Как найти угол смещения луча

Принцип Гюйгенса:

Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту  фронта действительно распространяющейся волны.

Закон отражения:

  • отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
  • угол падения  α  равен углу отражения  γ:   

α = γ

otr

Вывод на основе принципа Гюйгенса: 

Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

Для прохождения волной расстояния ВС требуется время Δt BC/υЗа это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен:  υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отраженияугол падения  α  равен углу отражения  γ.

Otragenie

img DiK818

Закон преломления (закон Снелиуса):

  • луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

0009 013 Zakony geometricheskoj optiki pl par    Prel

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью  с, падает на границу раздела со средой, в которой скорость ее распространения равна v.

Prel1

      Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔtЗа это же время фронт волны, возбуждаемой точкой А в среде со скоростью uдостигнет точек полусферы, радиус которой AD = tПоложение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DCа направление ее распространения – лучом IIIИз рис. видно, что

        ,       т.е.        .

      Отсюда следует закон Снелиуса:

Prel2

Принцип Ферма: свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела

Ferma

 В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

 .

      Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

 ,

      отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса:    .

 Следствия из принципа Ферма:

1. Обратимость световых лучейесли обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

2. Если свет распространяется из среды с большим показателем преломления n1  (оптически более плотной) в среду с меньшим показателем преломления n2  (оптически менее плотной) ( n1  > n2 )например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:

Prel3

3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным  π/2.

Полное отражение

Угол αпр  называется предельным углом полного отражения. При углах падения α > αпр  весь падающий свет полностью отражается.

По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.

Таким образом, при углах падения в пределах от αпр  до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы.  Это явление называется полным отражением.

Poln otr

В случае, если вторая среда — воздух

Poln otr1

polnoe otragenie

Преломление света в плоскопараллельной пластине

Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.

Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величинуδL относительно исходного луча

image062

Величина смещения в плоскопараллельной пластине

Величина сдвига луча света δL зависит:

  • от угла падения света α,
  • от толщины пластины d,
  • от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n.

C увеличением любого из этих параметров смещение луча света увеличивается.

Smesch

Смещение луча можно выразить через угол падения

 Smesch1

Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:

  1. угол падения равен нулю: α = 0,
  2. относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
  3. толщина пластины равна нулю: d = 0 

Ход луча через треугольную призму

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.

prisma1

На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом. 

Если световой луч падает на преломляющую грань призмы под произвольным углом, то угол отклонения луча призмой определяется формулой

Delta

Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярнопреломляющей грани призмы), то угол отклонения луча призмой определяется формулой

 Delta1

Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.

Light dispersion conceptual waves

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.

   arrow left                                     arrow right

Законы отражения и преломления света широко используются для управления ходом световых пучков. Для отражения света в приборах применяются зеркала и призмы, для преломления — призмы, плоскопараллельные пластинки, линзы. Зеркала, призмы, пластинки и линзы являются элементами, комбинируя которые создают различные оптические приборы. 

Рассмотрим отдельные элементы оптических приборов.

Плоскопараллельная пластинка

Рассмотрим ход светового луча от источника в плоскопараллельной пластинке  толщиной, находящейся в воздухе (рис. 138, а). Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом  на первую границу, имеем (рис. 138, б)

sinα = nsinγ, nsinα1 = sinγ1 

Здесь γ — угол преломления на первой границе,  α1— угол падения на вторую границу, γ1 — угол преломления на второй границе,  n—  абсолютный показатель преломления вещества пластинки.

Накрест лежащие углы γ и α1 при параллельных прямых  AD и BK (перпендикулярах к первой и второй параллельным границам) равны, т.е. α1 = γ. Следовательно, sinα = nsinγ = nsinα1  = sinγ1. Откуда следует, что:

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается на некоторое расстояние h=BC перпендикулярно своему начальному направлению (см. рис. 138, б)

Соответственно, все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом не равным нулю, будут также казаться смещенными.

Как видно из рисунка 138, а лучи, отраженные от верхней и нижней граней пластинки параллельны друг другу на выходе из неe.

Найдем, от каких параметров пластинки зависит смещение h луча.

Из increment A B C  следует, что:

Из increment A B D имеем:

Откуда:

С учетом закона преломления sin space gamma space equals space fraction numerator sin space alpha over denominator n end fraction и тригонометрического тождества sin2γ + cos2γ  = 1 находим:

.

Окончательно, расстояние h между направлениями входящего и выходящего лучей можно определить из соотношения:

. (1-1)

Как видно из соотношения (1-1), смещение h луча при данном угле падения α зависит от толщины d пластинки и ее показателя преломления n.

Трехгранная призма

Рассмотрим ход луча в трехгранной призме. Пусть световой луч NM падает под углом α1 на боковую грань трехгранной призмы ABC, сечение которой показано на рисунке 138-2. Призма, изготовленная из вещества с абсолютным показателем преломления n2, находится в среде с абсолютным показателем преломления n1. Грани призмы, проходя через которые лучи света преломляются, называются преломляющими. Грань, лежащая напротив преломляющего угла, называется основанием призмы. Угол φ при вершине B   называется преломляющим углом призмы.

Пусть луч  и  лежат в одной плоскости — плоскости листа книги. Из закона преломления света находим угол преломления γ1:

. (1-2)

Если показатель призмы n2 > n1, то преломленный луч  падает на вторую боковую грань призмы под углом γ2. Полного отражения на второй преломляющей грани не происходит при условии , и луч выходит из призмы под углом α2. Его находим из закона преломления: 

. (1-3)

Отклонение от начального направления луча  вследствие преломлений на гранях призмы определяется LOE = δ (см. рис. 138-2). Угол  между направлениями входящего и выходящего лучей называется углом отклонения. Рассмотрим . В нем . По теореме о внешнем угле треугольника находим:

Применим эту же теорему к :

(α1 — γ1) + (α2 — γ2) = δ. (1-5)

Из формул (1-4) и (1-5) определим связь угла падения α1, угла преломления α2 с преломляющим углом призмы φ и углом отклонения δ выходящего луча от начального направления:

В результате получили систему уравнений (1-2), (1-3), (1-4), (1-6):

(1-7)

Система уравнений (1-7) позволяет решить задачу на прохождение луча света через трехгранную призму без полного отражения на ее гранях.

Если угол падения α1 на грань призмы и преломляющий угол призмы φ малы, то малыми будут и углы γ1, γ2, α2  . Поэтому в законах преломления (1-2) и (1-3) отношение синусов можно заменить отношением углов, выраженных в радианах, т.е. 

. (1-8)

Подставляя выражения для (1-8) α1 и α2 в соотношение (7), находим:

. (1-9)

Из соотношения (1-9) следует, что: во-первых, чем больше преломляющий угол φ, тем больше угол отклонения δ лучей призмой; во-вторых, угол отклонения δ лучей увеличивается с ростом абсолютного показателя преломления n2 вещества призмы. Как видно из рисунка 138-2, луч света, проходя через трехгранную призму, отклоняется к ее утолщенной части, если абсолютный показатель преломления вещества призмы больше абсолютного показателя преломления окружающей среды (n1 > n2).

Трехгранная призма (рис. 139). Как видно из рисунка 139 луч света, проходя через трехгранную призму, отклоняется от своего начального направления распространения к основанию (утолщенной части) призмы. Подчеркнем, что это справедливо в том случае, если абсолютный показатель преломления вещества призмы больше абсолютного показателя преломления окружающей среды .

Обратите внимание (см. рис. 139), что если на призму падает луч белого света, то после прохождения призмы на экране наблюдается разноцветная полоска, содержащая набор цветов — от красного до фиолетового. Исаак Ньютон, впервые проделавший данный эксперимент, назвал эту полоску спектром.

Порядок следования цветов в спектре легко запомнить с помощью известной фразы:

          красный — 770—630 нм                    каждый

          оранжевый — 630—590 нм                охотник

          желтый — 590—570 нм                      желает

          зеленый — 570—495 нм                     знать,

          голубой, синий — 495—435 нм         где сидят

          фиолетовый — 435—390 нм              фазаны

 

Пример решения задачи

Определите наименьший преломляющий угол φmin стеклянной призмы, находящейся в воздухе, при котором луч, падающий нормально на грань призмы, не выйдет через ее вторую боковую грань (рис. 139-1). Показатель преломления стекла призмы  n = 1,6.

 Решение: 

  Запишем условие полного отражения на боковой грани AC:

.

Вследствие того что α = φmin , как углы с взаимно перпендикулярными сторонами, то:

°.

Ответ: φmin = 39°.

Упражнение 16

1. Определите показатель преломления пластинки, исходя из хода лучей на рис. 140. Окружающая среда воздух (n = 1,0)

2. Определите показатель преломления пластинки, исходя из хода лучей на рис. 141, если показатель преломления окружающей среды n = 2,0

3. Постройте ход луча в пластинках из стекла с показателем преломления n = 1,5 (рис. 142, 143), если угол 


4. Угол падения двух параллельных лучей света из воздуха на плоскопараллельную стеклянную пластинку (n=1,6) равен α=30°, а расстояние между ними l0=20мм. Определите расстояние l между лучами в пластинке.
5. Определите смещение h  луча света при его падении под углом α=45°  на стеклянную плоскопараллельную пластинку толщиной d =6,0 мм , если показатель преломления стекла n =1,5  .
6. Угол падения двух параллельных лучей света на плоскопараллельную стеклянную пластинку (n=1,6) равен α = 30°, а расстояние между ними l0=20мм. Определите расстояние l между лучами в пластинке.
7. На плоскопараллельную пластинку (n=1,5) , нижняя поверхность которой посеребрена, падает луч света под углом α=30°. Определите толщину d пластинки, если в результате отражения от нижней грани образуются два отраженных луча, находящихся на расстоянии l=40мм друг от друга. 
8. Постройте ход луча в призме из стекла с показателем преломления n=1,5 (рис. 143-1, 143-2, 143-3).
9. Определите преломляющий угол φ стеклянной призмы, если луч, падающий перпендикулярно к боковой грани призмы, выходит из нее отклоненным на угол δ = 45° . Показатель преломления стекла n = 1,55.
10. Луч света выходит из призмы под тем же углом, под каким он на нее падает. При этом он отклоняется от первоначального направления на угол δ = 25°. Определите показатель преломления n  вещества призмы, если ее преломляющий угол α = 45°.
11. Одна из боковых граней равнобедренной призмы посеребрена. Луч света падает нормально на не посеребренную грань и после двух отражений выходит через основание призмы перпендикулярно ему. Определите углы призмы.

Содержание:

Прохождение света через плоскопараллельные пластинки и призмы:

Законы отражения и преломления света широко используются для управления ходом световых пучков. Для отражения света в приборах применяются зеркала и призмы, для преломления — призмы, плоскопараллельные пластинки, линзы.

Зеркала, призмы, пластинки и линзы являются элементами, комбинируя которые, создают различные оптические приборы. Рассмотрим отдельные элементы оптических приборов.

Плоскопараллельная пластинка

Рассмотрим ход луча в плоскопараллельной пластинке. На рисунке 77 показан ход светового луча в плоскопараллельной пластинке толщиной Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на первую границу, имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Здесь Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на первой границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол падения луча на вторую границу, Прохождение света через плоскопараллельные пластинки и призмы с примерами — угол преломления на второй границе, Прохождение света через плоскопараллельные пластинки и призмы с примерами — абсолютный показатель преломления вещества пластинки.

Накрест лежащие углы Прохождение света через плоскопараллельные пластинки и призмы с примерами при параллельных прямых Прохождение света через плоскопараллельные пластинки и призмы с примерами (перпендикулярах к первой и второй параллельным границам) равны, т. е. Прохождение света через плоскопараллельные пластинки и призмы с примерами Следовательно, Прохождение света через плоскопараллельные пластинки и призмы с примерами Откуда следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается параллельно своему начальному направлению на некоторое расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами

Соответственно, все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом, не равным нулю, будут также казаться смещенными.

Найдем, от каких параметров пластинки зависит смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча. Из Прохождение света через плоскопараллельные пластинки и призмы с примерами следует, что

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из Прохождение света через плоскопараллельные пластинки и призмы с примерами имеем:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Отсюда:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

С учетом закона преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами и тригонометрического тождества Прохождение света через плоскопараллельные пластинки и призмы с примерами находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Расстояние Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей можно определить из соотношения
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Как видно из соотношения (2), смещение Прохождение света через плоскопараллельные пластинки и призмы с примерами луча при данном угле падения Прохождение света через плоскопараллельные пластинки и призмы с примерами зависит от толщины Прохождение света через плоскопараллельные пластинки и призмы с примерами пластинки и ее показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Трехгранная призма

Рассмотрим ход луча в трехгранной призме. Пусть световой луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами на боковую грань трехгранной призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами сечение которой показано на рисунке 78. Призма, изготовленная из вещества с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами находится в среде с абсолютным показателем преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами при вершине Прохождение света через плоскопараллельные пластинки и призмы с примерами называется преломляющим углом призмы. Грани призмы, образующие преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами называются преломляющими. Грань, лежащая напротив преломляющего угла, называется основанием призмы.

Пусть луч Прохождение света через плоскопараллельные пластинки и призмы с примерами лежат в одной плоскости — плоскости листа книги. Из закона преломления света находим угол преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Если показатель призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами то преломленный луч Прохождение света через плоскопараллельные пластинки и призмы с примерами падает на вторую боковую грань призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Полного отражения на второй преломляющей грани не происходит при условии Прохождение света через плоскопараллельные пластинки и призмы с примерами и луч выходит из призмы под углом Прохождение света через плоскопараллельные пластинки и призмы с примерами Его находим из закона преломления:
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Отклонение от начального направления луча Прохождение света через плоскопараллельные пластинки и призмы с примерами вследствие преломлений на гранях призмы определяется углом Прохождение света через плоскопараллельные пластинки и призмы с примерами (см. рис. 78). Угол Прохождение света через плоскопараллельные пластинки и призмы с примерами между направлениями входящего и выходящего лучей называется углом отклонения.

Рассмотрим Прохождение света через плоскопараллельные пластинки и призмы с примерами С учетом того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами по теореме о внешнем угле треугольника находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Применим эту же теорему к Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из формул (5) и (6) определим связь угла падения Прохождение света через плоскопараллельные пластинки и призмы с примерами угла преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами с преломляющим углом Прохождение света через плоскопараллельные пластинки и призмы с примерами призмы и углом отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами выходящего луча от начального направления:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

В результате получим систему уравнений (3), (4), (5), (7):

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Система уравнений (8) позволяет решить задачу на прохождение луча света через трехгранную призму без полного отражения на ее гранях.

  • Заказать решение задач по физике

Если угол падения Прохождение света через плоскопараллельные пластинки и призмы с примерами на грань призмы и преломляющий угол призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами малы, то малыми будут и углы Прохождение света через плоскопараллельные пластинки и призмы с примерами Поэтому в законах преломления (3) и (4) отношение синусов можно заменить отношением углов, выраженных в радианах, т. е.:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Подставляя полученные выражения для Прохождение света через плоскопараллельные пластинки и призмы с примерами в соотношение (7), находим:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Из соотношения (9) следует, что, во-первых: чем больше преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами тем больше угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей призмой; во-вторых, угол отклонения Прохождение света через плоскопараллельные пластинки и призмы с примерами лучей увеличивается с ростом абсолютного показателя преломления Прохождение света через плоскопараллельные пластинки и призмы с примерами вещества призмы. Как видно из рисунка 78, луч света, проходя через трехгранную призму, отклоняется к ее утолщенной части, если абсолютный показатель преломления вещества призмы больше абсолютного показателя преломления окружающей среды Прохождение света через плоскопараллельные пластинки и призмы с примерами

Пример решения задачи

Определите наименьший преломляющий угол Прохождение света через плоскопараллельные пластинки и призмы с примерами стеклянной призмы, находящейся в воздухе, при котором луч, падающий нормально на грань призмы, не выйдет через ее вторую боковую грань (рис. 79). Показатель преломления стекла призмы Прохождение света через плоскопараллельные пластинки и призмы с примерами

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Дано: 

Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами

Решение:

Запишем условие полного отражения на боковой грани Прохождение света через плоскопараллельные пластинки и призмы с примерами
Прохождение света через плоскопараллельные пластинки и призмы с примерами
Вследствие того, что Прохождение света через плоскопараллельные пластинки и призмы с примерами как углы с взаимно перпендикулярными сторонами:

Прохождение света через плоскопараллельные пластинки и призмы с примерами

Ответ: Прохождение света через плоскопараллельные пластинки и призмы с примерами

  • Поляризация света
  • Линзы в физике
  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Электромагнитная природа света
  • Интерференция света
  • Дифракция света
  • Принцип Гюйгенса — Френеля

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

1 Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2 Угол отражения γ равен углу падения α:

γ = α

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ (α = γ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

В курсе школьной физики изучаются две преломляющие системы:

  • плоскопараллельная пластинка
  • призма

Плоскопараллельной пластинкой называется оптически прозрачная система (параллелепипед с двумя параллельными гранями). Расстояние между этими двумя плоскостями достаточно мало (рис. 1).

Плоскопараллельная пластинка

Рис. 1. Плоскопараллельная пластинка

Пусть дана плоскопараллельная пластинка шириной displaystyle S и точечный источник displaystyle {{n}_{2}}, из материала с показателем преломления displaystyle {{n}_{1}}. Данная плоскопараллельная пластинка помещена в среду с показателем преломления displaystyle {{alpha }_{1}}. От источника под углом displaystyle {{alpha }_{1}} к вертикали падает луч света (на границу раздела сред 1/2). В точке А происходит преломление луча. Далее луч, распространяющийся внутри пластины, падает на вторую границу раздела (в данном случае, 2/1). В точке В также происходит преломление, и луч выходит из системы. Проанализируем ход луча:

  • преломление в точке А можно описать законом Снеллиуса:

displaystyle {{n}_{1}}sin {{alpha }_{1}}={{n}_{2}}sin {{alpha }_{2}} (1)

  • за счёт параллельных граней пластинки, в точку В луч падает под тем же углом displaystyle {{alpha }_{2}} (накрест лежащие углы)
  • преломление в точке В также можно описать законом Снеллиуса:

displaystyle {{n}_{2}}sin {{alpha }_{2}}={{n}_{1}}sin {{alpha }_{3}} (2)

Т.е. анализ прохождения луча основывается на законах преломления. Избавимся в соотношениях (1) и (2) от параметров второй среды (пластинки), тогда:

displaystyle {{n}_{1}}sin {{alpha }_{1}}={{n}_{1}}sin {{alpha }_{3}} (3)

Или, сократив:

displaystyle sin {{alpha }_{1}}=sin {{alpha }_{3}} (4)

Из соотношения (4) можно сделать вывод, что displaystyle {{alpha }_{1}}={{alpha }_{3}}, что говорит о том, что луч, проходя плоскопараллельную пластинку, выходит из неё под тем же углом (угол падения на пластинку равен углу выхода из пластинки). Таким образом, плоскопараллельная пластинка не меняет направления распространения луча, а смещает его. Для характеристики смещения луча относительно первоначального направления — displaystyle x (рис. 2).

Призмой называется оптически прозрачная система в форме геометрического тела — призмы, которая имеет плоские полированные грани, через которые входит и выходит свет.

Призма

Рис. 2. Призма

Одним из параметров призмы являются преломляющий угол призмы (displaystyle alpha ) — угол между гранями на призмы, на одну из которых луч света падает, с другой грани уходит. В основном, задачи на призму касаются угла отклонения луча (displaystyle alpha ), т.е. угла между падающим лучом (его продолжением) и лучом, выходящим из призмы (его продолжением). Тогда для призмы выведено соотношение:

displaystyle alpha =i+r-varphi (5)

  • где

Вывод: для оптических систем достаточно прорисовать ход лучей через систему (исходя из законов преломления). А далее, с помощью рисунка, найти необходимые в задаче элементы чаще всего с помощью закона Снеллиуса и геометрических соотношений.

Понравилась статья? Поделить с друзьями:
  • Как каком сайте найти сотрудника
  • Как составить баланс кредитного кооператива
  • Геншин ущелье дадаупа как найти
  • Как найти объем через массу формула
  • Профиль в ios как найти