначала найдем уравнение производной.

Нам нужно найти производную дроби.

({u/v})^{prime}={u{prime}v-v{prime}u}/{v^2}

y{prime}={(3x-4){prime}(2x-3)-(2x-3){prime}(3x-4)}/{(2x-3)^2}={3(2x-3)-2(3x-4)}/{(2x-3)^2}={-1}/{(2x-3)^2}

Приравняем производную к числу -1.

{-1}/{(2x-3)^2}=-1

(2x-3)^2=1

2x-3=1 или 2x-3=-1

x_0=2 или x_0=1

б) Найдем уравнение касательной к графику функции y={3x-4}/{2x-3} в точке x_0=2.

Найдем значение функции в точке x_0=2.

y(2)={3*2-4}/{2*2-3}=2

y{prime}(2)=-1 (по условию)

Подставим эти значения в уравнение касательной:

y=2+(-1)(x-2)=-x+4.

б) Найдем уравнение касательной к графику функции y={3x-4}/{2x-3} в точке x_0=1.

Найдем значение функции в точке x_0=1.

y(1)={3*1-4}/{2*1-3}=1

y{prime}=-1 (по условию).

Подставим эти значения в уравнение касательной:

y=1+(-1)(x-1)=-x+2.

Ответ: y=-x+4;~~y=-x+2

4. Написать уравнение касательной к кривой y=sqrt{8-x^2}, проходящей через точку A(3,1)

Сначала проверим, не является ли точка A(3,1) точкой касания. Если точка является точкой касания, то она принадлежит графику функции, и её координаты должны удовлетворять уравнению функции. Подставим координаты  точки A(3,1)  в уравнение функции.

1<>sqrt{8-3^2}. Мы получили под корнем отрицательное число, равенство не верно, и точка A(3,1) не принадлежит графику функции и не является точкой касания.

Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания.

Найдем значение x_0.

Пусть x_0 — точка касания. Точка A(3,1) принадлежит касательной к графику функции y=sqrt{8-x^2}. Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:

1=f(x_0)+ f{prime}(x_0)(3-x_0).

Значение функции y=sqrt{8-x^2} в точке x_0 равно f(x_0)= sqrt{8-{x_0}^2}.

Найдем значение производной функции y=sqrt{8-x^2} в точке x_0.

Сначала найдем производную функции y=sqrt{8-x^2}. Это сложная функция.

f{prime}(x)={1/{2sqrt{8-x^2}}}*(8-x^2){prime}={{-2x}/{2sqrt{8-x^2}}}

Производная в точке x_0 равна f{prime}(x_0)={-2{x_0}}/{2sqrt{8-{x_0}^2}}.

Подставим выражения для f(x_0) и f{prime}(x_0) в уравнение касательной. Получим уравнение относительно x_0:

1=sqrt{8-{x_0}^2}+{-2{x_0}}/{2sqrt{8-{x_0}^2}}(3-x_0)

Решим это уравнение.

Сократим числитель и знаменатель дроби на 2:

1=sqrt{8-{x_0}^2}+{-{x_0}}/{sqrt{8-{x_0}^2}}(3-x_0)

Приведем правую часть уравнения к общему знаменателю. Получим:

1={8-{x_0}^2-{x_0}(3-x_0)}/{sqrt{8-{x_0}^2}}

Упростим числитель дроби и умножим обе части на {sqrt{8-{x_0}^2}} — это выражение строго больше нуля.

Получим уравнение

{8-3x_0}={sqrt{8-{x_0}^2}}

Это иррациональное уравнение.

Решим его. Для этого возведем обе части в квадрат и перейдем к системе.

delim{lbrace}{matrix{2}{1}{{64-48{x_0}+9{x_0}^2=8-{x_0}^2} {8-3x_0>=0} }}{ }

Решим первое уравнение.

10{x_0}^2-48x_0+56=0

5{x_0}^2-24x_0+28=0

Решим квадратное уравнение, получим

x_0=2 или x_0=2,8

Второй корень не удовлетворяет условию 8-3x_0>=0, следовательно, у нас только одна точка касания и её абсцисса равна 2.

Напишем уравнение касательной к кривой y=sqrt{8-x^2} в точке x_0=2. Для этого подставим значение x_0=2 в уравнение y=sqrt{8-{x_0}^2}+{-2{x_0}}/{2sqrt{8-{x_0}^2}}(x-x_0)  — мы его уже записывали.

Получим:

y=sqrt{8-{2}^2}-{2*{2}}/{2sqrt{8-{(2)}^2}}(x-2)

y=2-(x-2)=-x+4

Ответ: y=-x+4
И.В. Фельдман, репетитор по математике.

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Угловой коэффициент касательной как тангенс угла наклона

(blacktriangleright) Если уравнение прямой задано в виде ({color{royalblue}{y=kx+b ;}}), то число (k) называется угловым коэффициентом.

(blacktriangleright) Угол (alpha) наклона прямой – это угол между этой прямой и положительным направлением оси (Ox) ((0leqslant
alpha< 180^circ)
), лежащий в верхней полуплоскости.

(blacktriangleright) Основная формула. Угловой коэффициент прямой (y=kx+b) равен тангенсу угла наклона этой прямой:

[{large{color{royalblue}{k=mathrm{tg}, alpha}}}]
Т.к. касательная к графику некоторой функции — это и есть прямая, то для нее верны все эти утверждения.

Если (alpha<90^circ), то (k>0);

если (alpha>90^circ), то (k<0);

если (alpha=0^circ), то (k=0) (уравнение прямой имеет вид (y=b) и она параллельна оси (Ox));

если (alpha=90^circ), то уравнение прямой имеет вид (x=a) и она перпендикулярна оси (Ox).


Задание
1

#685

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = x), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = x) коэффициент (k) равен (1), то (mathrm{tg}, alpha = 1).

Ответ: 1


Задание
2

#686

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = 2x — 3), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = 2x — 3) коэффициент (k) равен (2), то (mathrm{tg}, alpha = 2).

Ответ: 2


Задание
3

#687

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = -x + 2), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = -x + 2) коэффициент (k) равен (-1), то (mathrm{tg}, alpha = -1).

Ответ: -1


Задание
4

#688

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx + 77), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = 12).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx + 77) и положительным направлением оси (Ox) равен (12), то (k = mathrm{tg}, alpha = 12).

Ответ: 12


Задание
5

#689

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx + 0,2), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = -3,3).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx + 0,2) и положительным направлением оси (Ox) равен (-3,3), то (k = mathrm{tg}, alpha = -3,3).

Ответ: -3,3


Задание
6

#690

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = 0).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx) и положительным направлением оси (Ox) равен (0), то (k = mathrm{tg}, alpha = 0).

Ответ: 0


Задание
7

#693

Уровень задания: Легче ЕГЭ

Прямая (y = kx — 2016) образует угол (45^{circ}) с положительным направлением оси (Ox). Найдите (k).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как угол между прямой (y = kx — 2016) и положительным направлением оси (Ox) равен (dfrac{pi}{4}), то (k = mathrm{tg}, dfrac{pi}{4} = 1).

Ответ: 1

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела», мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Понравилась статья? Поделить с друзьями:
  • Как найти передачу которую пропустил
  • Ошибка е16 на принтере canon mp250 как исправить
  • Как найти периметр или площадь неровной фигуры
  • Сетевой трафик ограничен брандмауэром маршрутизатором торрент как исправить
  • Как найти площадь бокового сечения параллелепипеда