Как найти угол ромба зная только сторону

Найти углы ромба, зная только его сторону, нельзя: существуют ромбы, имеющие разные углы, но одинаковые стороны. На пальцах: сделайте ромб из проволоки, «сплющите» его — он останется ромбом, стороны будут те же, углы изменятся.

Значит, чтобы найти углы ромба нужно знать что-то ещё (или что-то другое). Например, зная сторону и диагональ, найти угол можно по теореме косинусов: если x — сторона, d — диагональ, a — угол напротив диагонали, то условие теоремы косинуов — d^2 = x^2 + x^2 — 2 * x^2 * cos(a), из него следует a = arccos((2x^2 — d^2)/2x^2). (Я говорю «найти угол», а не «найти углы», потому что если мы знаем один угол, остальные находятся тривиально: если один угол равен а градусов, то угол напротив него тоже а, остальные два — по 180-а).

Есть и другие варианты: через сторону и площадь (пользуясь тем, что площадь — это квадрат стороны умножить на синус угла), через две диагонали (мы знаем, что диагонали в ромбе пересекаются под прямым углом и делятся точкой пересечения пополам — отсюда следует, что тангенс половины угла ромба равен отношению диагоналей, просто по определнию тангенса; зная сторону и диагональ, кстати, тоже можно искать угол примерно таким способом, вместо теоремы косинусов) и так далее.


Свойства ромба:

1. Ромб — частный случай параллелограмма

2. Противоположные стороны — параллельны

3. Все четыре стороны — равны

4. Диагонали пересекаются под прямым углом (90°)

5. Диагонали являются биссектрисами

углы ромба

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

β — тупой угол

Формулы косинуса углов через диагональ и сторону:

Косинус угла в ромбе

Косинус угла в ромбе

Формулы синуса углов через диагонали :

Синус угла в ромбе

Формулы синуса углов через площадь S и сторону :

Синус угла в ромбе

Формулы тангенса половинных углов через диагонали

Тангенс угла в ромбе

Тангенс угла в ромбе

Формулы соотношения острого и тупого углов:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos или arcsin или arctg

Сумма углов четырехугольника



Формулы площади ромба

Формула периметра ромба

Все формулы по геометрии

Подробности

Опубликовано: 25 ноября 2011

Обновлено: 13 августа 2021

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также

Так как диагонали ромба взаимно перпендикулярны, то становится возможным найти угол ромба, зная сторону и диагональ. В прямоугольном треугольнике, образованном диагональю внутри ромба, катетами являются половины диагоналей, любую из которых можно использовать, и гипотенузой становится сторона ромба. В таком треугольнике острые углы будут половинами углов ромба, поэтому нужно будет использовать свойства косинусов для преобразований, что в итоге выведет формулу.

Ромб – геометрическая фигура, представляющая собой отдельную разновидность параллелограмма. Все
имеющееся стороны равны между собой. Геометрическая фигура представляет собой отдельную
разновидность параллелограмма. Все имеющееся стороны равны между собой. Чтобы исключить риски
недопонимания, а также освоить принципы расчетов, рекомендуется ознакомиться с некоторыми
особенностями подробней.

  • Острый угол ромба через длинную диагональ и сторону
  • Острый угол ромба через короткую диагональ и сторону
  • Тупой угол ромба через длинную диагональ и сторону
  • Тупой угол ромба через короткую диагональ и сторону
  • Острый угол ромба через диагонали
  • Угол ромба через площадь и сторону
  • Острый угол ромба через радиус вписанной окружности в ромб
    и площадь ромба
  • Острый угол ромба через высоту и сторону
  • Половинный угол ромба через высоту и диагональ
  • Половинный острый угол ромба через диагонали
  • Половинный тупой угол ромба через диагонали

Острый угол ромба через длинную диагональ и сторону

Рис 1

Для проведения расчетов используется формула:

cos α = D² / 2a² — 1

где D — длинная диагональ, a — сторона.

Цифр после
запятой:

Результат в:

Пример. Предположим, что длинная диагональ 25 мм, сторона – 15 мм. Отталкиваясь от
полученных сведений, результат получается следующим: cos α = 25² / 2 х 15² — 1 = 67.11º

Тупой угол ромба через длинную диагональ и сторону

Рис 3

Имея достоверные данные о значение длинной диагонали (D) и стороне (a), порядок вычисления не
предполагает под собой каких-либо сложностей с определением. Для этого в геометрии предлагается
воспользоваться следующей формулой:

cos β =  D² / 2a² — 1

Цифр после
запятой:

Результат в:

Пример. Предположим, D = 60 мм, a = 90 мм. Исходя из полученных сведений, расчет по
имеющейся формуле имеет вид: cos β =  60² / 2 х 90² — 1. В таком
случае cos β = 141.05. При условии, что D>a, решение не представляется возможным.

Острый угол ромба через короткую диагональ и сторону

Рис 2

Для проведения интересующегося расчета требуется знать данные о короткой диагонали (d) и стороне (a).
При условии наличия используемая формула имеет следующий вид:

cos α = 1 – d² / 2a²

где d — короткая диагональ, a — сторона.

Цифр после
запятой:

Результат в:

Пример. Из представленной формулы следует, что инициировать получение интересующих
данных не вызывает сложностей. Чтобы удостовериться в этом, достаточно рассмотреть пример. Допустим,
что d = 40 мм, a = 25 мм. В таком случае определение результата осуществляется следующим образом:
cos α = 1 – 40² / 2 х 25².

Используя калькулятор, становится известно,
что cos α = 106.26. Подтвердить подлинность результата можно в режиме онлайн через
специализированный сервис вычислений.

Острый угол ромба через диагонали

Рис 5

Представленный параметр расчета по праву считается одним из наиболее сложных. Чтобы исключить риски
допущения ошибок и недопонимания, рекомендуется ответственно подходить к организации вычислений.
Чтобы узнать информацию, чему равняется sin α, достаточно воспользоваться следующей формулой:

sin α = (2 · Dd)/ (D² + d²)

где D является длинной диагональю,  d — короткой.

Цифр после
запятой:

Результат в:

Во время определения sin α оптимальным решением станет использование стандартных математических
правил. Они предполагают первичное умножение, после чего деление. Суммирование осуществляется на
завершающем этапе определения значения.

Пример. Предположим, D = 85 мм, d = 15 мм. Имеющиеся значения требуется подставить в
формулу. В итоге получается: sin α = (2 · 85)/85² + 15². Используя
автоматизированный калькулятор для геометрии, получается, что sin α = 20.01

Тупой угол ромба через короткую диагональ и сторону

Рис 4

Порядок вычисления предполагает использование соответствующей формулы. Чтобы инициировать расчет
требуется знать точные данные относительно короткой диагонали (d) и стороне (a). В таком случае
расчет проходит следующим образом:

cos β = 1 — d² / 2a²

где d — короткая диагональ, a — сторона ромба.

Цифр после
запятой:

Результат в:

Пример. Предположим, что d = 27 мм, a = 65 мм. Используя имеющуюся формулу,
вычисление проходит по следующей процедуре: cos β = 1 — 27²/2х65².

Используя стандартные принципы
вычисления либо специализированный онлайн калькулятор, cos β = 23.98. Чтобы гарантировать
достоверность вычислений настоятельно рекомендуется выполнять проверку полученных данных несколькими
способами.

Острый угол ромба через радиус вписанной окружности в ромб и площадь ромба

Рис 7

Принципы определения интересующей величины предполагают необходимость использования следующей
формулы:

sin(α) = 4R²/S

где R – радиус, S – заявленная площадь геометрической фигуры.

Цифр после
запятой:

Результат в:

Пример. Предположим, что радиус составляет 2 см, заявленная площадь 20 мм² .
Подставив имеющиеся значения в формулу, имеем следующий вид: sin(α) = 4 х 2²/20 = 53º.

Угол ромба через площадь и сторону

Рис 6

Представленный метод часто используется, чтобы узнать интересующий параметр. Главное условие –
наличие известных величин из формулы, которая имеет следующий вид:

sin(α) = S/a²

где S является площадью ромба, a — стороной.

Цифр после
запятой:

Результат в:

Рассмотрим порядок определения неизвестной величины на конкретном примере. Допустим, что S = 65 мм² ,
a – 12 мм. В таком случае, получается: sin(α) = 65/12³ = 26,83º.

Острый угол ромба через высоту и сторону

Рис 8

Для определения синуса предполагается использование следующей несложной формулы:

sin(α) = h / a

где h – заявленные показатели высоты, a — сторона.

Цифр после
запятой:

Результат в:

Пример. Допустим, что высота составляет 9, сторона – 15. Следовательно, вычисления
осуществляются следующим образом: sin(α) = 9/15 = 36.86 градусов.

Половинный угол ромба через высоту и диагональ

Рис 9

Чтобы отыскать интересующий синус, требуется воспользоваться следующим правилом определения
величины:

sin( α/2 ) = h/D

где h – имеющаяся высота, D – заявленная длина диагонали.

Цифр после
запятой:

Результат в:

Пример. Высота 43, диагональ 76. Следовательно, sin( α/2 ) = 43/76 = 34.4.

Половинный тупой угол ромба через диагонали

Рис 11

Использование рассматриваемого метода не предполагает под собой существенных сложностей. Достаточно
воспользоваться специально разработанной формулой, которая имеет следующий вид:

tg( β/2 ) = D / d

где D выступает длинной диагональю, d — короткой.

Цифр после
запятой:

Результат в:

Пример. Достаточно подставить для вычисления имеющиеся данные, чтобы в конечном
итоге получить искомый результат. К примеру, D = 80 мм, d = 35 мм. Используя стандартные принципы
вычисления получается: tg( β/2 ) = 80/35 = 66.37

Половинный острый угол ромба через диагонали

Рис 10

Проведение расчетов с помощью представленной методики требует наличия всех переменных, среди которых
короткая и длинная диагонали. Если все необходимые параметры известны, вычисление осуществляется по
представленной формуле:

tg( α/2 ) = d / D

где D,d – заявленная длина диагоналей.

Цифр после
запятой:

Результат в:

Пример. Предположим, что D = 15 мм, d = 50 мм. Подставим имеющие значения в формулу,
имеем вид: tg( α/2 ) = 50 /15 С помощью несложных подсчетов получается, что tg( α/2 ) = 73.3
градуса.

Ромб представляет собой параллелограмм, который имеем равные стороны. При наличии исключительно
прямых углов – квадрат.

Дополнительно выделяют следующие признаки:

  • имеющиеся диагонали ромба перпендикулярны;
  • диагонали ромба выступают биссектрисами его углов;
  • сумма квадратов всех диагоналей приравнивается к квадраты стороны, которая умножается на 4.

Чтобы параллелограмм считался ромбом, крайне важно соблюдение одного из нескольких условий, к которым
принято относить:

  • все имеющиеся стороны геометрической фигуры равны между собой;
  • диагонали пересекаются исключительно под прямым углом;
  • диагонали геометрической фигуры выступают биссектрисами углов.

Понравилась статья? Поделить с друзьями:
  • Как найти айфон на свалке
  • Как найти президентский сайт
  • Как найти рандомных людей в телеграмме
  • Как составить официальное письмо с запросом
  • Сухое тесто для пирожков как исправить