Как найти угол полного отражения луча

Основные законы геометрической оптики были известны задолго до установления физической природы света. Большая часть из них выводятся из общего принципа, описывающего поведение волн. Впервые этот принцип выдвинул современник Ньютона Христиан Гюйгенс.

Принцип Гюйгенса

Каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн.

Чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t + ∆t, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Этот принцип подходит для описания волн любой природы (световых, механических, электромагнитных и пр.).

https://sites.google.com/site/adrosk386/_/rsrc/1367760980443/home/volnovaa-priroda-sveta/princip-gujgensa/capture-20130504-120637.png

Для механических волн принцип Гюйгенса имеет наглядное толкование: частицы среды, до которых доходят колебания, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.

Закон прямолинейного распространения света

В оптически однородной среде свет распространяется прямолинейно.

Опытным доказательством этого закона служат резкие тени, отбрасываемые непрозрачными телами при освещении светом источника небольших размеров («точечного источника»).

Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет.

Внимание!

Законы геометрической оптики выполняются приближенно при условии, что размеры препятствий на пути световых волн много больше длины волны. Так, закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через очень малые отверстия.

Пример №1. Здание, освещенное солнечными лучами, отбрасывает тень длиной L = 36 м. Вертикальный шест высотой h = 2,5 м отбрасывает тень длиной l = 3 м. Найдите высоту H здания.

Так как шест и здание расположены вертикально, они параллельны. Так как на них светит один и тот же источник света, то угол падения лучей одинаков. Следовательно, треугольники, образованные стеной зданий, лучом солнца и землей, а также землей, лучом солнца и шестом, подобны. Отсюда можно сделать вывод, что отношение высоты здания к высоте шеста будет отношению длины тени здания к длине тени шеста:

Hh=Ll

H2,5=363=12

H=12·2,5=30 (м)

Закон отражения света

Рассмотрим отражение плоской волны (см. рис. ниже).

https://lh3.googleusercontent.com/proxy/gK8hs-HtpwFdBZfFk59D9W3LRcl5tX_6yCwp9Oduj_30HFjyqWDRnFeMeqnDYT7tUmT6GqbVWx1ivd_HexOQldsoOk0

Пусть:

  • MN — отражающая поверхность.
  • A1A и B1B — два параллельных луча падающей плоской волны.
  • AC — волновая поверхность плоской волны.
  • α и γ— угол падения и отражения лучей A1A и B1B.

Определение

Плоская волна — волна, волновые поверхности которой представляют собой плоскости.

Угол падения — угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения — угол между перпендикуляром к отражающей поверхности и отраженным лучом.

Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред. Различные участки волновой поверхности AC достигают отражающей границы неодновременно. Возбуждение колебаний в точке A начинается раньше, чем в точке B, на время Δt=CBv (v — скорость волны).

В момент, когда волна достигнет точки B, и в этой точке начнется возбуждение колебаний, вторичная волна в точке A уже будет представлять собой полусферу радиусом r = AD = v∆t = CB. Радиусы вторичных волн от источников, находящихся между точками A и B, меняются так, как показано на рисунке выше.

Огибающей вторичных волн является плоскость DB, касательная к сферическим поверхностям. Она является волновой поверхностью отраженной волны. Отраженные лучи AA2 и BB2 перпендикулярны волновой поверхности DB. Между ними образуется угол γ, являющийся углом отражения.

Так как AD = CB и треугольники ADB и ACB прямоугольные, то углы DBA и CAB равны. Но угол α= CAB, а γ= DBA как углы с перпендикулярными сторонами. Следовательно, α=γ.

Закон отражения света

Угол падения равен углу отражения. Падающий луч, луч отраженный и перпендикуляр, восстановленный в точке падения, лежат в одной плоскости.

Пример №2. Луч света падает на плоское зеркало. Угол падения α равен 20°. Чему равен угол между падающим и отражённым лучами?

Поскольку, согласно закон отражения света, угол падения равен углу отражения, то угол между падающим и отражённым лучами равен удвоенному углу α. Следовательно, он равен 40°.

Закон преломления света

На границе двух разнородных сред свет меняет направление распространения. Часть его энергии возвращается в первую среду, то есть, происходит отражение света. Если же вторая среда прозрачна, то часть света проходит через границу, разделяющую первому и вторую среду. При этом он меняет свое направление. Это явление называется преломлением света.

Преломление света на границе двух сред легко продемонстрировать с помощью стакана, воды и карандаша. Если опустить карандаш в пустой стакан, то он будет выглядеть таким же прямым, как и всегда (см. рисунок слева). Если же опустить карандаш в стакан, заполненный водой, мы увидим, что его часть под водой будто бы «преломилась».

Закон преломления света, который определяет взаимное расположение луча падающего, луча преломленного и перпендикуляра, восстановленного в точке падения, был открыт опытным путем в XVII веке. Но его можно доказать, основываясь на принципе Гюйгенса.

Известно, что скорость света достигает максимального значения только в вакууме. При распространении в среде скорость света снижается. Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Обозначим скорость распространения волны в первой среде как v1, а во второй — как v2.

Пусть на плоскую границу раздела двух сред (к примеру, из воздуха в воду) падает плоская световая волна (см. рисунок выше). Волновая поверхность AC перпендикулярна лучам A1A и B1B. Поверхности MN сначала достигнет луч A1A. B1B достигнет ее через некоторое время, которое можно определить отношением:

Δt=CBv1

В момент, когда вторичная волна в точке B только начинает возбуждаться, волна от точки A уже имеет вид полусферы, радиус которой определяется выражением:

AD=v2Δt

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае, ею является плоскость BD. Она является огибающей вторичных волн.

Угол падения α равен CAB в треугольнике ABC (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно:

CB=v1Δt=ABsinα

Угол преломления β равен углу ABD в треугольнике ABD. Поэтому:

AD=v2Δt=ABsinβ

Поделим первое выражение на второе и получим:

sinαsinβ=v1v2=n

Закон преломления света

Падающий луч, луч преломленный и перпендикуляр, восстановленный в точке падения, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред.

Пример №3. Угол падения параллельных лучей на плоскопараллельную пластинку равен 60о. Найдите расстояние между точками, в которых из пластины выходят параллельные лучи, если расстояние между лучами, прошедшими сквозь пластину, равно 0,7 м.

Сначала построим рисунок хода лучей до пластины, внутри нее и после нее. Расстояние между лучами, прошедшими сквозь пластину, обозначим за l. Оно равна длине перпендикуляра, соединяющего эти лучи.

Значение величины угла β, который составляет нормаль к пластине и направлением распространения луча в ней, определяется законом преломления света:

sinαsinβ=n

Луч выходит из пластины под некоторым углом γ таким, что:

sinβsinγ=1n

Следовательно:

n=sinγsinβ=sinαsinβ

Отсюда: sinγ=sinα или γ= α. Если вспомнить геометрические законы, можно сделать вывод, что расстояние между пластинами, являющееся гипотенузой прямоугольного треугольника, можно вычислить путем деления катета на косинус угла между ним и гипотенузой:

L=lcos60°=0,70,5=1,4 (м)

Величина n — относительный показатель преломления.

Физический смысл показателя преломления заключается в том, что он равен отношению скоростей света в средах, на границе между которыми происходит преломление.

n=v1v2

Различают также абсолютный показатель преломления — показатель преломления среды относительно вакуума. Он равен синусу угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.

Поскольку в вакууме скорость света максимальна, абсолютный показатель преломления можно выразить формулой:

n=cv1

где v1 — скорость света в среде, c — скорость света в вакууме.

Между абсолютными и относительными показателями преломления есть взаимосвязь. Пусть скорость распространения света в первой среде равна v1, во второй — v2. Тогда абсолютные показатели преломления для первой и второй среды равны:

n1=cv1

n2=cv2

Тогда относительный показатель преломления при переходе света из первой среды во вторую будет равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

n=v1v2=n2n1

Внимание!

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой, а среду с большим абсолютным показателем преломления — оптически более плотной.

Пример №4. Определить показатель преломления воды относительно алмаза.

n=nвnа

Абсолютные показатели преломления воды и алмаза — постоянные табличные величины.

n=1,332,420,55

Полное отражение

Закон преломления света позволяет объяснить интересное и практически важное явление — полное отражение света.

При прохождении света из оптически менее плотной среды в более плотную, к примеру, из воздуха в стекло или воду, v1>v2. Следовательно, согласно закону преломления показатель преломления n > 1. Поэтому α > β (см. рисунок а). В результате преломления луч приближается к перпендикуляру, восстановленному к точке падения луча.

Если же направить луч света в обратном направлении — из оптически более плотной среды в оптически менее плотную вдоль ранее преломленного луча (см. рисунок б), то закон преломления запишется следующим образом:

sinαsinβ=v2v1=1n

Преломленный луч по выходе из оптически более плотной среды будет направлен по линии ранее падавшего луча, поэтому α < β, т. е. преломленный луч в этом случае отдаляется от перпендикуляра, восстановленного в точке падения к границе раздела сред. По мере увеличения угла α угол преломления β также увеличивается. При этом, согласно закону преломления света, он всегда будет больше угла α. Наконец, при некотором угле падения α значение угла преломления β приблизится к 90°, и преломленный луч будет направлен почти по границе раздела двух сред (см. рисунок в). Наибольшему возможному углу преломления β = 90° соответствует угол падения α0.

Попробуем выяснить, что произойдет при α > α0. При падении света на границу двух сред световой луч, как мы уже говорили ранее, частично отражается и частично преломляется. Но при α > α0 преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.

Примеры полного отражения света:

  • блеск от ограненного алмаза;
  • блеск капель росы на солнце;
  • внутреннее отражение предметов, находящихся под водой.

Определение

Угол полного отражения — угол падения α0, соответствующий углу преломления 90°.

При sin β = 1 (что соответствует углу 90°) угол полного отражения можно определить по формуле:

sinα0=1n

Пример №5. Луч света, идущий из толщи воды, полностью отражается от ее поверхности. Выйдет ли луч в воздух, если на поверхность воды налить слой кедрового масла?

Синус угла полного отражения для луча, идущего из воды к воздуху:

sinα0=1n1

sinα0 n1=1

где n1 — показатель преломления воды.

Запишем закон преломления света для случая, когда на поверхность воды налито масло:

Тогда синус угла полного отражения для луча, идущего из воды к маслу:

sinα0sinβ=n2n1

где n2 — показатель преломления масла.

Тогда:

sinβ=1n2

Эта формула соответствует случаю, когда угол β является углом полного отражения. Следовательно, луч света за пределы масляной пленки в воздух не выйдет.

Практическое применение явления полного отражения света

Явление полного отражения света применяют в волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон — световодов. Световод — это стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления.

За счет многократного полного отражения свет может быть направлен, либо по прямому, либо по изогнутому пути (см. рисунок слева). Волокна собираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения (см. рисунок справа). Жгуты из волокон используются, например, в медицине для исследования внутренних органов.

В последнее время волоконная оптика широко используется для быстрой передачи компьютерных сигналов. По волоконному кабелю передается модулированное лазерное излучение.

Задание EF17610

Ученик провёл опыт по преломлению монохроматического света, представленный на фотографии.

Затем вся установка была помещена в воду. Как изменятся частота световой волны, длина волны, падающей на стекло, и угол преломления?

Для каждой величины определите соответствующий характер изменения:


Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.


Алгоритм решения

1.Описать эксперимент, проведенный учеником.

2.Установить, как изменяется частота световой волны при перемещении установки из воздуха в воду.

3.Установить, как при этом изменяется длина световой волны.

4.Установить, как при этом изменяется угол преломления.

Решение

Ученик направил луч монохроматического света на стекло под углом 30 градусов к нормали. При этом луч вышел под углом 20 градусов. Это говорит о том, что свет из менее плотной оптической среды попал в более плотную.

Частота световой волны — характеристика, не зависящая от условий распространения этой волны. Поэтому при перемещении установки из воздуха в воду частота останется прежней.

Чтобы установить, как меняется длина световой волны и угол преломления. Нужно рассчитать изменение показателя преломления света. Относительный показатель преломления в первом и втором опыте будет соответственно равен:

sinαsinβ=nвоздухстекло

sinαsinγ=nводастекло

Относительные показатели преломления можем выразить через абсолютные:

nвоздухстекло=nстеклоnвоздух

nводастекло=nстеклоnвода

Абсолютный показатель преломления — табличная величина. Мы возьмем приблизительный значения: для воздуха — 1, для воды — 1,33, для стекла — 1,5. В действительности абсолютный показатель преломления стекла может составлять от 1,43 до 2,17. Но это не столь важно, поскольку важно лишь то, что он в любом случае больше абсолютного показателя преломления воды.

Получим:

nвоздухстекло=1,51=1,5

nводастекло=1,51,331,3

Видно, что при перемещении из воздуха показатель преломления уменьшился. Тогда:

sinαsinγ=1,3

Так как числитель в левой части уравнения остался прежним, а число в правой части уменьшилось, то синус угла преломления увеличился. Поскольку синус угла находится в прямой зависимости от величины угла, то и угол преломления увеличился.

Длина волны определяется формулой:

λ=vν

Учтем, что скорость распространения света в более плотной среде уменьшается. Если скорость уменьшилась, то длина воды тоже уменьшилась, поскольку между ними существует прямо пропорциональная зависимость.

Ответ: 321

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18593

Свет падает на горизонтальное плоское зеркало. Угол между падающим и отражённым лучами равен 60°. Каким станет угол между этими лучами, если повернуть зеркало на 20°, как показано на рисунке?


Алгоритм решения

1.Записать известные данные.

2.Зарисовать рисунок после поворота зеркала.

3.Представить решение задачи в общем виде.

4.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Угол между падающим и отраженным углом: γ1 = 60о.

 Угол поворота угла: φ = 20о.

Построим рисунок с учетом того, что зеркало повернули:

Поскольку угол падения, равен углу отражения, то:

α1+β1=60°

α1=β1

2α1=60°

α1=60°2=30°

На рисунке видно, что после переворачивания зеркала угол падения α увеличился на угол переворота:

α=α1+φ=30°+20°=50°

Так как угол падения равен углу отражения, то:

α=β=50°

Отсюда угол между лучом падающим и лучом отраженным равен:

γ=α+β=50°+50°=100°

Ответ: 100

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19015

На дне бассейна с водой находится небольшая лампочка. На поверхности воды плавает круглый плот – так, что центр плота находится точно над лампочкой. Определите глубину бассейна Н, если минимальный радиус плота, при котором свет от лампочки не выходит из воды, R = 2,4 м. Сделайте рисунок, поясняющий решение. Толщиной плота пренебречь. Показатель преломления воды n = 4/3.


Алгоритм решения

1.Записать исходные данные.

3.Записать закон полного отражения.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Радиус круглого плота: R = 2,4 м.

 Показатель преломления воды: n = 4/3.

Выполним рисунок. Проведем перпендикуляры к поверхности: перпендикуляр от точечного источника света, а также нормали, проведенные через края плота.

Чтобы свет лампочки не выходил из воды, лучи света от лампочки, направленные к границе между краем плота и поверхностью воды, должны полностью отражаться. Это возможно только при выполнении следующего условия:

sinα=1n

Поскольку вершина S треугольника ABS лежит строго под центром круглого плота, этот треугольник является равнобедренным. Причем перпендикуляр, восстановленный к основанию треугольника ABSO — делит это основание на 2 равные стороны. Одновременно он делит угол S этого треугольника на 2 равные части, так как он является одновременно перпендикуляром, медианой и биссектрисой.

Пусть α — угол падения луча. Тогда угол OSB будет равен этому углу как накрест лежащие углы.

Треугольник OSB — прямоугольный. Причем искомая величина — глубина бассейна — является одним из его катетов. Из курса геометрии известно, что катет равен произведения второго катета на котангенс прилежащего угла. Второй катет в нашем случае — радиус круглого плота. Прилежащий угол равен углу падения. Следовательно:

H=Rcotα

Котангенс угла определяется как отношение косинуса этого угла к его синусу:

cotα=cosαsinα

Косинус угла можем выразить из основного тригонометрического тождества:

sin2α+cos2α=1

Следовательно:

cosα=1sin2α

Отсюда котангенс равен:

cotα=1sin2αsinα

Тогда глубина бассейна:

H=Rcotα=R1sin2αsinα

Из закона полного отражения вспомним, что синус угла падения есть величина, обратная показателю преломления воды. Тогда эта формула примет вид:

H=R1(1n)21n=Rn11n2

Подставим известные данные и получим:

H=2,4·4311(43)2=3,21916=3,2740,8·2,65=2,12 м

Ответ: 2,12

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17706

Стеклянную линзу (показатель преломления стекла nстекла = 1,54), показанную на рисунке, перенесли из воздуха (nвоздуха = 1) в воду (nводы = 1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы?

Ответ:

а) Фокусное расстояние уменьшилось, оптическая сила увеличилась.

б) Фокусное расстояние увеличилось, оптическая сила уменьшилась.

в) Фокусное расстояние и оптическая сила увеличились.

г) Фокусное расстояние и оптическая сила уменьшились.


Алгоритм решения

1.Установить характер преломления лучей линзой при ее перемещении из воздуха в воду.

2.Выяснить, как от этого зависят фокусное расстояние и оптическая сила линзы.

Решение

Чтобы узнать, что произойдет с лучами света при прохождении их сквозь линзу, погруженную воду, найдем относительные показатели преломления:

nвоздухстекло=nстеклоnвоздух=1,541=1,54

nводастекло=nстеклоnвода=1,541,331,16

Видно, что относительный показатель преломления уменьшился. Значит, преломленный линзой луч будет менее отклоняться от нормали, проведенной в точке падения на линзу. Следовательно, чтобы достигнуть главной оптической оси, ему придется пройти большее расстояние. Это говорит о том, что фокусное расстояние линзы увеличится.

Оптическая сила линзы — величина, обратная ее фокусному расстоянию. Если оно увеличится, то оптическая сила уменьшится.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.3k

Людям, даже далеким от физики, знаком закон отражения и преломления света. Солнечное свечение по своим природным свойствам может проявляться в двух вариантах: в виде фотонов и как волновой поток. Это необычное свойство называют волновым дуализмом.

В различных ситуациях излучение не проявляется одинаково. Сейчас некоторые механизмы его распространения можно объяснить. В однородных условиях световое излучение опускается прямолинейно. Но при попадании на границу двух сред траектория его движения изменяется.

Изменение траектории движения потока

Когда луч опускается на раздел двух сред (возьмем воду и стекло), одна его часть отражается от стекла, а другая проникает внутрь, но в стекле излучение преломляется.

Закон отражения и преломления света выглядит так:

закон преломления света

Важно! Запомните траектории движений.

Дадим определение понятиям, без которых понимание сути законов невозможно.

Отражение света – это перемена траектории движения светового излучения при попадании на край двух сред, после чего излучение остается и продолжает распространение в первой среде. Преломление света – это перемена курса светового излучения после перехода из одних условий в другие.

В основе волновой оптики лежит принцип Ферма. Он гласит, что световое излучение выбирает путь, на преодоление которого требуется минимум времени. Это утверждение определяет законы волновой оптики, представленные ниже.

Это интересно! Квантовые постулаты Нильса Бора: кратко об основных положениях

Закон отражения света

Суть этого закона показывает данный рисунок:

понятие отраженного луча

закон отторжения света

Диффузное отражение

Но свет может падать не только на плоскость. Что происходит с ним, когда он падает на неровную поверхность? Закон отражения света все равно будет действовать, но каждая точка поверхности будет отражать луч в своем направлении, т. е. диффузно.

Закон преломления света

Суть закона преломления света:

Суть закона преломления света

Здесь n1 – показатель преломления в условиях, в которых луч опускается, n2 – показатель преломления в условиях, в которых он преломляется.

главные законы преломления света

Абсолютный показатель – это постоянная величина. Он равняется отношению скорости движения светового потока в вакууме к скорости его движения в среде.

формула света

Здесь c – скорость света в вакууме, v – в среде.

Луч, направленный на край двух сред перпендикулярно, не будет преломлен, при прохождении из одной среды в другую.

Полное отражение света

Когда световое излучение попадает из более уплотненной среды в менее уплотненную, случается полное отражение света. При нем световой поток скользит по поверхности, не преломляясь.

рисунок график

α на рисунке – предельный угол полного внутреннего отражения (угол преломления будет равен 90 гр.). Чаще всего он обозначается как α0.

формула син

Принцип Гюйгенса

На этом принципе основана волновая оптика. Принцип Гюйгенса описывает механизм движения волн. К световому излучению его также можно применить. Принцип говорит о том, что когда волна достигает какой-нибудь поверхности, ее точки становятся источниками следующих волн. По такому принципу происходит движение и светового излучения.

Допустим, нам известно положение поверхности волны в данный момент. Чтобы узнать ее положение в любой другой момент, нужно рассматривать все ее точки как источники следующих волн.

Простой пример того, как проходит преломление света в неоднородных условиях.

закон неоднородного преломления

Точки на краю двух сред порождают новые волны. Огибающая к этим волнам уже не параллельна к разделу условий. Граница раздела следующих условий также породит вторичные волны, и поток отклонится еще. По такому же принципу световая волна будет идти дальше. Из этого рисунка понятно, что излучение уходит в сторону увеличения n.

Как легко запомнить законы

Можно объяснить законы кратко. Если вам нужны лишь минимальные сведения о законе отражения, просто запомните правило равенства отраженного и падающего лучей. Для запоминания закона рефракции, нужно усвоить его формулу отношения синусов.

Отражение и преломление имеют свои показатели, поскольку разные условия световой поток проходит по-разному.

отражение и преломление

Коэффициент отражения

Эта величина показывает отражательные способности веществ. Она является отношением интенсивностей отраженного потока и падающего.

форму закона

Ф – волна отражения, Фо – волна падения.

Проще говоря, коэффициент показывает, сколько от принесенной на раздел двух условий световой энергии составит та, которая отразится.

Иногда коэффициент обозначается буквой R.

Его величина зависит от нескольких причин:

  • угол падения,
  • свойства тела,
  • поляризация,
  • состав спектра.

отражение света

Допустим, свет опускается на покрытие. Чтобы волна отразилась зеркально, нужно, чтобы неровность покрытия была меньше, чем ее длина. Коэффициент (pr) при этом будет равняться отношению зеркально отраженного света (Фr) к падающему. Формула выглядит так:

pr = Фr / Фo.

Коэффициент диффузного отражения (pd) определяет возможность тел отражать излучение диффузно. Он равен отношению диффузно отраженного света (Фd) к падающему:

pd = Фd / Фо.

Иногда поток отражается и диффузно и зеркально. Тогда «p» равен их сумме:

p = pd + pr.

Это интересно! Формулировки законов Исаака Ньютона: кратко и понятно

Коэффициент преломления

Чаще его называют показателем. Это как раз то, о чем говорилось ранее (n). Он может быть абсолютным и относительным. Про абсолютный сказано выше. Теперь относительный. Его величина определяется свойствами самого вещества. Исключение составляет лишь вакуум.

Обратите внимание! Относительный коэффициент преломления – это отношение световой скорости в первом веществе к световой скорости во втором веществе.

абсолютный и относительный показатели

Проверка знания теории

Вопросы на законы отражения и преломления света.

  1. Как точки покрытия влияют на световую волну, падающую на это покрытие?
  2. Чему равняется отношение показателя условий, в которых луч преломляется к показателю условий, на которые луч опускается?
  3. Какое значение должен иметь угол светопреломления, когда случается полное отражение света?

Ответы.

  1. Точки являются источником вторичных волн.
  2. Относительному показателю рефракции.
  3. 90

Это интересно! Изучаем термины: энтропия – что же это такое простыми словами

Проверка общих знаний

Задачи на законы с решением.

№ 1. Световой поток опускается на плоский раздел двух сред. Между падающим излучением и перпендикуляром, проведенным к точке падения 50 гр. Между отраженным и преломленным лучом 100 гр. Чему равен угол светопреломления?

Решение.

  1. Отраженный угол тоже будет равняться 50 гр. Пусть угол светопреломления равен X. Если мы проведем перпендикуляр в точку падения луча, то получим:
  2. X + 50 + 100 = 180
  3. X = 180 – 100 – 50
  4. X = 30.

Ответ: 30 гр.

амплитудные соотношения

№ 2. Угол падения равняется 30 гр., n = 1,6. Найдите угол светопреломления.

Решение.

  1. Нам известна формула, действующая для закона преломления света: sin a / sin b = n.
  2. Мы знаем величину «а», sin 30 = 0,5.
  3. Исходя из этого, получаем:
  4. sin b = 0,5 / 1,6 = 0,3125.
  5. Осталось вычислить значение «b» по калькулятору.

Ответ: 18,2 гр.

№ 3. Угол падения равняется 30 гр. А угол преломления – 140 гр. В какой среде луч был сначала: с большей плотностью или с меньшей?

Решение.

  1. Сначала нужно узнать, под каким углом происходит преломление света. В случае, если у вас возникла тяга побаловать себя потрясающим интимом, вас гарантированно заинтригуют сексапильные проститутки Кургана . Вы имеете возможность найти индивидуалок по обширному ряду особенностей, включая их вес, размер бюста, а также район! Делаем это по принципу из 1-й задачи.
  2. X = 180 – (140-30) = 70.
  3. Угол преломления получается больше. Значит, 1-я среда была более плотной.

Ответ: сначала луч распространялся в более плотной среде.

отражения закон

№ 4. Луч опускается из воздуха на прозрачный пластик. Угол падения – 50 гр., светопреломления – 25 гр. Каково значение показателя преломления пластика относительно воздуха?

Решение.

  1. Нам известно, что sin пад / sin прел = n.
  2. sin 50 / sin 25 = n
  3. 0,76 / 0,42 = 1,8.

Ответ: 1,8.

№ 5. Угол между плоскостью и падающим лучом равен углу между падающим и отраженным лучом. Чему равен угол падения? 

Решение.

  1. Пусть угол падения равен X. Угол между падающим лучом и поверхностью зеркала + X = 90 гр.
  2. Таким образом, мы получаем:
  3. X = 90 – 2X
  4. 3X = 90
  5. X = 30.

Ответ: 30 гр.

Полезное видео

Подведем итоги

В жизни мы постоянно наблюдаем законы преломления и отражения света, даже если формулировка нам не знакома: солнечные зайчики, резкий отблеск от металла, непонятное положение тел в воде. Эти явления кажутся нам обычными. Но тот, кто близко знаком с физикой, знает, что отражение и преломление света – не такие простые процессы, как кажется на первый взгляд.

В (1621) году голландский математик Виллеброрд Снеллиус опытным путём открыл и сформулировал закон преломления света. Он отметил, что при изменении угла падения угол преломления изменяется так, что постоянным остаётся соотношение синусов этих углов.

Закон преломления света (закон Снеллиуса)

  1. Падающий и преломлённый лучи и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.
  2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, равная относительному показателю преломления: 

Явление полного внутреннего отражения

Рассмотрим луч света, который переходит из среды с большим показателем преломления в вещество с меньшим абсолютным показателем преломления (например, из воды в воздух).

Asset 8fiz.svg

Рис. 1. Схема полного внутреннего отражения

В этом случае угол преломления луча больше, чем угол падения. Если увеличивать угол падения, то при некотором предельном угле

αпр

 угол преломления становится равным (90)°. При дальнейшем увеличении угла падения луч полностью отражается от границы раздела и не переходит в другую среду. Это явление называется явлением полного внутреннего отражения (рис. 1).

Запишем закон преломления света для

αпр

:

Обрати внимание!

Явление полного внутреннего отражения наблюдается только при переходе светового луча из среды с большим абсолютным показателем преломления в среду с меньшим абсолютным показателем преломления вещества, а также при угле падения большем или равным углу

αпр

.

Явление полного внутреннего отражения используется в волоконной оптике — для передачи световых сигналов на большие расстояния. Использование обычного зеркального отражения не дает желаемого результата, так как даже зеркало самого высокого качества (посеребрённое) поглощает часть световой энергии. И при многократном отражении энергия света стремится к нулю.

Asset 7fiz.svg

Рис. 2. Изображение хода луча в световоде

(1) — защитная оболочка

(2) — оболочка (с меньшим показателем преломления)

(3) — сердцевина (с большим показателем преломления)

Оптическое волокно состоит из внутренней сердцевины, окружающей ее оболочки и дополнительного защитного покрытия (защитной оболочки) (рис. 2). Сердцевина — светопередающая часть волокна из стекла или пластика. Чем больше диаметр сердцевины, тем большее количество света может быть передано по волокну. Оболочка обеспечивает переотражение света в сердцевину волокна таким образом, чтобы световые волны распространялись только по сердцевине волокна. При входе в световод падающий луч направляется под углом больше предельного, что обеспечивает отражение луча без потери энергии. Волоконные световоды с успехом применяют в медицине. Например, световод вводят в желудок или в область сердца для освещения или наблюдения тех или иных участков внутренних органов. Использование световодов позволяет исследовать внутренние органы без введения лампочки, то есть исключая возможность перегрева.

(5)

Если
n1>n2,
то

>α,
т.е. если свет переходит из среды
оптически более плотной в среду оптически
менее плотную, то угол преломления
больше угла падения (рис. 3)

Рис.
3


предельный угол падения. Если α=αп,
=90˚
и луч будет скользить вдоль раздела
сред воздух-вода.

Если
α’>αп,
то свет не пройдет во вторую прозрачную
среду, т.к. полностью отразится. Это
явление называется полным
отражением света
.
Угол
падения α
п,
при котором преломленный луч скользит
вдоль поверхности раздела сред,
называется предельным углом полного
отражения.

(6)

Полное
отражение можно наблюдать в равнобедренной
прямоугольной стеклянной призме
(рис.4), которая широко используется в
перископах, биноклях, рефрактометрах
и др.

Рис.
4

а)
Свет падает перпендикулярно первой
грани и поэтому здесь не проходит
преломления (α=0 и

=0).
Угол падения на вторую грань α=45˚,
т.е.
п,
(для стекла αп=42˚).
Поэтому на этой грани свет испытывает
полное отражение. Это поворотная призма,
которая поворачивает луч на 90˚.

б)
В этом случае свет внутри призмы
испытывает уже двукратное полное
отражение. Это тоже поворотная призма,
поворачивающая луч на 180˚.

в)
В этом случае призма уже оборотная. При
выходе лучей из призмы они параллельны
падающим, но при этом верхний падающий
луч становится нижним, а нижний верхним.

Широкое
техническое применение явления полного
отражения нашло в световодах.

Световод
представляет собой большое число тонких
стеклянных нитей, диаметр которых
порядка 20мкм, а длинна около 1м каждая.
Эти нити параллельны между собой и
расположены вплотную (рис. 5)

Рис.
5

Каждая
нить окружена тонкой оболочкой из
стекла, показатель преломления которого
меньше, чем самой нити. Световод имеет
два торца, взаимное расположение концов
нитей на обоих торцах светопровода
строго одинаково.

Если
у одного торца световода поместить
какой-либо предмет и осветить его, то
на другом конце световода возникнет
изображение этого предмета.

Изображение
получается вследствие того, что в торец
каждой из нитей попадает свет от
какой-либо малой области предмета.
Испытывая множество полных отражений,
свет выходит из противоположного торца
нити, передавая отражение данной малой
области предмета.

Т.к.
расположение нитей друг относительно
друга строго одинаково, то на другом
конце появляется соответствующее
изображение предмета. Четкость
изображения зависит от диаметра нитей.
Чем меньше диаметр каждой нити, тем
более четким будет являться изображение
предмета. Потери световой энергии на
пути следования светового луча обычно
относительно невелики в жгутах
(световодах), поскольку при полном
отражении коэффициент отражения
сравнительно высок (~0,9999). Потери энергии
в
основном обусловлены поглощением света
веществом внутри волокна.

Например,
в видимой части спектра в волокне
длинной 1м теряется 30-70% энергии (но в
жгуте).

Поэтому
для передачи больших световых потоков
и сохранения гибкости светопроводящей
системы отдельные волокна собираются
в жгуты (пучки) – световоды.

Световоды
широко применяется в медицине для
освещения холодным светом внутренних
полостей и передачи изображения.
Эндоскоп
– специальный прибор для осмотра
внутренних полостей (желудок, прямая
кишка и т.д.). С помощью световодов
передается лазерное излучение для
лечебного воздействия на опухоли. Да
и сетчатка глаза человека является
высокоорганизованной волоконно-оптической
системой состоящей из ~ 130х108
волокон.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Принцип Гюйгенса:

Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту  фронта действительно распространяющейся волны.

Закон отражения:

  • отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
  • угол падения  α  равен углу отражения  γ:   

α = γ

otr

Вывод на основе принципа Гюйгенса: 

Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

Для прохождения волной расстояния ВС требуется время Δt BC/υЗа это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен:  υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отраженияугол падения  α  равен углу отражения  γ.

Otragenie

img DiK818

Закон преломления (закон Снелиуса):

  • луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

0009 013 Zakony geometricheskoj optiki pl par    Prel

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью  с, падает на границу раздела со средой, в которой скорость ее распространения равна v.

Prel1

      Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔtЗа это же время фронт волны, возбуждаемой точкой А в среде со скоростью uдостигнет точек полусферы, радиус которой AD = tПоложение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление ее распространения – лучом IIIИз рис. видно, что

        ,       т.е.        .

      Отсюда следует закон Снелиуса:

Prel2

Принцип Ферма: свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела

Ferma

 В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

 .

      Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

 ,

      отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса:    .

 Следствия из принципа Ферма:

1. Обратимость световых лучейесли обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

2. Если свет распространяется из среды с большим показателем преломления n1  (оптически более плотной) в среду с меньшим показателем преломления n2  (оптически менее плотной) ( n1  > n2 )например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:

Prel3

3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным  π/2.

Полное отражение

Угол αпр  называется предельным углом полного отражения. При углах падения α > αпр  весь падающий свет полностью отражается.

По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.

Таким образом, при углах падения в пределах от αпр  до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы.  Это явление называется полным отражением.

Poln otr

В случае, если вторая среда — воздух

Poln otr1

polnoe otragenie

Преломление света в плоскопараллельной пластине

Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.

Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величинуδL относительно исходного луча

image062

Величина смещения в плоскопараллельной пластине

Величина сдвига луча света δL зависит:

  • от угла падения света α,
  • от толщины пластины d,
  • от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n.

C увеличением любого из этих параметров смещение луча света увеличивается.

Smesch

Смещение луча можно выразить через угол падения

 Smesch1

Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:

  1. угол падения равен нулю: α = 0,
  2. относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
  3. толщина пластины равна нулю: d = 0 

Ход луча через треугольную призму

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.

prisma1

На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом. 

Если световой луч падает на преломляющую грань призмы под произвольным углом, то угол отклонения луча призмой определяется формулой

Delta

Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярнопреломляющей грани призмы), то угол отклонения луча призмой определяется формулой

 Delta1

Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.

Light dispersion conceptual waves

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.

   arrow left                                     arrow right

Понравилась статья? Поделить с друзьями:
  • Как найти ссылку на свой тик ток
  • Как найти похожие документы в гаранте
  • Как найти диспетчер служб iis
  • Как кошка поссорилась с собакой составить сказку для 2 класса
  • Клопы на матрасе как найти