Как найти угол треугольника 7 класс атанасян

Геометрия

7 класс

Урок №23

Сумма углов треугольника

Перечень рассматриваемых вопросов:

  • Формулирование и доказательство теоремы о сумме углов треугольника.
  • Следствия теоремы о сумме углов треугольника.
  • Классификация треугольников по видам углов.
  • Формулирование и доказательство теоремы о свойствах прямоугольного треугольника.
  • Решение задач с применением пройденного материала;
  • Угловой отражатель.

Тезаурус:

Внешний угол треугольника– это угол, смежный с каким-либо углом этого треугольника.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее, на уроках математики, вы познакомились с различными геометрическими фигурами, в том числе и с треугольниками. При изучении геометрии, вы узнали признаки равенства треугольников, выяснили, что такое медиана, биссектриса и высота треугольника.

Сегодня мы продолжим изучать треугольники и рассмотрим одну из важнейших теорем геометрии– теорему о сумме углов треугольника.

Сформулируем эту теорему.

Сумма углов треугольника равна 180°.

Дано: ∆АВС.

Доказать:

∠А+∠В +∠С = 180º

Доказательство:

Проведем через вершину В прямую аАС.

∠1 = ∠4 (по свойству параллельных прямых, т. к. это накрест лежащие углы при пересечении прямых а и АС и секущей АВ), ∠3 = ∠5 (по свойству параллельных прямых, т. к. это – накрест лежащие углы при пересечении прямых а и АС и секущей ВС)→ ∠4 + ∠2 + ∠5 = 180° (по свойству развёрнутого угла) → ∠1 + ∠2 + ∠3 = 180° → ∠А + ∠В + ∠С = 180°.

Что и требовалось доказать.

Теперь введём ещё одно понятие, связанное с треугольниками –внешний угол треугольника. Это угол, смежный с каким-либо углом этого треугольника.

Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

Дано: ∆АВС.

Доказать:

∠4 = ∠1 + ∠2.

∠3 + ∠4 = 180° (по свойству развёрнутого угла).

∠3 + (∠2 + ∠1) = 180° (по теореме о сумме углов треугольника) → ∠4 = ∠2 + ∠1.

Что и требовалось доказать.

Из теоремы о сумме углов треугольника следует, что если один из углов треугольника равен 90 градусам или больше 90 градусов, то остальные два угла будут острые, т.к. их сумма не должна превышать 90 градусов. Поэтому, в любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

Исходя из этого, можно классифицировать треугольники по углам.

По углам треугольник может быть:

‑ остроугольным, если все его углы являются острыми (т.е. меньше 90°);

‑ тупоугольным, если один из его углов тупой (т.е. больше 90°);

‑ прямоугольным, если один угол 90° (т.е. прямой).

В прямоугольном треугольнике стороны имеют свои названия.

Сторона треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие – катетами.

∆АВС– прямоугольный.

∠В = 90°.

АС – гипотенуза.

АВ,ВС – катеты.

Докажем свойство прямоугольного треугольника, которое устанавливается с помощью теоремы о сумме углов треугольника.

Сумма двух острых углов прямоугольного треугольника равна 90º.

Дано:

∆АВС – прямоугольный.

∠В = 90°.

Доказать: ∠А +∠С = 90°.

Доказательство:

∠А +∠С + ∠В = 180° (по теореме о сумме углов треугольника).

∠В = 90° (по определению прямоугольного треугольника) →∠А + ∠С + 90° = 180°

∠А + ∠С = 180 – 90° = 90°

Что и требовалось доказать.

Решим задачу.

Докажем, что в равностороннем треугольнике каждый угол равен 60 °.

Дано:

∆АВС – равносторонний

Доказать: ∠А =∠С = ∠В = 60°.

Доказательство:

Так как треугольник АВС равносторонний →АС = АВ = ВС (по определению равностороннего треугольника) → если АС = АВ → ∠С = ∠В (по свойству равнобедренного треугольника). Аналогично, если АС = СВ → ∠А = ∠В (по свойству равнобедренного треугольника) → ∠А = ∠С = ∠В.

∠А + ∠С + ∠В = 180° (по теореме о сумме углов треугольника).

∠А = ∠С = ∠В = 180° : 3 = 60°.

Что и требовалось доказать.

Материал для углублённого изучения темы.

Угловой отражатель.

Одно из свойств прямоугольного треугольника ‑сумма двух его острых углов равна 90°‑используется в технике, например, в угловом отражателе. Это устройство, которое отражает падающий на него пучок параллельных лучей при любом расположении отражателя по отношению к падающему пучку лучей.

Отражатель, например, устанавливается на заднем крыле велосипеда, для того, чтобы «возвращать назад» свет автомобильных фар, чтобы водитель машины видел велосипедиста ночью.

Ещё угловой отражаетель был установлен на автоматической космической станции, запущенной на Луну( выделен на рисунке кружочком), с целью определения точного расстояния от Земли до Луны.

Разбор заданий тренировочного модуля

1. Чему равна градусная мера углаА, если треугольник АВС прямоугольный?

Решение:

По условию, ∆АВС – прямоугольный → сумма его острых углов равна 90°.

∠А+∠В=90°

∠В = 45° (по рисунку) →∠А + 45° = 90°.

∠А=90° – 45° = 45°.

Ответ: ∠А = 45°.

2. По рисунку найдите угол N треугольника FNA.

Решение:

По рисунку ∠NAP= 140°, этот угол внешний к углу А треугольника FNA→

∠NAP = ∠N +∠F= 140° (т.к. внешний угол треугольника равен сумме двух углов треугольника не смежных с ним).

∠F = 60° (по рисунку).

∠N + 60° = 140°.

∠N = 140° – 60° = 80°.

Ответ:∠N = 80°.

План урока:

Сумма углов треугольника

Внешние углы треугольника

Сравнение сторон и углов треугольника

Неравенство треугольника

Сумма углов треугольника

Рассмотрим произвольный треугольник АВС. Точки А, В и С не лежат на одной прямой, а потому через В можно провести прямую a, параллельную АС. При этом прямые СВ и АВ окажутся секущими для двух параллельных прямых:

1 treugolnik

Известно, что секущие образуют пары накрест лежащие углы, причем они равны. Отметим на рисунке эти пары и обозначим их как ∠1, ∠2, ∠3 и ∠ 4.

Равные углы (∠1 = ∠2, ∠3 = ∠4) отметим одним цветом. Также обозначим ∠АВС как ∠5:

2 treugolnik

С одной стороны, углы 2, 4 и 5 вместе образуют развернутый угол, то есть их сумма равна 180°:

3 treugolnik

В результате мы получили, что сумма углов треугольника АВС в точности равна 180°! В итоге мы можем сформулировать следующую теорему:

4 treugolnik

Задание. В треуг-ке один угол равен 50°, а второй – 60°. Чему равен третий угол этого треуг-ка?

Решение. Обозначим углы треугольника как ∠1, ∠2 и ∠3.

5 treugolnik

6 treugolnik

Получили обыкновенное уравнение с одной переменной. Для его решения просто перенесем слагаемые 50° и 60° из левой части в правую:

7 treugolnik

Задание. Докажите, что у любого треуг-ка есть хотя бы один угол, который не превосходит 60°.

Решение. Докажем это утверждение методом «от противного». Пусть существует такой треуг-к, у которого каждый из углов больше 60°. Это можно записать в виде трех неравенств:

8 treugolnik

В итоге имеем, что в сумме эти углы больше 180°, а это невозможно. Это противоречие, следовательно, треуг-к с тремя углами, каждый из которых больше 60°, не существует.

Задание. Основанием рав-бедр. ∆АВС является сторона АС. Известно, что ∠В = 40°. Чему равны ∠А и ∠С этого треуг-ка?

Решение. Сначала необходимо вспомнить важное свойство – углы равнобедренного треугольника при его основании равны друг другу. В нашем случае это значит, что ∠А = ∠С:

9 treugolnik

10 treugolnik

Задание. Один из углов при основании рав-бедр. треуг-ка равен 50°. Найдите два других угла.

Решение. Построим рисунок по условию задачи:

11 treugolnik

12 treugolnik

Отдельного внимания заслуживает равносторонний треуг-к. Напомним, что у него равны все три стороны. Построим его:

13 treugolnik

Теперь подумаем о том, чему равны его углы. С одной стороны, мы можем рассматривать ∆АВС как рав-бедр. с основанием АС, ведь AB = BC. Тогда∠А = ∠С. Но с другой стороны, всё тот же ∆АВС мы можем одновременно считать и рав-бедр. с основанием АВ, ведь АС = ВС. Из этого следует, что ∠А = ∠С. В итоге получаем, что все три угла ∆АВС равны:

14 treugolnik

15 treugolnik

Итак, получили удивительный факт – в равностороннем треуг-ке все углы равны 60°!

16 treugolnik

Рассмотрим чуть более сложную задачу, где неизвестен ни один из углов треуг-ка, однако известны некоторые соотношения между ними.

Задание. Первый угол треуг-ка больше второго в 2 раза, а третий равен сумме первых двух углов. Чему равны углы треуг-ка?

Решение. Для большей наглядности примем первый угол треуг-ка за неизвестную величину, то есть за х. Тогда второй угол будет равен , а третий окажется равным их сумме:

17 treugolnik

18 treugolnik

Внешние углы треугольника

Построим некоторый треуг-к, а потом продлим одну из его сторон. На рисунке мы продлили сторону АС. В результате образуется угол, который называют внешним углом треугольника:

19 treugolnik

На рисунке видно, что ∠ВСD является внешним. Но одновременно можно утверждать и ещё один факт – углы ∠АСВ и ∠ВСD являются смежными. Это позволяет нам дать следующее определение:

20 treugolnik

21 treugolnik

В итоге мы доказали, что внешний угол треугольника равен сумме двух углов треуг-ка, которые с ним не смежны.

22 treugolnik

Задание. У ∆АВС ∠А = 50°, ∠В = 75°. Найдите величину внешнего угла, смежного с ∠С.

23 treugolnik

Решение. В данном случае, согласно доказанному нами правилу, достаточно просто сложить ∠А и ∠B:

24 treugolnik

Рассмотрим ещё несколько более тяжелых задач.

Задание. В ∆АВС проведены биссектрисы угловА и B. Они пересекаются в точке М. Известно, что ∠А = 58°, B = 96°. Найдите ∠АМB.

Решение. Устно такую задачу не решить, поэтому построим рисунок:

25 treugolnik

АМ – это биссектриса, а она разбивает∠ВАС на два равных угла. Поэтому мы можем вычислить ∠ВАМ:

26 treugolnik

Отметим найденные углы на рисунке:

27 treugolnik

Обратите внимание на ∆АВМ, который выделен красным цветом. Теперь мы знаем два угла в нем. Значит, можно найти и третий! Запишем для ∆АВМ сумму его углов:

28 treugolnik

Задание. Построен внешний угол равнобедренного треугольника, который смежен с вершиной, лежащей против основания. Далее построили биссектрису этого внешнего угла. Докажите, что эта биссектриса будет параллельна основанию.

Решение. Выполним построение:

29 treugolnik

Пусть АС – это основание рав-бедр. ∆АВС. Тогда внешний угол должен быть проведен к вершине В, ведь именно она лежит против основания. Обозначим внешний угол как ∠СВD (для этого мы просто добавили точку Dна продолжение отрезка АВ). Далее проводим биссектрису ВК. Нам требуется доказать, что ВК||АС.

Поступим очень просто – обозначим неизвестную нам величину угла при основании как х. То есть

30 treugolnik

В результате мы получили, что и ∠С, и ∠CBK равны х, то есть они равны и друг другу. Однако эти углы являются накрест лежащими для прямых АС и ВК и секущей ВС. Из равенства накрест лежащих углов следует, что АС||ВК.

31 treugolnik

Задание. В ∆АВС проведена медиана АМ, причем ее длина равна ВМ. Найдите ∠А.

Решение. Напомним, что медиана – это прямая, разбивающая сторону на два равных отрезка. То есть ВМ = МС. По условию АМ = ВМ, значит, имеет место двойное равенство:

32 treugolnik

Посмотрите на рисунок – здесь есть сразу два рав-бедр. треуг-ка! Это ∆АВМ (с основанием АВ) и ∆АМС (с основанием АМС). Обозначим∠В как х, а ∠С – как у. Углы при основании рав-бедр. треуг-ков одинаковы, а потому

33 treugolnik

34 treugolnik

Сравнение сторон и углов треугольника

Докажем следующую теорему:

35 treugolnik

Построим ∆АВС, в котором сторона АВ будет длиннее, чем АС. Нам надо доказать, что ∠С >∠B:

36 treugolnik

Выполним дополнительное построение – отметим на прямой АВ такую точку D, что AD = АС. Точка D будет располагаться на отрезке АВ, ведь АВ больше АС, а, значит, и больше АD. Также соединим C и D отрезком:

37 treugolnik

Теперь рассмотрим ∆ADC. Он является рав-бедр., ведь AD = AC. Из этого следует, что ∠ADC = ∠ACD.

Можно заметить, что ∠АDС является внешним углом для ∆BDC. Это значит, что

38 treugolnik

Мы доказали только первую часть теоремы. Теперь надо доказать обратное утверждение – против большего угла находится большая сторона треугольника. Предположим обратное, что существует ∆АВС, в котором ∠С>∠B, но не выполняется условие АВ >AC. Тогда либо АВ = ВС, либо АВ <ВС. Первый вариант означает, что ∆АВС – рав-бедр., но тогда ∠С =∠B, что противоречит условию. Если же АВ <ВС, то по только что доказанному утверждению ∠С<∠B, что также противоречит исходному условию. Поэтому АВ >AC.

Задание. В ∆АВС известны углы:

39 treugolnik

Запишите стороны этого треуг-ка в порядке возрастания.

Решение. Всё очень просто – чем больше сторона, тем против большего угла она лежит. Поэтому самая большая сторона – это АВ, вторая по длине – АС, а наименьшая сторона – ВС. То есть BС<AС<AВ:

40 treugolnik

Доказанная теорема помогает сформулировать важный признак рав-бедр. треуг-ка:

41 treugolnik

Действительно, против равных углов должны лежать равные стороны, в противном случае сложится ситуация, когда в треуг-ке против сторон разной длины будут лежать равные углы, что невозможно.

Задание. В рав-бедр. ∆АВС основанием является АС. Из точек А и С проведены биссектрисы, которые пересеклись в точке О. Докажите, что ∆АОС также является рав-бедр.

Решение.

42 treugolnik

Ясно, что ∠ВАС = ∠ВСА, так как это углы при основании рав-бедр. ∆АВС. С другой стороны, ∠ОАС равен половине ∠ВАС, ведь АО – биссектриса:

43 treugolnik

В итоге имеем, что ∠ОАС и ∠АСО равны. Но тогда в ∆АОС есть два одинаковых угла, а потому он является рав-бедр. (АО = ОС).

Неравенство треугольника

Следующая важная теорема называется неравенством треугольника:

44 treugolnik

Попробуем доказать неравенство треугольника. Возьмем произвольный ∆АВС и покажем, что сторона АВ меньше, чем величина ВС + АС. Для этого «дорисуем» к отрезку АС ещё один отрезок СD, равный BC, при этом АС и СD должны лежать на одной прямой:

45 treugolnik

Так как AD = АС + СD, то нам достаточно показать, что АВ <AD. Ясно, что ∆ВСD является рав-бедр., ведь ВС = СD. Это значит, что

46 treugolnik

Получается, что в ∆АВD сторона АВ лежит против меньшего угла по сравнению со стороной АD. Значит, эта сторона должна быть меньше АD, что мы и пытаемся доказать.

Доказанная теорема означает, что не всякий треуг-к можно построить по его сторонам. Так, у нас никогда не получится построить треуг-к, у которого стороны равны 2, 3 и 7 см, так как одна из этих длин больше, чем сумма двух других:

7 > 2 + 3

Верно обратное утверждение – если все заданные длины удовлетворяют неравенству, то треуг-к построить можно.

Задание. Известны две стороны равнобедренного треугольника, они равны 25 и 10 см. Какая из них является основанием?

Решение. Рассмотрим сперва случай, когда основание равно 25 см. Тогда две другие стороны имеют длину 10 см. Их сумма (10 см + 10 см = 20 см) меньше основания. Такая ситуация невозможно из-за неравенства треуг-ка.

Ситуация же, при которой основание имеет длину 10 см, вполне допустима. Тогда две другие стороны равны 25 см, и для каждой стороны неравенство треуг-ка выполняется:

47 treugolnik

«Свойства сторон и углов треугольника
+ ЗАДАЧИ по теме»



Свойства сторон и углов треугольника + ЗАДАЧИ по теме

Свойства углов
1. Сумма углов треугольника равна 180°.
2. Внешний угол треугольника — угол, смежный с углом треугольника.
3. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
4. Внешний угол треугольника больше угла треугольника, не смежного с ним.
5. В треугольнике против большей стороны лежит больший угол, против большего угла — большая сторона.

ПРИМЕРЫ РЕШЕНИЯ КЛЮЧЕВЫХ ЗАДАЧ

Задача № 1.
Дано: AB = BC, CD AB, ∠ABC = 32. Найти: ∠ACD

Свойства сторон и углов треугольника. Задача 1

Задача № 2.
Дано: ABC, AB = BC, ∠DBC — внешний угол ABC, ∠DBC = 52. Найти: ∠BAC, ∠BCA.

Свойства сторон и углов треугольника. Задача 2

Задача № 3.
Дано: ABC, AB = BC, ∠C = 64, AD — биссектриса ∠A. Найти: ∠ADB.

Свойства сторон и углов треугольника. Задача 3

Задача № 4.
Дано: AD = DB, BK = KC, ∠BAD = 38, ∠BCK = 26. Найти: ∠BDK, ∠BKD, ∠DBK.

Свойства сторон и углов треугольника. Задача 4


Это конспект по теме «Свойства сторон и углов треугольника». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Прямоугольный треугольник
  • Вернуться к Списку конспектов по геометрии

Цитаты из учебника геометрии для 7 класса. Глава 4 «Соотношения между сторонами и углами треугольника» (УМК Атанасян и др.) Ознакомительная версия перед покупкой книги. Цитаты из учебника представлены в учебных целях. Вернуться в Оглавление учебника по геометрии.


§ 1. Сумма углов треугольника.

Содержание параграфа: 31. Теорема о сумме углов треугольника. 32. Остроугольный, прямоугольный и тупоугольный треугольники.


§ 2. Соотношения между сторонами
и углами треугольника.

Содержание параграфа: 33. Теорема о соотношениях между сторонами и углами треугольника.
34. Неравенство треугольника…


§ 3. Прямоугольный треугольник

Содержание параграфа: 35. Некоторые свойства прямоугольных треугольников. 36. Признаки равенства прямоугольных треугольников. 37*. Уголковый отражатель.


§ 4. Построение треугольника
по трём элементам.

Содержание параграфа: 38. Расстояние от точки до прямой. Расстояние между параллельными прямыми.
39. Построение треугольника по трём элементам.


Вы смотрели «Геометрия Атанасян Глава 4». Цитаты из учебника геометрии для 7 класс (УМК Атанасян и др.)

§ 1. Сумма углов треугольника.
31. Теорема о сумме углов треугольника. 32. Остроугольный, прямоугольный и тупоугольный треугольники.

§ 2. Соотношения между сторонами и углами треугольника.
33. Теорема о соотношениях между сторонами и углами треугольника. 34. Неравенство треугольника…

§ 3. Прямоугольный треугольник.
35. Некоторые свойства прямоугольных треугольников… 36. Признаки равенства прямоугольных треугольников. 37*. Уголковый отражатель.

§ 4. Построение треугольника по трём элементам.
38. Расстояние от точки до прямой. Расстояние между параллельными прямыми. 39. Построение треугольника по трём элементам.

Вернуться к Оглавлению учебника по геометрии (Атанасян).

Сумма углов треугольника равна (180°).

Pierad.png

Доказательство

Рассмотрим произвольный треугольник (KLM) и докажем, что

 (K) (+)

 (L) (+)

 (M =)

180°

.

1. Через вершину (L) параллельно стороне (KM) проведём прямую (a).

2. При пересечении параллельных прямых (a) и (KM) секущей (KL), углы, которые обозначаются (1), будут накрест лежащими углами,  а углы, обозначенные (2) — это накрест лежащие углы при пересечении этих же параллельных прямых секущей (ML).

Очевидно, сумма углов (1), (2) и (3) равна развёрнутому углу с вершиной (L), т. е. 

 (1) (+)

 (2) (+)

 (3 =)

180°

, или

 (K) (+)

 (L) (+)

 (M =)

180°

.

Теорема доказана.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна

90°

.

Следствие 2.  В равнобедренном прямоугольном треугольнике каждый острый угол равен

45°

.

Следствие 3.  В равностороннем треугольнике каждый угол равен

60°

.

Следствие 4.  В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Arejsl.png

Доказательство

Из равенств

 (KML) (+)

 (BML=)

180°

 и

 (K) (+)

 (L) (+)

 (KML =)

180°

 получаем, что

 (BML =)

 (K) (+)

 (L).

Остроугольный, прямоугольный и тупоугольный треугольники

Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.

Saurl.png

У треугольника (KLM) все углы острые.

Taisnl.png

У треугольника (KMN) угол (K = 90)

°

.

У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.

На рисунке (MN) — гипотенуза, (MK) и (KN) — катеты.

Platl.png

У треугольника (KLM) один угол тупой.

Понравилась статья? Поделить с друзьями:
  • Как найти трассировку системы на хонор 10i
  • Как найти клык рассвета в скайриме
  • Как побольше каналов найти на триколор
  • Как найти лучшие пос
  • Как составить условия в английском языке