Как найти угол сектора боковой поверхности конуса

§ 18. Конус

18.1.Определение конуса и его элементов

Определение. Тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащей его катет, называется прямым круговым конусом (рис. 165, 166).

Отрезок оси вращения, заключённый внутри конуса, называется осью конуса.

Круг, образованный при вращении второго катета, называется основанием конуса. Длина этого катета называется радиусом основания конуса или, короче, радиусом конуса. Вершина острого угла вращающегося треугольника, лежащая на оси вращения, называется вершиной конуса. На рисунках 165, б и 166 вершиной конуса является точка Р.

Высотой конуса называется отрезок, проведённый из вершины конуса перпендикулярно его основанию. Длину этого перпендикуляра также называют высотой конуса. Высота конуса имеет своим основанием центр круга — основания конуса — и совпадает с осью конуса.

Отрезки, соединяющие вершину конуса с точками окружности его основания, называются образующими конуса. Все образующие конуса равны между собой (почему?).

Как и в случае с цилиндром, можно рассматривать конус в более широком, чем у нас, понимании, когда в основании конуса может быть, например, эллипс (эллиптический конус), парабола (параболический конус). Мы будем изучать только определённый выше прямой круговой конус (конус вращения), поэтому слова «прямой круговой» мы будем опускать.

Рис. 165

Рис. 166

Рис. 167

Поверхность, полученная при вращении гипотенузы, называется боковой поверхностью конуса, а её площадь — площадью боковой поверхности конуса и обозначается Sбок. Боковая поверхность конуса является объединением всех его образующих.

Объединение боковой поверхности конуса и его основания называется полной поверхностью конуса, а её площадь называется площадью полной поверхности конуса или, короче, площадью поверхности конуса и обозначается Sкон. Из этого определения следует, что

Sкон = Sбок + Sосн.

Если вокруг данной прямой — оси — вращать пересекающую её прямую, то при этом вращении образуется поверхность, которую называют круговой конической поверхностью или конической поверхностью вращения. Уравнение  +  = 0 задаёт коническую поверхность вращения с осью вращения Oz (рис. 167). Из этого уравнения следует, что коническая поверхность является поверхностью второго порядка. (Подробнее о поверхностях второго порядка можно прочитать в «Дополнениях» — в конце этой книги.)

18.2. Сечения конуса

Определение. Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением конуса.

Рис. 168

Рис. 169

Рис. 170

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники. На рисунке 168 осевым сечением конуса является треугольник ABP (АР = ВР). Угол АPВ называют углом при вершине осевого сечения конуса.

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: DCP).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением.

Рис. 171

 Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко  кониками.

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. 

ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60°; б) в 90°. Найти площадь сечения.

Решение. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172);  АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60°, значит,  AOB — правильный и АВ = R.

Рис. 172

Если точка С — середина стороны АB, то отрезок PC  высота треугольника АВР. Поэтому S ABP = АВРC. Имеем: ОР = R (по условию); в AOB: ОС = ; в ОСР: CP =  = .

Тогда S ABP = АВРС = .

Ответ: а) .

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Рис. 173

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Рис. 174

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно,  АBP — не осевое сечение конуса. Осевым сечением конуса является  ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р.

Рис. 175

Рис. 176

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a), то получим развёртку поверхности конуса (рис. 176, б), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = .

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

Sбок = αl2,(1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:

Sбок = πRl.(2)

Таким образом, доказана следующая теорема.

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

Sкон = πRl + πR2.(3)

Следствие. Пусть конус образован вращением прямоугольного треугольника ABC вокруг катета АС (рис. 177). Тогда Sбок = πBCАВ. Если D — середина отрезка АВ, то AB = 2AD, поэтому

Sбок = 2 πВСAD.(4)

Рис. 177

Проведём DE  АB ( l = ). Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А) имеем

 = BCAD = DEАС.(5)

Тогда соотношение (4) принимает вид

Sбок = (2πDE)AC,(6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Рис. 178

Доказательство. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α, параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО  β, α || β, то α  РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O1 = α РО.  Обозначим этот круг F1.

Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F1, при этом центр О основания отображается на центр О1 круга F1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии точка X отображается на точку X1 = РX  α. Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

 =  = k,(*)

где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F1, являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO1 : РО, где РO1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

Sсечен : Sоснов = k2 = : PO2.

Теорема доказана.

18.7.Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

прямоугольный треугольник (см. рис. 179);

правильный треугольник (см. рис. 180);

квадрат (см. рис. 181);

правильный шестиугольник (см. рис. 182).

Рис. 179

Рис. 180

Рис. 181

Рис. 182

Определение. Пирамида называется описанной около конуса, если у них вершина общая, а основание пирамиды описано около основания конуса. В этом случае конус называют вписанным в пирамиду (рис. 183).

Рис. 183

Рис. 184

ЗАДАЧА (3.080). В равносторонний конус вписана правильная пирамида. Найти отношение площадей боковых поверхностей пирамиды и конуса, если пирамида: а) треугольная; б) четырёхугольная; в) шестиугольная.

Решение. Рассмотрим случай а). Пусть R — радиус основания равностороннего конуса, РАВС — правильная пирамида, вписанная в этот конус (рис. 184); DPE — осевое сечение конуса, CF — медиана АBС. Тогда в АВС (правильный): АВ = R, OF = R; в DPE (правильный): ОР =  = R; в ОРF (∠ FOP = 90°):

PF =  = .

Так как CF — медиана АВС, то PF — высота равнобедренного треугольника АВР. Поэтому

SABP = ABPF = R  = .

Обозначим: S1 — площадь боковой поверхности пирамиды, S2 — площадь боковой поверхности конуса. Тогда

S1 = 3S△ ABP = ,

S

2 = πRPA = πR2R = 2πR2.

Следовательно,

S1 : S2 = : 2πR2 = .

Ответ: а) .


 Во многих пособиях по геометрии за площадь боковой поверхности конуса принимают предел последовательности боковых поверхностей правильных вписанных в конус (или описанных около конуса) п-угольных пирамид при n +. Действительно, Sбок. пов. пирам = aPoсн. пирам, где Рoсн. пирам периметр основания пирамиды, а — апофема боковой грани. Для правильных описанных около конуса пирамид апофема a — постоянная величина, равная образующей l конуса, а предел последовательности периметров правильных многоугольников, описанных около окружности радиуса R основания конуса, равен 2πR — длине этой окружности. Таким образом, мы вновь получаем: Sбок = πRl.

18.8. Усечённый конус

Рис. 185

Пусть дан конус с вершиной Р. Проведём плоскость α, параллельную плоскости основания конуса и пересекающую этот конус (рис. 185). Эта плоскость пересекает данный конус по кругу и разбивает его на два тела: одно из них является конусом, а другое (расположенное между плоскостью основания данного конуса и секущей плоскостью) называют усечённым конусом. Таким образом, усечённый конус представляет собой часть полного конуса, заключённую между его основанием и параллельной ему плоскостью. Основание данного конуса и круг, полученный в сечении этого конуса плоскостью α, называются соответственно нижним и верхним основаниями усечённого конуса. Высотой усечённого конуса называется перпендикуляр, проведённый из какой-либо точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённого конуса. (Часто за высоту усечённого конуса принимают отрезок, соединяющий центры его оснований.)

Рис. 186

Рис. 187

Часть боковой поверхности данного конуса, ограничивающая усечённый конус, называется боковой поверхностью усечённого конуса, а отрезки образующих конуса, заключённые между основаниями усечённого конуса, называются образующими усечённого конуса. Так как все образующие данного конуса равны и равны все образующие отсечённого конуса, то равны все образующие усечённого конуса.

Построение изображения усечённого конуса следует начинать с изображения того конуса, из которого получился усечённый конус (рис. 186).

На рисунке 187 показана развёртка усечённого конуса.

Из теоремы 28 следует, что основания усечённого конуса — подобные круги.

Определения усечённой пирамиды, вписанной в усечённый конус и описанной около него, аналогичны определениям пирамиды, вписанной в конус и описанной около него.

Заметим, что построение изображений усечённой пирамиды, вписанной в усечённый конус и описанной около него, следует начинать с изображений того конуса или той пирамиды, из которых получены соответственно усечённые конус и пирамида.

Полной поверхностью усечённого конуса называется объединение боковой поверхности этого конуса и двух его оснований. Иногда полную поверхность усечённого конуса называют его поверхностью, а её площадь — площадью поверхности усечённого конуса. Эта площадь равна сумме площадей боковой поверхности и оснований усечённого конуса.

Усечённый конус может быть образован также вращением прямоугольной трапеции вокруг боковой стороны трапеции, перпендикулярной её основанию.

Рис. 188

На рисунке 188 изображён усечённый конус, образованный вращением прямоугольной трапеции ABCD вокруг стороны CD. При этом боковая поверхность усечённого конуса образована вращением боковой стороны АВ, а основания его — вращением оснований AD и ВС трапеции.

18.9. Поверхность усечённого конуса

Выразим площадь Sбок боковой поверхности усечённого конуса через длину l его образующей и радиусы R и r оснований (R > r).

Рис. 189

Пусть точка Р — вершина конуса, из которого получен усечённый конус; точки О, O1 — центры оснований усечённого конуса; AA1 = — одна из образующих усечённого конуса (рис. 189).

Используя формулу (2) п. 18.5, получаем

Sбок = πRPAπrРA1 =

= πR(РA1 + А1A) – πrPA1 =

= πRA1A + π(Rr)PA1.

Учитывая, что A1A = l, имеем

Sбок = πRl + π(Rr)PA1.(7)

Выразим PA1 через l, R и r. Так как O1A|| OA и OO1 — высота усечённого конуса, то прямоугольные треугольники POA и PO1A1 подобны. Поэтому АО : А1O1 = PA : PA1 или

R : r = (PA1 + A1A) : PA1, откуда

RPA1 = r(PA1 + l) (Rr)PA1 = rl PA1 = .

Подставив это значение РА1 в (7), получаем

Sбок = π(R + r)l.(8)

Таким образом, доказана следующая теорема.

Теорема 29. Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую.

Площадь полной поверхности усечённого конуса находится по формуле:

Sполн = π(R + r)l + πR2 + πr2.

Следствие. Пусть усечённый конус образован вращением прямоугольной трапеции ABCD вокруг её высоты AD (рис. 190). Тогда Sбок = π (АВ + DC)ВС. Если KЕ — средняя линия трапеции, то АВ + DC = 2KE, поэтому

Sбок = 2πKEBC.(9)

Рис. 190

Проведём EF  ВС.  Из подобия прямоугольных треугольников ВСН и EFK имеем

BC : EF = BH : KE ⇒ KEBC = EFBH.(10)

Тогда равенство (9) принимает вид

Sбок = (2πEF)ВH,(11)

т. е. боковая поверхность усечённого конуса равна произведению его высоты на длину окружности, радиус которой равен серединному перпендикуляру, проведённому из точки оси конуса к его образующей.

18.10. Объёмы конуса и усечённого конуса

Найдём объём конуса, высота которого равна h и радиус основания — R. Для этого расположим этот конус и правильную четырёхугольную пирамиду, высота которой равна h и сторона основания — R, так, чтобы их основания находились на одной и той же плоскости α, а вершины — также в одной и той же плоскости β, параллельной плоскости α и удалённой от неё на расстояние h (рис. 191).

Рис. 191

Каждая плоскость, параллельная данным плоскостям и пересекающая конус, пересекает также пирамиду; причём площади сечений, образованных при пересечении обоих тел, относятся к площадям оснований этих тел, как квадраты их расстояний от вершин. А так как секущие плоскости для пирамиды и для конуса равноудалены от их вершин, то  = . Тогда  =  =  = π, значит, для объёмов этих тел выполняется:

Vкон : Vпир = π : 1 или Vкон : R2h = π : 1, откуда

Vкон = πR2 h.

Рис. 192

Самостоятельно рассмотрите усечённые конус и пирамиду, расположенные в соответствии с условиями принципа Кавальери. Тогда вы получите формулу вычисления объёма усечённого конуса:

Vус. кон = πh(R2 + rR + r2).

Эту же формулу вы можете вывести, если используете идею подобия так же, как это сделано в случае с выводом формулы площади боковой поверхности усечённого конуса.

Используя принцип Кавальери, докажите, что объём каждого из тел, на которые конус разбивается его сечением плоскостью, проходящей через вершину (рис. 192), может быть вычислен по формуле V = hScегм, где — длина высоты конуса, а Sceгм — площадь соответствующего сегмента основания конуса.

Конус — тело вращения, которое получается в результате вращения прямоугольного треугольника вокруг его катета.

Konuss.png

Треугольник (POA) вращается вокруг стороны (PO).

(PO) — ось конуса и высота конуса.

(P) — вершина конуса.

(PA) — образующая конуса.

Круг с центром (O) — основание конуса.

(AO) — радиус основания конуса.

Осевое сечение конуса — это сечение конуса плоскостью, которая проходит через ось (PO) конуса.

Осевое сечение конуса — это равнобедренный треугольник.

(APB) — осевое сечение конуса.

∡PAO=∡PBO

 — углы между образующими и основанием конуса.

Для конуса построим развёртку боковой поверхности. Это круговой сектор. 

Sanu_vsma.png 

Сектор имеет длину дуги, равную длине окружности в основании конуса 

2πR

, угол развёртки боковой поверхности

α

.

В конусе нельзя обозначить угол развёртки.
На развёртке конуса нельзя обозначить высоту и радиус конуса.

Образующая конуса (l) является радиусом сектора.

Sanu_vsma1.png

Таким образом, боковая поверхность конуса является частью полного круга с радиусом (l):

Длина дуги также является частью длины полной окружности с радиусом (l), но в то же время длина дуги — это длина окружности основания конуса с радиусом (R).

Сравним выражения длины дуги и выразим

α

через (R):

2πl⋅α360°=2πR;α=2πR⋅360°2πl=R⋅360°l.

Получаем ещё одну формулу боковой поверхности конуса; не используется угол развёртки боковой поверхности:

Sбок.=πl2⋅R⋅360°360°⋅l=πRl

.

Если провести сечение конуса плоскостью, перпендикулярной оси конуса, то эта плоскость разбивает конус на две части, одна из которых — конус, а другую часть называют усечённым конусом.

Nosk_kon1.png

Также усечённый конус можно рассматривать как тело вращения, которое образовалось в результате вращения прямоугольной трапеции вокруг боковой стороны (которая перпендикулярна к основанию трапеции) или в результате вращения равнобедренной трапеции вокруг высоты, проведённой через серединные точки оснований трапеции.

Nosk_kon.png

OO1

 — ось конуса и высота конуса.

Круги с центрами (O) и

O1

 — основания усечённого конуса.

(AO) и

A1O1

 — радиусы оснований конуса.

Осевое сечение конуса — это сечение конуса плоскостью, которая проходит через ось

OO1

 конуса.

Осевое сечение конуса — это равнобедренная трапеция.

AA1B1B

 — осевое сечение конуса.

Боковая поверхность определяется как разность боковой поверхности данного конуса и отсечённого конуса:

Sбок.=πR⋅PA−πr⋅PA1=πR⋅PA1+AA1−πr⋅PA1==πR⋅PA1+πR⋅AA1−πr⋅PA1==πR⋅l+πR−πr⋅PA1. 

Так как

ΔPAO∼ΔPA1O1

, то стороны их пропорциональны:

PAPA1=Rr;l+PA1PA1=Rr;r⋅l+PA1=R⋅PA1;rl=R⋅PA1−r⋅PA1;PA1⋅R−r=rl;PA1=rlR−r.

Таким образом получаем формулу боковой поверхности усечённого конуса, которая содержит радиусы оснований и образующую усечённого конуса:

Sбок.=πRl+π⋅PA1⋅R−r=πRl+π⋅rlR−r⋅R−r;Sбок.=πRl+πrl=πl⋅R+r.

Онлайн-калькулятор

Общее определение конуса
Конус – это тело, образованное совокупностью всех лучей, исходящих из точки пространства и пересекающих плоскость.

Точка, из которой лучи исходят, получила название вершины конуса. В случае, когда основанием конуса является многоугольник, он превращается в пирамиду.

Рассмотрим некоторые важные понятия.

Образующей конуса называется отрезок, который соединяет любую точку границы основания конуса, с его вершиной. Высотой конуса является перпендикуляр, который опущен из вершины к основанию тела.

Конус бывает нескольких типов:

Прямой, если его основание – одна из таких фигур, как эллипс или круг. Обязательным условием является проецирование вершины конуса в центр основания.

Косой – у него центр фигуры, которая находится в основании, не совпадает с проекцией вершины на это самое основание.

Круговой – отталкиваясь от названия, понятно, что в его основании лежит круг.

Усеченный – область конуса, лежащая между основанием и сечением плоскости, которая параллельна основанию и пересекает данный конус.

Свойства кругового конуса

Свойства кругового конуса

Выделяют несколько особенностей, которыми обладает фигура данного типа:

  1. Образующие кругового конуса равны друг другу.
  2. Чтобы найти центр тяжести фигуры, нужно её высоту поделить на четыре части.
  3. Место пересечения плоскости сечения и основы образует параболу. Если через вершину тела провести плоскость сечения, то получится равнобедренный треугольник.

Интересный факт!

Если вращать прямоугольный треугольник вокруг одного из катетов, то получится конус. При этом важно, чтобы угол вращения был не менее 360 градусов.

Связанные определения для конуса

Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.

Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.

Коническая поверхность. Образующая поверхность конуса является конической поверхностью.

Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

Угол раствора конуса. Угол раствора конуса – угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).

Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.

Косой (наклонный) конус. Косой (наклонный) конус – конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.

Круговой конус. Круговой конус – конус, основание которого является кругом.

Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).

Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).

Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Виды конусов

  1. Прямой конус – имеет симметричное основание. Ортогональная проекция вершины данной фигуры на плоскость основания совпадает с центром этого основания.

    Прямой круговой конус

  2. Косой (наклонный) конус – ортогональная проекция вершины фигуры на ее основание не совпадает с центром этого основания.

    Косой (наклонный) конус

  3. Усеченный конус (конический слой) – часть конуса, которая остается между его основанием и секущей плоскостью, параллельной данному основанию.

    Усеченный конус (конический слой)

  4. Круговой конус – основанием фигуры является круг. Также бывают: эллиптический, параболический и гиперболический конусы.
  5. Равносторонний конус – прямой конус, образующая которого равняется диаметру его основания.

Объем конуса

Объем конуса

равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

где V – объем конуса, So – площадь основания конуса, R – радиус основания конуса, h – высота конуса, π = 3.141592.

Вариации и обобщения

  • В алгебраической геометрии конус
    — это произвольное подмножество K {displaystyle K} векторного пространства V {displaystyle V} над полем F {displaystyle F} , для которого для любого λ ∈ F {displaystyle lambda in F} λ K = K . {displaystyle lambda K=K.}
  • В топологии конус над топологическим пространством X
    есть фактор-пространство X × [ 0 , ∞ ) {displaystyle Xtimes [0,infty )} по отношению эквивалентности ( x , 0 ) ∼ ( y , 0 ) . {displaystyle (x,0)sim (y,0).}

Объем конуса через радиус

Данный треугольник

для получения конуса должен вращаться вокруг одного из своих
катетов
, который является не только осью вращения, но и высотой конуса.
Второй
же катет становится радиусом полученной в результате вращения окружности-основания конуса, а гипотенуза будет апофемой (высотой опущенной под прямым углом к линии окружности, а не центру).

Технически взаимосвязь конуса

с цилиндром идентична взаимосвязи пирамиды с кубом (параллелепипедом), единственное, что вывод
формулы
проходит через отношения интегралов их сферических углов, но тем не менее, он точно также как и пирамида занимает одну треть цилиндра, в который он может быть вписан.

Поэтому его объем

равен произведению площади основания на высоту, деленному на три, или произведению числом
π
на квадрат радиуса и высоту, деленному на три.

Определение конуса

Далее мы будем рассматривать самый распространенный вид конуса – прямой круговой. Остальные возможные варианты фигуры перечислены в последнем разделе публикации.

Итак, прямой круговой конус – это трехмерная геометрическая фигура, полученная путем вращения прямоугольного треугольника вокруг одного из своих катетов, который в данном случае будет являться осью фигуры. Ввиду этого иногда такой конус называют конусом вращения.

Конус

Конус на рисунке выше получен в результате вращения прямоугольного треугольника ACD (или BCD) вокруг катета CD.

Объем усеченного конуса

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом.

Первый способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

[ LARGE V = frac{1}{3} left( Hcdot S_2 + h cdot s_1 right) ]

где: V – объем конуса h – расстояния от плоскости верхнего основания до вершины H – расстояния от плоскости нижнего основания до вершины S1 – площадь верхнего (ближнего к вершине) основания S2 – площадь нижнего основания

Второй способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

[ LARGE V = frac{1}{3} pi h left( R^2 + R cdot r + r^2 right) ]

где: V – объем конуса h – высота конуса R – радиус нижнего основания r – радиус верхнего основания

Развёртка

— высота конуса от центра основания до вершины — является катетом прямоугольного треугольника, вокруг которого происходит вращение. Второй катет прямоугольного треугольника
r
— радиус в основании конуса. Гипотенузой прямоугольного треугольника является
l
— образующая конуса.

В создании развёртки конуса могут использоваться всего две величины r

и
l
. Радиус основания
r
определяет в развертке круг основания конуса, а сектор боковой поверхности конуса определяет образующая боковой поверхности
l
, являющаяся радиусом сектора боковой поверхности. Угол сектора φ {displaystyle varphi } в развёртке боковой поверхности конуса определяется по формуле:
φ = 360°·(r
/
l
).

Элементы конуса

Определение. Вершина конуса

– это точка (K), из которой исходят лучи.

Определение. Основание конуса

– это плоскость, образованная в результате пересечения плоской поверхности и всех лучей, исходящих из вершины конуса. У конуса могут быть такие основы, как круг, эллипс, гипербола и парабола.

Определение. Образующей конуса

(L) называется любой отрезок, который соединяет вершину конуса с границей основания конуса. Образующая есть отрезок луча, выходящего из вершины конуса.

Формула. Длина образующей

(L) прямого кругового конуса через радиус R и высоту H (через теорему Пифагора): L2 = R2 + H2

Определение. Направляющая

конуса – это кривая, которая описывает контур основания конуса.

Определение. Боковая поверхность

конуса – это совокупность всех образующих конуса. То есть, поверхность, которая образуется движением образующей по направляющей конуса.

Определение. Поверхность

конуса состоит из боковой поверхности и основания конуса.

Определение. Высота

конуса (H) – это отрезок, который выходит из вершины конуса и перпендикулярный к его основанию.

Определение. Ось

конуса (a) – это прямая, проходящая через вершину конуса и центр основания конуса.

Определение. Конусность (С)

конуса – это отношение диаметра основания конуса к его высоте. В случае усеченного конуса – это отношение разности диаметров поперечных сечений D и d усеченного конуса к расстоянию между ними:

где C – конусность, D – диаметр основания, d – диаметр меньшего основания и h – расстояние между основаниями. Конусность характеризует остроту конуса, то есть, угол наклона образующей к основанию конуса. Чем больше конусность, тем острее угол наклона. угол конуса α будет:

где R – радиус основы, а H – высота конуса.

Определение. Осевое сечение

конуса – это сечение конуса плоскостью, проходящей через ось конуса. Такое сечение образует равнобедренный треугольник, у которого стороны образованы образующими, а основание треугольника – это диаметр основания конуса.

Определение. Касательная плоскость

к конусу – это плоскость, проходящая через образующую конуса и перпендикулярна к осевому сечению конуса.

Определение. Конус, что опирается на круг, эллипс, гиперболу или параболу называется соответственно круговым, эллиптическим, гиперболическим

или
параболическим
конусом (последние два имеют бесконечный объем).

Определение. Прямой

конус – это конус у которого ось перпендикулярна основе. У такого конуса ось совпадает с высотой, а все образующие равны между собой.

Формула. Объём кругового конуса

:

где R – радиус основы, а H – высота конуса.
Формула. Площадь боковой поверхности

(Sb) прямого конуса через радиус R и длину образующей L: Sb = πRL

Формула. Общая площадь поверхности

(Sp) прямого кругового конуса через радиус R и длину образующей L: Sp = πRL + πR2

Определение. Косой (наклонный)

конус – это конус у которого ось не перпендикулярна основе. У такого конуса ось не совпадает с высотой.

Формула. Объём любого конуса

:

где S – площадь основы, а H – высота конуса.

Определение. Усеченный

конус – это часть конуса, которая находится между основанием конуса и плоскостью сечения, параллельная основе.

Формула. Объём усеченного конуса

:

где S1 и S2 – площади меньшей и большей основы соответственно, а H и h – расстояние от вершины конуса до центра нижней и верхней основы соответственно.

Основные элементы конуса

  • R – радиус круга, являющегося основанием конуса. Центр круга – точка D, диаметр – отрезок AB.
  • h (CD) – высота конуса, одновременно являющаяся осью фигуры и катетом прямоугольных треугольников ACD или BCD.
  • Точка C – вершина конуса.
  • l (CA, CB, CL и CM) – образующие конуса; это отрезки, соединяющие вершину конуса с точками на окружности его основания.
  • Осевое сечение конуса – это равнобедренный треугольник ABC, который образуется в результате пересечения конуса плоскостью проходящей через его ось.
  • Поверхность конуса – состоит из его боковой поверхности и основания. Формулы для расчета площади поверхности, а также объема прямого кругового конуса представлены в отдельных публикациях.

Между образующей конуса, его высотой и радиусом основания есть взаимосвязь (согласно теореме Пифагора):

l2 = h2 + R2

Развёртка конуса – боковая поверхность конуса, развернутая в плоскость; является круговым сектором.

Развертка конуса

  • длина дуги сектора равняется длине окружности основания конуса (т.е. 2πR);
  • α – угол развёртки (или центральный угол);
  • l – радиус сектора.

Примечание: Основные свойства конуса мы рассмотрели в отдельной публикации.

Основные свойства кругового конуса

1. Все образующие прямого кругового конуса равны между собой.

2. При вращении прямоугольного треугольника вокруг своего катета на 360 ° образуется прямой круговой конус.

3. При вращении равнобедренного треугольника вокруг своей оси на 180 ° образуется прямой круговой конус.

4. В месте пересечения конуса плоскостью, параллельной основанию конуса, образуется круг. (см. Срезанный конус)

5. Если при пересечении плоскость не параллельна основе конуса и не пересекается с основанием, то в месте пересечения образуется эллипс (рис. 3).

6. Если плоскость сечения проходит через основание, то в месте пересечения образуется парабола (рис. 4).

7. Если плоскость сечения проходит через вершину, то в месте пересечения образуется равнобедренный треугольник (см. Осевое сечение).

8. Центр тяжести любого конуса находится на одной четвертой высоты от центра основы.

Определение и элементы конуса

Что такое конус

Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние.

При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.

Конус

Обратите внимание!

Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.

Хотелось бы рассмотреть ещё несколько понятий по этой теме:

1. Под конусностью понимают отношение диаметра основания фигуры и её высоты:

Важно!

Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.

2. Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:

3. Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.

Введите радиус основания и высоту конуса

Радиус конуса r
Высота конуса h
Результат
Расчет объема куба, пирамиды, конуса, цилиндра, шара (объема всех фигур).
Объемы фигур
Радиус:
Высота:
Конус – геометрическое тело, которое состоит из круга (основание конуса), точки, не лежащей в плоскости этого круга (вершина конуса), и всех точек, соединяющих вершину конуса с точками основания. Формула объема конуса: , где R – радиус основания, h – высота конуса

Нормальные углы и конусы инструментов

НОРМАЛЬНЫЕ УГЛЫ ( ГОСТ 8908-81 )
Таблица не распространяется на угловые размеры конусов. При выборе углов 1-й ряд следует предпочитать 2-му, а 2-й — 3-му.
НОРМАЛЬНЫЕ КОНУСНОСТИ и УГЛЫ КОНУСОВ ( ГОСТ 8593-81 )
Стандарт распространяется на конусности и углы конусов гладких конических элементов деталей.

Примечание. Значения конусности или угла конуса, указанные в графе «Обозначение конуса», приняты за исходные при расчете других значений, приведенных в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.
КОНУСЫ ИНСТРУМЕНТОВ УКОРОЧЕННЫЕ ( ГОСТ 9953-82 )
Стандарт распространяется на укороченные инструментальные конусы Морзе.

*z — наибольшее допускаемое отклонение положения основной плоскости, в которой находится диаметр D от теоретическогот положения. ** размеры для справок.

Обозначение конуса Конус Морзе D D1 d d1 l1 l2 a,
не более
b c
B7 0 7,067 7,2 6,5 6,8 11,0 14,0 3,0 3,0 0,5
B10 B12 1 10,094 12,065 10,3 12,2 9,4 11,1 9,8 11,5 14,5 18,5 18,0 22,0 3,5 3,5 3,5 3,5 1,0 1,0
B16 B18 2 15,733 17,780 16,8 18,0 14,5 16,2 15,0 16,8 24,0 32,0 29,0 37,0 5,0 5,0 4,0 4,0 1,5 1,5
B22 B24 3 21,793 23,825 22,0 24,1 19,8 21,3 20,5 22,0 40,5 50,5 45,5 55,5 5,0 5,0 4,5 4,5 2,0 2,0
B32 4 31,267 31,6 28,6 51,0 57,5 6,5 2,0
B45 5 44,399 44,7 41,0 64,5 71,0 6,5 2,0
Размеры D1 и d являются теоретическими, вытекающими соответственно из диаметра D и номинальных размеров а и l1

КОНУСНОСТЬ НАРУЖНЫХ И ВНУТРЕННИХ КОНУСОВ И КОНУСОВ С РЕЗЬБОВЫМ ОТВЕРСТИЕМ

Обозначение величины конуса Конусность Угол конуса 2α
B7 B10, B12 B16, B18 B22, B24 B32 B45 1 : 19,212 = 0,05205 1 : 20,047 = 0,49880 1 : 20,020 = 0,04995 1 : 19,922 = 0,05020 1 : 19,954 = 0,05194 1 : 19,002 = 0,05263 2°58′54″ 2°51′26″ 2°51′41″ 2°52′32″ 2°58′31″ 3°00′53″
угол конуса
подсчитан по величине конусности с округлением до 1″.

РЕКОМЕНДУЕМЫЕ РАЗМЕРЫ ЦЕНТРОВОГО ОТВЕРСТИЯ УКОРОЧЕННОГО КОНУСАКОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ МОРЗЕ И МЕТРИЧЕСКИЕ НАРУЖНЫЕ ( ГОСТ 25557-2006 )

Тип конуса Метрический Морзе Метрический
Обозн. 4 6 0 1 2 3 4 5 6 80 100 120 160 200
D 4,0 6,0 9,045 9,065 17,78 23,825 31,267 44,399 63,348 80 100 120 160 200
D1 4,1 6,2 9,2 12,2 18,0 24,1 31,6 44,7 63,8 80,4 100,5 120,6 160,8 201,0
d* 2,9 4,4 6,4 9,4 14,6 19,8 25,9 37,6 53,9 70,2 88,4 106,6 143 179,4
d1 М6 М10 М12 М16 М20 М24 М30 М36 М36 М48 М48
d4
max
2,5 4,0 6,0 9,0 14,0 19,0 25,0 35,7 51,0 67,0 85,0 102,0 138,0 174,0
l
min
16,0 24,0 24,0 32,0 40,0 47,0 59,0 70,0 70,0 92,0 92,0
l1 23,0 32,0 50,0 53,5 64,0 81,0 102,5 129,5 182,0 196,0 232,0 268,0 340,0 412,0
l2 25,0 35,0 53,0 57,0 69,0 86,0 109,0 136,0 190,0 204,0 242,0 280,0 356,0 432,0
l11 4,0 5,0 5,5 8,2 10,0 11,5
* — размер для справок. — угол конусов Морзе №0-№5 соответствует углу укороченных конусов Морзе; №6 — 1:19,180 = 0,05214 — угол метрических конусов — 1:20 = 0,05.

Профиль резьбового отверстия соответствует отверстию центровому форма Р

по
ГОСТ ГОСТ 14034-74
.

В ГОСТ 25557-2006 все размеры центрового отверстия приводятся в общей таблице. Стандарт также определяет размеры пазов канавок и отвестий, необходимых для конструирования конусов, в случае подачи смазочно-охлаждающей жидкости (СОЖ) через инструмент.

В зависимости от конструкции инструментальный хвостовик может иметь соответствующее обозначение:

BI

— внутренний конус с пазом;
BE
— наружный конус с лапкой;
AI
— внутренний конус с отверстием по оси;
АЕ
— наружный конус с резьбовым отверстием по оси;
BIK
— внутренний конус с пазом и отверстием для подачи СОЖ;
ВЕК
— наружный конус с лапкой и отверстием для подачи СОЖ;
AIK
— внутренний конус с отверстием по оси и отверстием для подачи СОЖ;
АЕК
— наружный конус с резьбовым отверстием по оси и отверстием для подачи СОЖ.
КОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ МОРЗЕ И МЕТРИЧЕСКИЕ ВНУТРЕННИЕ ( ГОСТ 25557-2006 )КОНУСЫ ВНУТРЕННИЕ И НАРУЖНЫЕ КОНУСНОСТЬЮ 7 : 24 ( ГОСТ 15945-82 )
Допуски конусов внутренних и наружных конусностью 7:24

по ГОСТ 19860-93.
КОНУСЫ ИНСТРУМЕНТОВ Предельные отклонения угла конуса и допуски формы конусов ( ГОСТ 2848-75 )
Степень точности инструментальных конусов обозначается допуском угла конуса заданной степени точности по ГОСТ 8908-81 и определяется предельными отклонениями угла конуса и допусками формы поверхности конуса, числовые значения которых указаны ниже.

Примечания: 1. Отклонения угла конуса от номинального размера располагав в «плюс» — для наружных конусов, в «минус» — для внутренних. 2. ГОСТ 2848-75 для наружных конусов предусматривает также степени точности АТ4 и АТ5. Допуски по ГОСТ 2848-75 распространяются на конусы инструментов по ГОСТ 25557-2006 и ГОСТ 9953-82.

Пример обозначения конуса Морзе 3, степени точности АТ8:
Морзе 3 АТ8 ГОСТ 25557-2006
То же метрического конуса 160, степени точности АТ7:
Метр. 160 АТ7 ГОСТ 25557-2006
То же укороченного конуса В18, степени точности АТ6:
Морзе В18 АТ6 ГОСТ 9953-82
Похожие документы:

ГОСТ 2848-75 — Конусы инструментов. Допуски. Методы и средства контроля ГОСТ 7343-72 — Конусы инструментов с конусностью 1:10 и 1:7. Размеры ГОСТ 10079-71 — Развертки конические с коническим хвостовиком под конусы Морзе. Конструкция и размеры ГОСТ 22774-77 — Конусы и трубки шлифовальные. Типы и размеры ГОСТ 25548-82 — Основные нормы взаимозаменяемости. Конусы и конические соединения. Термины и определения

Формула площади конуса

Площадь поверхности конуса можно получить, сложив площадь боковой поверхности и площадь основания конуса:

S = Sбок.пов + Sосн = πRL + πR2

Источники

  • https://studwork.org/spravochnik/matematika/obemy-figur/obem-konusa
  • https://calcsbox.com/post/formula-obema-konusa.html
  • https://worksbase.ru/matematika/formuly/37-konus.html
  • https://ru.onlinemschool.com/math/formula/volume/
  • https://allcalc.ru/node/36
  • https://ru.onlinemschool.com/math/formula/cone/
  • https://www.calc.ru/1430.html
  • https://MicroExcel.ru/obyom-konusa/
  • https://www.calc.ru/obyem-konusa.html
  • https://mnogoformul.ru/obem-konusa-formula-i-raschet-onlayn

Площадь усечённого конуса

Для нахождения данного параметра нужно воспользоваться формулами:

  • площади боковой поверхности усечённого конуса Sбок;
  • полной площади усечённой фигуры Sпол, которая равна сумме площадей двух оснований и площади боковой поверхности:

Площадь усеченного конуса

Здесь l — длина образующей, а R и r — радиусы большего и меньшего оснований соответственно.

Построение окружности у конуса

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники . На рисунке 168 осевым сечением конуса является треугольник ABP ( АР = ВР ). Угол АPВ называют углом при вершине осевого сечения конуса .

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP ).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением .

Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a ), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б ), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в ), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г ), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д ). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко — кониками .

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги.

 ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60 ° ; б) в 90 ° . Найти площадь сечения.

Решени е. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60 ° , значит, △ AOB — правильный и АВ = R .

Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S △ ABP = АВ • РC. Имеем: ОР = R (по условию); в △ A OB : ОС = ; в △ ОСР : CP = = .

Тогда S △ ABP = АВ • РС = .

Ответ: а) .

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р .

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a ), то получим развёртку поверхности конуса (рис. 176, б ), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса ; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = .

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

S бок = α • l 2 , (1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:

Таким образом, доказана следующая теорема.

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

S кон = π Rl + π R 2 . (3)

Следствие. Пусть конус образован вращением пря м оугольного треугольника ABC вокруг катета АС (рис. 177). Тогда S бок = π • BC • АВ. Если D — середина отрезка АВ, то AB = 2 AD, поэтому

S бок = 2 π ВС • AD. (4)

Проведём DE ⟂ АB ( E ∈ l = AС ) . Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А ) имеем

= ⇒ BC • AD = DE • АС. (5)

Тогда соотношение (4) принимает вид

S бок = (2 π • DE ) • AC, (6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Доказательств о. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α , параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β , α || β , то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O 1 = α ∩ РО. Обозначим этот круг F 1 .

Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F 1 , при этом центр О основания отображается на центр О 1 круга F 1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии точка X отображается на точку X 1 = РX ∩ α . Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

= = k, (*)

где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F 1 , являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO 1 : Р О , где РO 1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

S сечен : S основ = k 2 = : PO 2 .

18.7. Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

— строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

— соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

— выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

— прямоугольный треугольник (см. рис. 179);

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи

Каждый школьник слышал о круглом конусе и представляет, как выглядит эта объемная фигура. В данной статье дается определение развертки конуса, приводятся формулы, описывающие ее характеристики, а также описывается способ ее построения с помощью циркуля, транспортира и линейки.

Круглый конус в геометрии

Приведем геометрическое определение этой фигуры. Круглым конусом называется поверхность, которая образована прямыми отрезками, соединяющими все точки некоторой окружности с одной-единственной точкой пространства. Эта единственная точка не должна принадлежать плоскости, в которой лежит окружность. Если вместо окружности взять круг, то указанный способ также приводит к получению конуса.

Вам будет интересно: Юридический колледж в Иваново: специальности, приемная комиссия, отзывы

Круг называется основанием фигуры, его окружность — это директриса. Отрезки, соединяющие точку с директрисой, называются генератрисами или образующими, а точка, где они пересекаются — это вершина конуса.

Круглый конус может быть прямым и наклонным. Обе фигуры показаны ниже на рисунке.

Вам будет интересно: Термофильные бактерии: польза и вред для человека

Разница между ними заключается в следующем: если перпендикуляр из вершины конуса падает точно в центр окружности, то конус будет прямым. Для него перпендикуляр, который называется высотой фигуры, является частью его оси. В случае конуса наклонного высота и ось образуют некоторый острый угол.

Ввиду простоты и симметричности фигуры далее будем рассматривать свойства только прямого конуса с круглым основанием.

Получение фигуры с помощью вращения

Перед тем как перейти к рассмотрению развертки поверхности конуса, полезно узнать, как с помощью вращения можно получить эту пространственную фигуру.

Предположим, что у нас имеется прямоугольный треугольник со сторонами a, b, c. Первые две из них являются катетами, c — это гипотенуза. Поставим треугольник на катет a и начнем его вращать вокруг катета b. Гипотенуза c при этом опишет коническую поверхность. Эта простая методика получения конуса изображена ниже на схеме.

Очевидно, что катет a будет радиусом основания фигуры, катет b — его высотой, а гипотенуза c соответствует образующей круглого прямого конуса.

Вид развертки конуса

Как можно догадаться, конус образован двумя типами поверхностей. Одна из них — это плоский круг основания. Предположим, что он имеет радиус r. Вторая поверхность является боковой и называется конической. Пусть ее образующая будет равна g.

Если у нас имеется бумажный конус, то можно взять ножницы и отрезать от него основание. Затем, коническую поверхность следует разрезать вдоль любой образующей и развернуть ее на плоскости. Таким способом мы получили развертку боковой поверхности конуса. Две поверхности вместе с исходным конусом показаны на схеме ниже.

Внизу справа изображен круг основания. По центру показана развернутая коническая поверхность. Оказывается, что она соответствует некоторому круговому сектору круга, радиус которого равен длине образующей g.

Угол и площадь развертки

Теперь получим формулы, которые по известным параметрам g и r позволяют рассчитать площадь и угол развертки конуса.

Очевидно, что дуга кругового сектора, показанного выше на рисунке, имеет длину, равную длине окружности основания, то есть:

Если бы весь круг радиусом g был построен, то его бы длина составила:

Поскольку длина L соответствует 2*pi радианам, тогда угол, на который опирается дуга l, можно определить из соответствующей пропорции:

Тогда неизвестный угол φ будет равен:

Подставляя выражения для длин l и L, приходим к формуле для угла развертки боковой поверхности конуса:

Угол φ здесь выражен в радианах.

Для определения площади Sb кругового сектора воспользуемся найденным значением φ. Составляем еще одну пропорцию, только уже для площадей. Имеем:

Откуда следует выразить Sb, а затем, подставить значение угла φ. Получаем:

Sb = φ*g2*pi/(2*pi) = 2*pi*r/g*g2/2 = pi*r*g.

Для площади конической поверхности мы получили достаточно компактную формулу. Величина Sb равна произведению трех множителей: числа пи, радиуса фигуры и ее образующей.

Тогда площадь всей поверхности фигуры будет равна сумме Sb и So (площадь круглого основания). Получаем формулу:

S = Sb + So = pi*r*(g + r).

Построение развертки конуса на бумаге

Для выполнения этой задачи понадобится лист бумаги, карандаш, транспортир, линейка и циркуль.

В первую очередь начертим прямоугольный треугольник со сторонами 3 см, 4 см и 5 см. Его вращение вокруг катета в 3 см даст искомый конус. У фигуры r = 3 см, h = 4 см, g = 5 см.

Построение развертки начнем с рисования циркулем окружности радиусом r. Ее длина будет равна 6*pi см. Теперь рядом с ней нарисуем еще одну окружность, но уже радиусом g. Ее длина будет соответствовать 10*pi см. Теперь нам нужно от большой окружности отрезать круговой сектор. Его угол φ равен:

φ = 2*pi*r/g = 2*pi*3/5 = 216o.

Теперь откладываем транспортиром этот угол на окружности с радиусом g и проводим два радиуса, которые будут ограничивать круговой сектор.

Таким образом, мы построили развертку конуса с указанными параметрами радиуса, высоты и образующей.

Пример решения геометрической задачи

Дан круглый прямой конус. Известно, что угол его боковой развертки равен 120o. Необходимо найти радиус и образующую этой фигуры, если известно, что высота h конуса равна 10 см.

Задача не является сложной, если вспомнить, что круглый конус — это фигура вращения прямоугольного треугольника. Из этого треугольника следует однозначная связь между высотой, радиусом и образующей. Запишем соответствующую формулу:

Вторым выражением, которое следует использовать при решении, является формула для угла φ:

Таким образом, мы имеем два уравнения, связывающих две неизвестные величины (r и g).

Выражаем из второй формулы g и подставляем результат в первую, получаем:

h2 + r2 = 4*pi2*r2/φ2 =>

Угол φ = 120o в радианах равен 2*pi/3. Подставляем это значение, получаем конечные формулы для r и g:

Остается подставить значение высоты и получить ответ на вопрос задачи: r ≈ 3,54 см, g ≈ 10,61 см.

Построение развертки конуса

Развертка поверхности конуса — это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

источники:

http://1ku.ru/obrazovanie/44223-chto-takoe-razvertka-konusa-i-kak-ee-postroit-formuly-i-primer-reshenija-zadachi/

http://ngeometry.ru/postroenie-razvertki-konusa.html

Конус в геометрии - элементы, формулы, свойства с примерами

Конусом называется тело, полученное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (рис. 126).

Конус в геометрии - элементы, формулы, свойства с примерами

На рисунке 127 показано образование конуса при вращении прямоугольного треугольника Конус в геометрии - элементы, формулы, свойства с примерами вокруг прямой Конус в геометрии - элементы, формулы, свойства с примерами, которой принадлежит катет Конус в геометрии - элементы, формулы, свойства с примерами. При этом ломаная Конус в геометрии - элементы, формулы, свойства с примерами описывает поверхность конуса, гипотенуза Конус в геометрии - элементы, формулы, свойства с примерамибоковую поверхность, а катет Конус в геометрии - элементы, формулы, свойства с примерамиоснование конуса (рис. 128). Саму гипотенузу Конус в геометрии - элементы, формулы, свойства с примерами называют образующей конуса, неподвижную точку Конус в геометрии - элементы, формулы, свойства с примерамивершиной конуса, прямую, проходящую через неподвижный катет Конус в геометрии - элементы, формулы, свойства с примерами, — осью конуса, а перпендикуляр, опущенный из вершины конуса на основание, — высотой конуса (рис. 129). Основание высоты конуса совпадает с центром основания конуса.

Конус в геометрии - элементы, формулы, свойства с примерами

Поверхность конуса можно развернуть на плоскость, в результате получится сектор, представляющий боковую поверхность конуса, и круг, представляющий основание конуса. На рисунке 130 представлены конус и его развертка.

Конус в геометрии - элементы, формулы, свойства с примерами

Теорема 5.

Боковая поверхность конуса равна произведению полуокружности его основания и образующей:

Конус в геометрии - элементы, формулы, свойства с примерами

Доказательство проведите самостоятельно, используя рисунок 130.

Важной пространственной конфигурацией, которая часто встречается в задачах, является сочетание конуса с плоскостью.

Если конус пересечь плоскостью, параллельной основанию, то получится круг (рис. 131), а если плоскостью, проходящей через вершину, то — равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 132).

Конус в геометрии - элементы, формулы, свойства с примерами

Осевое сечение конуса, т. е. сечение плоскостью, проходящей через ось конуса, является равнобедренным треугольником, у которого основание равно диаметру основания конуса (рис. 133).

Проведем через вершину конуса секущую плоскость и будем ее поворачивать вокруг прямой, перпендикулярной оси конуса (рис. 134). При этом основание треугольника-сечения будет укорачиваться, а его боковые стороны сближаться до того момента, пока не совпадут. Получим плоскость, целиком содержащую образующую и не имеющую с конусом других общих точек. Такая плоскость называется касательной плоскостью конуса.

Конус в геометрии - элементы, формулы, свойства с примерами

Теорема 6.

Если плоскость касается конуса по некоторой образующей, то ей перпендикулярна плоскость, проходящая через эту образующую и ось конуса.

Доказательство:

Пусть плоскость Конус в геометрии - элементы, формулы, свойства с примерами касается конуса с осью Конус в геометрии - элементы, формулы, свойства с примерами по образующей Конус в геометрии - элементы, формулы, свойства с примерами (рис. 135). Докажем, что плоскость, содержащая эту образующую и ось Конус в геометрии - элементы, формулы, свойства с примерами, перпендикулярна плоскости Конус в геометрии - элементы, формулы, свойства с примерами.

Конус в геометрии - элементы, формулы, свойства с примерами

Проведем прямую Конус в геометрии - элементы, формулы, свойства с примерами, которая перпендикулярна образующей Конус в геометрии - элементы, формулы, свойства с примерами, пересекает ось конуса в точке Конус в геометрии - элементы, формулы, свойства с примерами, отличной от вершины Конус в геометрии - элементы, формулы, свойства с примерами. Через точку Конус в геометрии - элементы, формулы, свойства с примерами проведем плоскость Конус в геометрии - элементы, формулы, свойства с примерами, перпендикулярную оси Конус в геометрии - элементы, формулы, свойства с примерами, она пересечет конус по кругу с центром Конус в геометрии - элементы, формулы, свойства с примерами и плоскость Конус в геометрии - элементы, формулы, свойства с примерами — по прямой Конус в геометрии - элементы, формулы, свойства с примерами, касающейся окружности с центром Конус в геометрии - элементы, формулы, свойства с примерами. Эта касательная по свойству касательной к окружности перпендикулярна радиусу Конус в геометрии - элементы, формулы, свойства с примерами соответствующей окружности. Но этот радиус является проекцией наклонной Конус в геометрии - элементы, формулы, свойства с примерами на плоскость Конус в геометрии - элементы, формулы, свойства с примерами, поэтому по теореме о трех перпендикулярах прямая Конус в геометрии - элементы, формулы, свойства с примерами перпендикулярна наклонной Конус в геометрии - элементы, формулы, свойства с примерами, т. е. прямой Конус в геометрии - элементы, формулы, свойства с примерами.

Таким образом, прямая Конус в геометрии - элементы, формулы, свойства с примерами перпендикулярна прямым Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами, которые пересекаются и лежат в плоскости Конус в геометрии - элементы, формулы, свойства с примерами, поэтому по признаку перпендикулярности прямой и плоскости прямая Конус в геометрии - элементы, формулы, свойства с примерами перпендикулярна плоскости Конус в геометрии - элементы, формулы, свойства с примерами. Значит, плоскость Конус в геометрии - элементы, формулы, свойства с примерами, содержащая прямую Конус в геометрии - элементы, формулы, свойства с примерами, перпендикулярна плоскости Конус в геометрии - элементы, формулы, свойства с примерами.

Теорема 6 выражает свойство касательной плоскости конуса.

Теорема 7.

Плоскость касается конуса, если она проходит через его образующую и перпендикулярна плоскости, проходящей через эту образующую и ось конуса.

Доказательство:

Пусть плоскость Конус в геометрии - элементы, формулы, свойства с примерами проходит через образующую Конус в геометрии - элементы, формулы, свойства с примерами конуса с осью Конус в геометрии - элементы, формулы, свойства с примерами и перпендикулярна плоскости Конус в геометрии - элементы, формулы, свойства с примерами (рис. 136). Докажем, что плоскость Конус в геометрии - элементы, формулы, свойства с примерами касается конуса, т. е. что точки образующей Конус в геометрии - элементы, формулы, свойства с примерами, и только они, являются общими точками конуса и плоскости Конус в геометрии - элементы, формулы, свойства с примерами.

Конус в геометрии - элементы, формулы, свойства с примерами

Точки образующей Конус в геометрии - элементы, формулы, свойства с примерами принадлежат и конусу, и плоскости Конус в геометрии - элементы, формулы, свойства с примерами. Пусть Конус в геометрии - элементы, формулы, свойства с примерами — какая-либо точка плоскости Конус в геометрии - элементы, формулы, свойства с примерами вне образующей Конус в геометрии - элементы, формулы, свойства с примерами. Через эту точку проведем плоскость Конус в геометрии - элементы, формулы, свойства с примерами, перпендикулярную оси Конус в геометрии - элементы, формулы, свойства с примерами, она пересекает поверхность конуса по окружности Конус в геометрии - элементы, формулы, свойства с примерами с центром Конус в геометрии - элементы, формулы, свойства с примерами, образующую Конус в геометрии - элементы, формулы, свойства с примерами — в некоторой точке Конус в геометрии - элементы, формулы, свойства с примерами и плоскость Конус в геометрии - элементы, формулы, свойства с примерами — по прямой Конус в геометрии - элементы, формулы, свойства с примерами. Пусть Конус в геометрии - элементы, формулы, свойства с примерами — прямая, которая перпендикулярна плоскости Конус в геометрии - элементы, формулы, свойства с примерами и пересекает ось Конус в геометрии - элементы, формулы, свойства с примерами в точке Конус в геометрии - элементы, формулы, свойства с примерами. Тогда по теореме о трех перпендикулярах прямая Конус в геометрии - элементы, формулы, свойства с примерами, проведенная в плоскости Конус в геометрии - элементы, формулы, свойства с примерами через основание наклонной Конус в геометрии - элементы, формулы, свойства с примерами перпендикулярно к ней, перпендикулярна ее проекции Конус в геометрии - элементы, формулы, свойства с примерами. Значит, Конус в геометрии - элементы, формулы, свойства с примерами — касательная к окружности Конус в геометрии - элементы, формулы, свойства с примерами, и поэтому точка Конус в геометрии - элементы, формулы, свойства с примерами находится вне окружности Конус в геометрии - элементы, формулы, свойства с примерами, а значит, и вне конуса.

Конус в геометрии - элементы, формулы, свойства с примерами

Теорема 7 выражает признак касательной плоскости конуса.

Пусть есть конус с вершиной Конус в геометрии - элементы, формулы, свойства с примерами (рис. 137). Впишем в основание конуса многоугольник Конус в геометрии - элементы, формулы, свойства с примерами и через его вершины Конус в геометрии - элементы, формулы, свойства с примерами проведем образующие Конус в геометрии - элементы, формулы, свойства с примерами. В результате получим тело Конус в геометрии - элементы, формулы, свойства с примерами, являющееся пирамидой. Ее называют пирамидой, вписанной в конус, а сам конус — конусом, описанным около пирамиды.

Если основание конуса вписано в основание пирамиды, а боковая поверхность конуса касается боковых граней пирамиды, то говорят, что пирамида описана около конуса, или конус вписан в пирамиду (рис. 138).

Конус в геометрии - элементы, формулы, свойства с примерами Конус в геометрии - элементы, формулы, свойства с примерами

Теорема 8.

Объем конуса равен третьей доле произведения площади Рис. 139 т его основания и высоты:

Конус в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть конус с осью Конус в геометрии - элементы, формулы, свойства с примерами (рис. 139). В него впишем правильную пирамиду Конус в геометрии - элементы, формулы, свойства с примерами, а около него опишем правильную пи-рамиду Конус в геометрии - элементы, формулы, свойства с примерами. В соответствии с теоремой 4 объем первой пирамиды равен третьей доле произведения площади многоугольника Конус в геометрии - элементы, формулы, свойства с примерами и высоты Конус в геометрии - элементы, формулы, свойства с примерами пирамиды, т. е. высоты конуса, а объем второй — произведению площади многоугольника Конус в геометрии - элементы, формулы, свойства с примерами и той же высоты. Объем самого конуса заключен между этими числами.

Будем увеличивать количество Конус в геометрии - элементы, формулы, свойства с примерами сторон оснований пирамид. Тогда объем первой пирамиды будет увеличиваться, объем второй — уменьшаться, причем их разность стремится к нулю, если значение переменной Конус в геометрии - элементы, формулы, свойства с примерами неограниченно увеличивается. То число, к которому приближаются объемы обеих пирамид, принимается за объем конуса.

В описанном процессе высота Конус в геометрии - элементы, формулы, свойства с примерами пирамиды не изменяется, а площади обоих многоугольников — Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами — стремятся к площади Конус в геометрии - элементы, формулы, свойства с примерами круга, являющегося основанием конуса. Значит, объем Конус в геометрии - элементы, формулы, свойства с примерами конуса равен третьей доле произведения площади Конус в геометрии - элементы, формулы, свойства с примерами основания конуса и его высоты Конус в геометрии - элементы, формулы, свойства с примерами:

Конус в геометрии - элементы, формулы, свойства с примерами

Теорема 9.

Если конус пересечь плоскостью, параллельной его основанию, то:

  • а) образующая и высота разделяются на пропорциональные части;
  • б) площади сечения и основания относятся как квадраты их расстояний от вершины.

Используя рисунок 140, докажите эту теорему самостоятельно.

Конус в геометрии - элементы, формулы, свойства с примерами

Секущая плоскость, параллельная основанию конуса, разделяет его на две части (рис. 141). Одна из этих частей также является конусом, а другая — телом, которое называется усеченным конусом.

Основание данного конуса и круг, полученный в сечении, называют основаниями усеченного конуса, а отрезок образующей данного конуса, заключенный между его основанием и секущей плоскостью, — образующей усеченного конуса (рис. 142). Высотой усеченного конуса называется перпендикуляр, проведенный из какой-либо точки одного его основания к плоскости другого основания.

Усеченный конус можно получить вращением прямоугольной трапеции вокруг боковой стороны, к которой прилежат прямые углы (рис. 143).

Конус в геометрии - элементы, формулы, свойства с примерами

Пример:

Найдем боковую поверхность усеченного конуса. Пусть есть усеченный конус, у которого радиусы оснований Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами равны Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами соответственно, а образующая Конус в геометрии - элементы, формулы, свойства с примерами равна Конус в геометрии - элементы, формулы, свойства с примерами (рис. 144).

Конус в геометрии - элементы, формулы, свойства с примерами

Достроим его до полного конуса. Достроенная часть представляет собой конус, у которого радиус основания равен Конус в геометрии - элементы, формулы, свойства с примерами. Пусть образующая Конус в геометрии - элементы, формулы, свойства с примерами достроенного конуса равна Конус в геометрии - элементы, формулы, свойства с примерами.

Боковую поверхность Конус в геометрии - элементы, формулы, свойства с примерами усеченного конуса можно получить как разность боковых поверхностей Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами полного и достроенного конусов. Пусть Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами — длины окружностей нижнего и верхнего оснований усеченного конуса.

Тогда:

Конус в геометрии - элементы, формулы, свойства с примерами

Найдем Конус в геометрии - элементы, формулы, свойства с примерами, учитывая подобие треугольников Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами:

Конус в геометрии - элементы, формулы, свойства с примерами

Значит,

Конус в геометрии - элементы, формулы, свойства с примерами

Таким образом, боковая поверхность усеченного конуса равна произведению полусуммы длин окружностей его оснований и образующей.

Пример:

Используя рисунок 144, можно, как и для усеченной пирамиды (см. параграф 9), доказать, что объем Конус в геометрии - элементы, формулы, свойства с примерами усеченного конуса равен третьей доле произведения высоты Конус в геометрии - элементы, формулы, свойства с примерами конуса и суммы площадей Конус в геометрии - элементы, формулы, свойства с примерами и Конус в геометрии - элементы, формулы, свойства с примерами оснований конуса и их среднего геометрического Конус в геометрии - элементы, формулы, свойства с примерами:

Конус в геометрии - элементы, формулы, свойства с примерами

  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Пирамида в геометрии

Понравилась статья? Поделить с друзьями:
  • Как в егиссо найти получателя
  • Как найти инн деловых линий
  • Найти опята или опят как
  • Как составить договор материальной ответственности с водителем
  • Как составить мандалу по дате рождения онлайн бесплатно с расшифровкой