Как найти угол зная скалярное произведение векторов

Нахождение угла между векторами с помощью скалярного произведения

Косинус угла между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2a12+a22⋅b12+b22.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2a12+a22⋅b12+b22).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}right).

Пример 1

Найти угол между векторами a⃗=(1;−1)vec{a}=(1; -1) и b⃗=(1;2).vec{b}=(1; 2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+(−1)⋅212+(−1)2⋅12+22=1−22⋅5=−110.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+(-1)cdot2}{sqrt{1^{2}+(-1)^{2}}cdot sqrt{1^{2}+2^{2}}}=frac{1-2}{sqrt{2}cdotsqrt{5}}=frac{-1}{sqrt{10}}.

(a⃗,b⃗^)=arccos⁡(−110)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-1}{sqrt{10}} right )=arccosleft ( frac{-sqrt{10}}{10} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-sqrt{10}}{10} right).

Пример 2

Найти угол между векторами a⃗=(2;3)vec{a}=(2; 3) и b⃗=(3;1).vec{b}=(3; 1).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅3+3⋅122+32⋅32+12=6+313⋅10=9130=9130130.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot3+3cdot1}{sqrt{2^{2}+3^{2}}cdot sqrt{3^{2}+1^{2}}}=frac{6+3}{sqrt{13}cdotsqrt{10}}=frac{9}{sqrt{130}}=frac{9sqrt{130}}{130}.

(a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{9sqrt{130}}{130} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(9130130).left ( widehat{vec{a},vec{b}} right )=arccos left ( frac{9sqrt{130}}{130} right ).

Косинус угла между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}.

Следовательно, угол между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле

(a⃗,b⃗^)=arccos⁡(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos⁡(a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+ b_{3}^{2}}}right).

Пример 3

Найти угол между векторами a⃗=(1;2;3)иb⃗=(1;−2;3).vec{a}=(1; 2; 3) и vec{b}=(1; -2; 3).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+2⋅(−2)+3⋅312+22+32⋅12+(−2)2+32=1−4+914⋅14=614=37.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+2cdot(-2)+3cdot3}{sqrt{1^{2}+2^{2}+3^{2}}cdot sqrt{1^{2}+(-2)^{2}+3^{2}}}=frac{1-4+9}{sqrt{14}cdotsqrt{14}}=frac{6}{14}=frac{3}{7}.

(a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).

Пример 4

Найти угол между векторами a⃗=(2;−1;−2)vec{a}=(2; -1; -2) и b⃗=(1;3;−2).vec{b}=(1; 3; -2).

cos⁡(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅1+(−1)⋅3+(−2)⋅(−2)22+(−1)2+(−2)2⋅12+32+(−2)2=2−3+49⋅14=33⋅14=114=1414.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot1+(-1)cdot3+(-2)cdot(-2)}{sqrt{2^{2}+(-1)^{2}+(-2)^{2}}cdot sqrt{1^{2}+3^{2}+(-2)^{2}}}=frac{2-3+4}{sqrt{9}cdotsqrt{14}}=frac{3}{3cdotsqrt{14}}=frac{1}{sqrt{14}}=frac{sqrt{14}}{14}.

(a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Ответ: (a⃗,b⃗^)=arccos⁡(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).

Нахождение угла между векторами с помощью векторного произведения

Синус угла между векторами можно вычислить по формуле: sin⁡(a⃗,b⃗^)=∣a⃗×b⃗∣∣a⃗∣⋅∣b⃗∣.sin(widehat{vec{a},vec{b}})=frac{left | vec{a}times vec{b} right |}{left | vec{a} right |cdotleft | vec{b} right |}.

Пример 1

Найти угол между векторами a⃗=(2;−1;2)vec{a}=(2;-1;2) и b⃗=(3;0;1).vec{b}=(3;0;1).

a⃗×b⃗=∣ijk2−12301∣=(−1−0)i−(2−6)j+(0+3)k=−i+4j+3k.vec{a}times vec{b}=begin{vmatrix}i&j&k\2&-1&2\3&0&1end{vmatrix}=(-1-0)i-(2-6)j+(0+3)k=-i+4j+3k.

∣a⃗×b⃗∣=(−1)2+42+32=1+16+9=26.left | vec{a}times vec{b} right |=sqrt{(-1)^{2}+4^{2}+3^{2}}=sqrt{1+16+9}=sqrt{26}.

∣a⃗∣=22+(−1)2+22=4+1+4=9=3.left | vec{a} right |=sqrt{2^{2}+(-1)^{2}+2^{2}}=sqrt{4+1+4}=sqrt{9}=3.

∣b⃗∣=32+02+12=9+0+1=10.left | vec{b} right |=sqrt{3^{2}+0^{2}+1^{2}}=sqrt{9+0+1}=sqrt{10}.

sin⁡(a⃗,b⃗^)=26310=132325=1335=6515.sin(widehat{vec{a},vec{b}})=frac{sqrt{26}}{3sqrt{10}}=frac{sqrt{13}sqrt{2}}{3sqrt{2}sqrt{5}}=frac{sqrt{13}}{3sqrt{5}}=frac{sqrt{65}}{15}.

(a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).

Пример 2

Найти угол между векторами a⃗=(1;1;3)vec{a}=(1;1;3) и b⃗=(0;1;1).vec{b}=(0;1;1).

a⃗×b⃗=∣ijk113011∣=(1−3)i−(1−0)j+(1−0)k=−2i−j+k.vec{a}times vec{b}=begin{vmatrix}i&j&k\1&1&3\0&1&1end{vmatrix}=(1-3)i-(1-0)j+(1-0)k=-2i-j+k.

∣a⃗×b⃗∣=(−2)2+(−1)2+12=4+1+1=6.left | vec{a}times vec{b} right |=sqrt{(-2)^{2}+(-1)^{2}+1^{2}}=sqrt{4+1+1}=sqrt{6}.

∣a⃗∣=12+12+32=1+1+9=11.left | vec{a} right |=sqrt{1^{2}+1^{2}+3^{2}}=sqrt{1+1+9}=sqrt{11}.

∣b⃗∣=02+12+12=0+1+1=2.left | vec{b} right |=sqrt{0^{2}+1^{2}+1^{2}}=sqrt{0+1+1}=sqrt{2}.

sin⁡(a⃗,b⃗^)=6112=32112=311=3311.sin(widehat{vec{a},vec{b}})=frac{sqrt{6}}{sqrt{11}sqrt{2}}=frac{sqrt{3}sqrt{2}}{sqrt{11}sqrt{2}}=frac{sqrt{3}}{sqrt{11}}=frac{sqrt{33}}{11}.

(a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Ответ: (a⃗,b⃗^)=arcsin⁡(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).

Тест по теме “Как найти угол между двумя векторами”

Два вектора

a→

и

b→

 всегда образуют угол.

Угол между векторами может принимать значения от

до

180°

включительно.

Если векторы не параллельны, то их можно расположить на пересекающихся прямых.

Векторы могут образовать:

1. острый угол;

Lenkis_vekt4.png

2. тупой угол;

Lenkis_vekt5.png

3. прямой угол (векторы перпендикулярны).

Lenkis_vekt2.png

Если векторы расположены на параллельных прямых, то они могут образовать:

4. угол величиной

 (векторы сонаправлены);

Lenkis_vekt1.png

5. угол величиной

180°

 (векторы противоположно направлены).

Lenkis_vekt3.png

Если один из векторов или оба вектора нулевые, то угол между ними будет равен

.

Угол между векторами записывают так:

Скалярное произведение векторов

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

a→⋅b→=a→⋅b→⋅cosa→b→ˆ

.

Результат скалярного произведения векторов является числом (в отличие от результата рассмотренных ранее действий с векторами — сложения, вычитания и умножения на число. В таких случаях результатом был вектор). При умножении вектора на вектор получается число, так как длины векторов — это числа, косинус угла — число — соответственно, их произведение также будет являться числом.

1. Если угол между векторами острый, то скалярное произведение будет положительным числом (так как косинус острого угла — положительное число). 

Если векторы сонаправлены, то угол между ними будет равен

, а косинус равен (1), скалярное произведение также будет положительным.

2. Если угол между векторами тупой, то скалярное произведение будет отрицательным (так как косинус тупого угла — отрицательное число). 

Если векторы направлены противоположно, то угол между ними будет равен

180°

. Скалярное произведение также отрицательно, так как косинус этого угла равен (-1).

Справедливы и обратные утверждения:

1. Если скалярное произведение векторов — положительное число, то угол между данными векторами острый.

2. Если скалярное произведение векторов — отрицательное число, то угол между данными векторами тупой.

Особенный третий случай!

Обрати внимание!

3. Если угол между векторами прямой, то скалярное произведение векторов равно нулю, так как косинус прямого угла равен (0).

Обратное суждение: если скалярное произведение векторов равно нулю, то эти векторы перпендикулярны.

Вектор, умноженный на самого себя, будет числом, которое называется скалярным квадратом вектора. Скалярный квадрат вектора  равен квадрату длины данного вектора и обозначается как 

a→2

.

Свойства скалярного произведения

Для любых векторов и любого числа справедливы следующие свойства:

1.

a→2≥0

, к тому же

a→2>0

, если

a→≠0→

.

2. Переместительный, или коммутативный, закон скалярного произведения:

a→⋅b→=b→⋅a→

.

3. Распределительный, или дистрибутивный, закон скалярного произведения:

a→+b→⋅c→=a→⋅c→+b→⋅c→

.

4. Сочетательный, или ассоциативный, закон скалярного произведения:

k⋅a→⋅b→=k⋅a→⋅b→

.

Использование скалярного произведения

Удобно использовать скалярное произведение векторов для определения углов между прямыми и между прямой и плоскостью.

Угол между прямыми

Ознакомимся с ещё одним определением.

Вектор называют направляющим вектором прямой, если он находится на прямой или параллелен этой прямой.

Taisne_vektors.png

Чтобы определить косинус угла между прямыми, надо определить косинус угла между направляющими векторами этих прямых, то есть найти векторы, параллельные прямым, и определить косинус угла между векторами.

Для этого необходимо рассмотреть определение скалярного произведения, если векторы даны в координатной системе.

Если

a→x1;y1;z1

,

b→x2;y2;z2

, то

a→⋅b→=x1⋅x2+y1⋅y2+z1⋅z2

.

Прежде была рассмотрена формула определения длины вектора в координатной форме.

Теперь, объединив эти формулы, получим формулу для определения косинуса угла между векторами в координатной форме. Так как из формулы скалярного произведения следует, что

cosα=a→⋅b→a→⋅b→

, то

cosα=x1⋅x2+y1⋅y2+z1⋅z2x12+y12+z12 ⋅x22+y22+z22

.

Угол между прямой и плоскостью

Введём понятие о нормальном векторе плоскости.

Нормальный вектор плоскости — это любой ненулевой вектор, лежащий на прямой, перпендикулярной к данной плоскости.

Plakne_vektors.png

Используя следующий рисунок, легко доказать, что косинус угла

β

между нормальным вектором

n→

 данной плоскости и неким вектором

b→

 равен синусу угла

α

между прямой и плоскостью, так как

α

и

β

 вместе образуют угол в

90°

.

Plakne_vektors_lenkis.png

При нахождении косинуса угла между

n→

и

b→

можно использовать это число как синус угла между прямой, на которой лежит вектор

b→

, и плоскостью.

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Угол между векторами

Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.

Определение 1

Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).

Угол между векторами. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.

Обозначение: $∠(overline{α},overline{β})$

Нахождение угла между векторами в пространстве с помощью скалярного произведения

Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.

Определение 2

Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.

Математически это может выглядеть следующим образом:

$overline{δ}overline{β}=|overline{δ}||overline{β}|cos∠(overline{δ},overline{β})$

Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.

Теорема 1

Скалярное произведение двух данных векторов $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.

Математически выглядит следующим образом

$overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$

«Как найти угол между векторами» 👇

Обозначение: $overline{δ}cdot overline{β}$.

С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что

$cos∠(overline{δ},overline{β})=frac{overline{δ}cdot overline{β}}{|overline{δ}||overline{β}|}$

Из теоремы 1 мы знаем, что $overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{|overline{δ}||overline{β}|}$

Расписывая по формуле длины вектора значения $|overline{δ}|$ и $|overline{β}|$, окончательно получим

$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{sqrt{δ_1^2+β_1^2+γ_1^2 } sqrt{δ_2^2+β_2^2+γ_2^2}}$

Найдя значение косинуса, мы легко найдем и значение самого угла.

Пример 1

Найти косинус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем скалярное произведение между данными векторами через координаты:

$overline{δ}cdot overline{β}=1cdot 3+(-2)cdot 0+2cdot 4=11$

Найдем длины этих векторов:

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$cos⁡∠(overline{δ},overline{β})=frac{11}{3cdot 5}=frac{11}{15}$

Ответ: $frac{11}{15}$.

Нахождение угла между векторами с помощью векторного произведения

Вспомним сначала, определение векторного произведения и каким образом его можно находить.

Определение 3

Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Обозначение: $overline{δ}хoverline{β}$.

Математически это выглядит следующим образом:

  1. $|overline{δ}хoverline{β}|=|overline{δ}||overline{β}|sin⁡∠(overline{δ},overline{β})$
  2. $overline{δ}хoverline{β}⊥overline{δ}$, $overline{δ}хoverline{β}⊥overline{β}$
  3. $(overline{δ}хoverline{β},overline{δ},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

Векторное произведение. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ

Для нахождения вектора векторного произведения можно пользоваться следующей формулой:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}$

С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что

${sin angle left(overrightarrow{delta },overrightarrow{beta }right) }=frac{left|overrightarrow{delta }хoverrightarrow{beta }right|}{left|overrightarrow{delta }right||overrightarrow{beta }|}$

Найдем вектор векторного произведения по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$

Расписывая по формуле длины вектора значения $|overline{δ}|$, $|overline{β}|$ и $|overline{δ}хoverline{β}|$, окончательно получим

$sin∠(overline{δ},overline{β})=frac{sqrt{(δ_2 β_3-δ_3 β_2)^2+(δ_3 β_1-δ_1 β_3)^2+(δ_1 β_2-δ_2 β_1)^2}}{sqrt{δ_1^2+δ_2^2+δ_3^2}sqrt{β_1^2+β_2^2+β_3^2}}$

Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.

Пример 2

Найти синус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.

Решение.

Найдем вектор векторного произведения между данными векторами по формуле:

$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&-2&2\3&0&4end{vmatrix}=-8overline{i}+2overline{j}+6overline{k}=(-8,1,6)$

Найдем длины этих векторов:

$|overline{δ}хoverline{β}|=sqrt{(-8)^2+2^2+6^2}=sqrt{104}=2sqrt{26}$

$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$

$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$

В результате, получим

$sin∠(overline{δ},overline{β})=frac{2sqrt{26}}{3cdot 5}=frac{2sqrt{26}}{15}$

Ответ: $frac{2sqrt{26}}{15}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме


Загрузить PDF


Загрузить PDF

Математики и физики часто вычисляют угол между двумя данными векторами. Для вычисления такого угла применяют формулу, которая основана на скалярном произведении векторов. Формула может применяться для векторов как в двумерном, так и в многомерном пространствах.

  1. Изображение с названием Find the Angle Between Two Vectors Step 01

    1

    Запишите информацию о двух векторах. В этой статье мы будем рассматривать векторы в двумерном пространстве.[1]
    Если длины векторов вам даны, пропустите некоторые из следующих шагов.

  2. Изображение с названием Find the Angle Between Two Vectors Step 02

    2

    Запишите формулу. Чтобы найти угол θ между двумя векторами, начните с нахождения косинуса этого угла. (Об этой формуле мы расскажем в следующем разделе.)[2]

  3. Изображение с названием Find the Angle Between Two Vectors Step 03

    3

    Вычислите скалярное произведение двух векторов.[3]
    Для этого перемножьте соответствующие компоненты двух векторов и сложите полученные значения.[4]

  4. Изображение с названием Find the Angle Between Two Vectors Step 04

    4

    Вычислите длину каждого вектора. Нарисуйте прямоугольный треугольник, сторонами которого будет сам вектор (гипотенуза), его х-компонента и его у-компонента (катеты). Теперь найдите длину вектора при помощи теоремы Пифагора (ее можно применять к многокомпонентным векторам).[5]

  5. Изображение с названием Find the Angle Between Two Vectors Step 05

    5

  6. Изображение с названием Find the Angle Between Two Vectors Step 06

    6

    Найдите угол по его косинусу. Вы можете использовать кнопку arccos или cos-1 на калькуляторе, чтобы найти угол θ по известному значению cosθ. В некоторых случаях вы можете найти угол, пользуясь единичной окружностью.

    Реклама

‘.

  1. Изображение с названием Become a College Professor Step 17

    1

    Эта формула была выведена для определения скалярного произведения двух векторов и угла между ними.[6]
    Но эту формулу не взяли «с потолка». Она была выведена, основываясь на геометрических принципах.

    • Приведенные ниже примеры рассматривают двумерные вектора (потому что с ними проще работать). Векторы с тремя или более компонентами имеют свойства, определяемые аналогичной формулой.
  2. Изображение с названием Find the Angle Between Two Vectors Step 08

    2

    Теорема косинусов. Рассмотрите произвольный треугольник с углом θ между сторонами а и b и противоположной ему стороной с. Теорема косинусов гласит: c2 = a2 + b2 -2abcos(θ).[7]

  3. Изображение с названием Find the Angle Between Two Vectors Step 09

    3

    Соедините два вектора так, чтобы получить треугольник. Нарисуйте два двумерных вектора {overrightarrow  {a}} и {overrightarrow  {b}} с углом θ между ними. Проведите третий вектор так, чтобы получился треугольник. Другими словами, нарисуйте вектор {overrightarrow  {c}} так, чтобы {overrightarrow  {a}} + {overrightarrow  {c}} = {overrightarrow  {b}}. Таким образом, {overrightarrow  {c}} = {overrightarrow  {a}}{overrightarrow  {b}}.[8]

  4. Изображение с названием Find the Angle Between Two Vectors Step 10

    4

    Запишите теорему косинусов для полученного треугольника:

    • ||(a — b)||2 = ||a||2 + ||b||2 — 2||a|| ||b||cos(θ)
  5. Изображение с названием Find the Angle Between Two Vectors Step 11

    5

    Перепишите полученное уравнение через скалярное произведение двух векторов. Скалярное произведение – это умножение длины вектора «x» на проекцию вектора «y» на вектор «x». Но скалярное произведение вектора на самого себя не требует каких-либо проекций.[9]
    Это означает, что {overrightarrow  {a}}{overrightarrow  {a}} = ||a||2/. Используйте этот факт, чтобы переписать уравнение в виде:

  6. Изображение с названием Find the Angle Between Two Vectors Step 12

    6

    Раскройте скобки в левой части уравнения и упростите его.

    Реклама

Советы

  • Для ускорения решения используйте следующую формулу для любой пары двумерных векторов: cosθ = (u1 • v1 + u2 • v2) / (√(u12 • u22) • √(v12 • v22)).
  • Если вы работаете на компьютере в графической программе, вам, скорее всего нужно только направление вектора, а не длина. Используйте эти шаги, чтобы упростить уравнения и ускорить вашу программу:[10]
    [11]
  • На основе описанной формулы вы можете быстро определить, является ли угол острым или тупым. Начните с cosθ = ({overrightarrow  {u}}{overrightarrow  {v}}) / (||{overrightarrow  {u}}|| ||{overrightarrow  {v}} ||):
    • Левая сторона и правая стороны уравнения должны иметь одинаковый знак (положительный или отрицательный).
    • Так как длины всегда положительны, cosθ должен иметь тот же знак, что и скалярное произведение.
    • Таким образом, если скалярное произведение положительно, cosθ положителен. В этом случае угол лежит в первом квадранте единичного круга (θ <π/2 или 90º). Угол острый.
    • Если скалярное произведение отрицательно, cosθ тоже отрицателен. Угол лежит во втором квадранте единичного круга (π/2<θ ≤ π или 90º<θ ≤180º). Угол тупой.

Реклама

Об этой статье

Эту страницу просматривали 30 088 раз.

Была ли эта статья полезной?

Угол между векторами

Иногда студенты при решении задач аналитической геометрии сталкиваются с вопросом: «Как найти угол между векторами?». Чтобы решить такую задачу нужно сначала найти косинус угла между ними, а затем и сам угол. Для этого применяется такая формула: $$ phi = arccos(cos phi) $$

Если воспользоваться данной формулой, то сначала нужно найти угол между векторами $ cos phi $. Затем находим арккосинус от косинуса угла $ phi $. А чему равен $ cos phi $? Для его нахождения необходимо воспользоваться следующими формулами.

Формула

Если векторы расположены на плоскости и координаты их заданы в виде: $ overline{a} = (a_x; a_y) $ и $ overline{b} = (b_x; b_y) $, то найти угол между ними можно так:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{a_xcdot b_x + a_y cdot b_y}{sqrt{a_x ^2 + a_y ^2}cdot sqrt{b_x ^2 + b_y ^2}} $$

Если вектора находятся в пространстве и координаты каждого из них заданы в виде: $ overline{a} = (a_x; a_y; a_z) $ и $ overline{b} = (b_x; b_y; b_z) $, то вычислить косинус угла следует по формуле:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{a_xcdot b_x + a_y cdot b_y + a_z cdot b_z}{sqrt{a_x ^2 + a_y ^2 + a_z ^2}cdot sqrt{b_x ^2 + b_y ^2 + b_z ^2}} $$

Пояснение. В числителе расположено скалярное произведение векторов $ overline{a} $ и $ overline{b} $. Оно равно сумме произведений соответствующих координат. В знаменателе перемножаются модули (длины) векторов.

Примеры решений

Пример 1
Найти угол между векторами $ overline{a} = (2;4) $ и $ overline{b} = (3;1) $
Решение

Сначала находим косинус угла между векторами по формуле:

$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}| cdot |overline{b}|} = frac{2cdot 3 + 4 cdot 1}{sqrt{2^2 + 4^2} cdot sqrt{3^2 + 1^2} } = frac{10}{sqrt{20} cdot sqrt{10}} = $$

$$ = frac{10}{sqrt{200}} = frac{1}{sqrt{2}} = frac{sqrt{2}}{2} $$

Теперь искомый угол $ phi $ находим по другой формуле:

$$ phi = arccos (cos phi) = arccos (cos frac{sqrt{2}}{2}) = 45^0 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Угол между двумя векторами равен $ phi = 45^0 $
Пример 2
Найти угол $ phi $ между двумя векторами $ overline{a} = (8;-11;7) $ и $ overline{b} = (-2;-7;8) $
Решение

Подставляем координаты в формулу и вычисляем:

$$ cos phi = frac{8cdot (-2) + (-11)cdot (-7) + 7cdot 8}{sqrt{8^2+(-11)^2+7^2} cdot sqrt{(-2)^2+(-7)^2+8^2} } = $$

$$ = frac{-16+77+56}{sqrt{234} cdot sqrt{117}} = frac{117}{sqrt{234} cdot sqrt{117}} = $$

$$ = frac{sqrt{117}}{sqrt{234}} = frac{1}{sqrt{2}} = frac{sqrt{2}}{2} $$

Далее находим сам угол $ phi $ с помощью арккосинуса:

$$ phi = arccos frac{sqrt{2}}{2} = 45^0 $$

Ответ
Угол $ phi = 45^0 $

Понравилась статья? Поделить с друзьями:
  • Как найти сектор в комнате
  • Как можно найти работу в чите
  • Как найти ip адрес для epson
  • Как составить распорядок дня школьник
  • Тайм менеджмент как найти время