Как найти уравнение функции по заданных точках

Вывести уравнение прямой по координатам двух точек

По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.

Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.

Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.

Алгоритм решения данной задаче на языке программирования будет таков:

  1. Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
  2. Получить значения координат ( x2, y2 ) второй точки.
  3. Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
  4. Вычислить значение b по формуле b = y2 — k * x2 .
  5. Вывести на экран полученное уравнение.

Аппроксимация функции одной переменной

Калькулятор использует методы регрессии для аппроксимации функции одной переменной.

Данный калькулятор по введенным данным строит несколько моделей регрессии: линейную, квадратичную, кубическую, степенную, логарифмическую, гиперболическую, показательную, экспоненциальную. Результаты можно сравнить между собой по корреляции, средней ошибке аппроксимации и наглядно на графике. Теория и формулы регрессий под калькулятором.

Если не ввести значения x, калькулятор примет, что значение x меняется от 0 с шагом 1.

Аппроксимация функции одной переменной

Линейная регрессия

Коэффициент линейной парной корреляции:

Средняя ошибка аппроксимации:

Квадратичная регрессия

Система уравнений для нахождения коэффициентов a, b и c:

Коэффициент корреляции:
,
где

Средняя ошибка аппроксимации:

Кубическая регрессия

Система уравнений для нахождения коэффициентов a, b, c и d:

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Степенная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Показательная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Гиперболическая регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Логарифмическая регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Экспоненциальная регрессия

Коэффициент корреляции, коэффициент детерминации, средняя ошибка аппроксимации — используются те же формулы, что и для квадратичной регрессии.

Вывод формул

Сначала сформулируем задачу:
Пусть у нас есть неизвестная функция y=f(x), заданная табличными значениями (например, полученными в результате опытных измерений).
Нам необходимо найти функцию заданного вида (линейную, квадратичную и т. п.) y=F(x), которая в соответствующих точках принимает значения, как можно более близкие к табличным.
На практике вид функции чаще всего определяют путем сравнения расположения точек с графиками известных функций.

Полученная формула y=F(x), которую называют эмпирической формулой, или уравнением регрессии y на x, или приближающей (аппроксимирующей) функцией, позволяет находить значения f(x) для нетабличных значений x, сглаживая результаты измерений величины y.

Для того, чтобы получить параметры функции F, используется метод наименьших квадратов. В этом методе в качестве критерия близости приближающей функции к совокупности точек используется суммы квадратов разностей значений табличных значений y и теоретических, рассчитанных по уравнению регрессии.

Таким образом, нам требуется найти функцию F, такую, чтобы сумма квадратов S была наименьшей:

Рассмотрим решение этой задачи на примере получения линейной регрессии F=ax+b.
S является функцией двух переменных, a и b. Чтобы найти ее минимум, используем условие экстремума, а именно, равенства нулю частных производных.

Используя формулу производной сложной функции, получим следующую систему уравнений:

Для функции вида частные производные равны:
,

Подставив производные, получим:

Откуда, выразив a и b, можно получить формулы для коэффициентов линейной регрессии, приведенные выше.
Аналогичным образом выводятся формулы для остальных видов регрессий.

Как найти функцию зная только точки?

Судя по всему, то, о чем Вы говорите — аппроксимация функции. В Википедии более подробна статья про интерполяцию.

По сути, Ваша задача сводится к 2м шагам:
1. По точкам и общим зависимостям выбирается форма функции (например, полиномиальная, экспоненциальная и.т.п).
2. Строится модель, в которой задаётся функция с неизвестными параметрами. Задача — найти такие параметры, чтобы минимизировать функцию невязки(часто это квадрат разности между реальными значениями в заданых точках и значениями модельной функции, см. МНК).

источники:

http://planetcalc.ru/5992/

http://qna.habr.com/q/5823

Судя по всему, то, о чем Вы говорите — аппроксимация функции. В Википедии более подробна статья про интерполяцию.

По сути, Ваша задача сводится к 2м шагам:
1. По точкам и общим зависимостям выбирается форма функции (например, полиномиальная, экспоненциальная и.т.п).
2. Строится модель, в которой задаётся функция с неизвестными параметрами. Задача — найти такие параметры, чтобы минимизировать функцию невязки(часто это квадрат разности между реальными значениями в заданых точках и значениями модельной функции, см. МНК).

Если известны некоторые значения x и y на графике, то можно найти коэффициент и свободный член данной функции. Допустим линейная зависимость y=kx+b. Например нам известно, что при x = 2, y = 5 и при х = 3, у = 4,5. Составим систему уравнений, подставив известные значения х и у: {2k+b=5; 3k+b=4,5}, решив систему, нетрудно догадаться, что k=-0,5; b=6;
В итоге наша функция принимает вид y=-0,5x+6

Да, это численные методы. Ищите по словам «Аппроксимация» и «Интерполяция». Из книг могу порекомендовать: Дьяконов В.П. Справочник по алгоритмам и программам на языке Бейсик для персональных ЭВМ. У меня бумажное издание 1989 года. В Гугле можно найти в DJVU. Примеры на Бейсике позволяет запрограммировать нужный метод на вашем любимом языке программирования, даже не вникая в их суть. А вообще если есть время и желание, разберитесь, это довольно интересно :)

Как по точкам найти функцию

Во многих случаях данные статистики или измерений какого-либо процесса бывают представлены в виде набора дискретных значений. Но для того, чтобы на их основе построить непрерывный график, нужно по этим точкам найти функцию. Сделать это можно путем интерполяции. Для этого хорошо подходит полином Лагранжа.

Как по точкам найти функцию

Вам понадобится

  • — бумага;
  • — карандаш.

Инструкция

Определите степень полинома, который будет использован для интерполирования. Он имеет вид: Кn*Х^n + К(n-1)*Х^(n-1) +… + К0*Х^0. Число n здесь на 1 меньше количества известных точек с различными Х, через которые должна проходить результирующая функция. Поэтому просто пересчитайте точки и отнимите от полученного значения единицу.

Определите общей вид искомой функции. Поскольку Х^0 = 1, то она примет вид: f(Хn) = Кn*Х^n + К(n-1)*Х^ (n-1) +… + К1*Х + К0, где n — найденное на первом шаге значение степени полинома.

Начните составление системы линейных алгебраических уравнений с целью нахождения коэффициентов интерполирующего полинома. Исходный набор точек задает ряд соответствий значений координат Хn искомой функции по оси абсцисс и оси ординат f(Хn). Поэтому поочередная подстановка величин Хn в полином, значение которого будет равно f(Хn), позволяет получить нужные уравнения:
Кn*Хn^n + К(n-1)*Хn^ (n-1) +… + К1*Хn + К0 = f(Хn)
Кn*Х(n-1)^n + К(n-1)*Х(n-1)^ (n-1) +… + К1*Х(n-1) + К0 = f(Х(n-1))

Кn*Х1n + К(n-1)*Х1^ (n-1) + … + К1*Х1 + К0 = f(Х1).

Представьте систему линейных алгебраических уравнений в удобном для решения виде. Вычислите значения Хn^n… Х1^2 и Х1…Хn, а затем подставьте их в уравнения. При этом значения (также известные) перенесите в левую часть уравнений. Получится система вида:
Сnn*Кn + Сn(n-1)*К(n-1) +… + Сn1*К1 + К0 — Сn = 0
С(n-1)n*Кn + С(n-q)(n-1)*К(n-1) +… + С(n-1)1*К1 + К0 — С(n-1) = 0

С1n*Кn + С1(n-1)*К(n-1) +… + С11*К1 + К0 — С1 = 0
Здесь Сnn = Хn^n, а Сn = f(Хn).

Решите систему линейных алгебраических уравнений. Используйте любой известный способ. Например, метод Гаусса или Крамера. В результате решения будут получены значения коэффициентов полинома Кn…К0.

Найдите функцию по точкам. Подставьте коэффициенты Кn…К0, найденные в предыдущем шаге, в полином Кn*Х^n + К(n-1)*Х^ (n-1) +… + К0*Х^0. Данное выражение и будет являться уравнением функции. Т.е. искомая f(Х) = Кn*Х^n + К(n-1)*Х^ (n-1) +… + К0*Х^0.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Перейти к содержанию

Вывести уравнение прямой по координатам двух точек

Просмотров 23.2к. Обновлено 26 октября 2021

Общее уравнение прямой имеет вид y = kx + b. Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2. Задача сводится именно к нахождению этих коэффициентов.

Так как координаты точки это значения x и y, то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.

Решая полученную систему уравнений находим значения k и b:
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25

Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.

Вывод общих выражений для вычисления b и k:
| y1 = kx1 + b
| y2 = kx2 + b
b = y2 — kx2
y1 = kx1 + y2 — kx2
k = (y1 — y2) / (x1 — x2)

Алгоритм решения данной задаче на языке программирования будет таков:

  1. Получить значения координат первой точки и присвоить их переменным, например x1 и y1.
  2. Получить значения координат (x2, y2) второй точки.
  3. Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2).
  4. Вычислить значение b по формуле b = y2 — k * x2.
  5. Вывести на экран полученное уравнение.

Pascal

уравнение прямой по двум точкам паскаль


var
x1,y1,x2,y2: real;
k, b: real;

begin
write('A(x1;y1): '); readln(x1, y1);
write('B(x2;y2): '); readln(x2, y2);

k := (y1 - y2) / (x1 - x2);
b := y2 - k * x2;

writeln('y = ',k:0:2,'x + ',b:0:2);
end.



A(x1;y1):
1.2
5.6
B(x2;y2):
-3.45 8.2
y = -0.56x + 6.27

Язык Си


#include

main() {
float x1, y1, x2, y2, k, b;

printf("A(x1;y1): ");
scanf("%f%f", &x1,&y1);
printf("A(x2;y2): ");
scanf("%f%f", &x2,&y2);

k = (y1 - y2) / (x1 - x2);
b = y2 - k * x2;

printf("Уравнение прямой: y = %.2fx + %.2fn", k, b);
}



A(x1;y1): 5.67 -1.45
A(x2;y2): -3.12 4.00
Уравнение прямой: y = -0.62x + 2.07

Python

уравнение прямой по двум точкам python
уравнение прямой по двум точкам python


print("Координаты точки A(x1;y1):")
x1 = float(input("tx1 = "))
y1 = float(input("ty1 = "))

print("Координаты точки B(x2;y2):")
x2 = float(input("tx2 = "))
y2 = float(input("ty2 = "))

print("Уравнение прямой, проходящей через эти точки:")
k = (y1 - y2) / (x1 - x2)
b = y2 - k*x2
print(" y = %.2f*x + %.2f" % (k, b))



Координаты точки A(x1;y1):
x1 = 4.3
y1 = -1.2
Координаты точки B(x2;y2):
x2 = -8.5
y2 = 4
Уравнение прямой, проходящей через эти точки:
y = -0.41*x + 0.55

КуМир


алг уравнение_прямой
нач
вещ x1, y1, x2, y2, k, b
вывод "Координаты точки A(x1;y1): "
ввод x1, y1
вывод "Координаты точки B(x2;y2): "
ввод x2, y2
k := (y1 - y2) / (x1 - x2)
b := y2 - k * x2
вывод "Уравнение прямой: y = " + вещ_в_лит(k) + "x + " + вещ_в_лит(b)
кон



Координаты точки A(x1;y1): 4 9
Координаты точки B(x2;y2): -1 -3
Уравнение прямой: y = 2.4x + -0.6

Basic-256


input "x1 = ", x1
input "y1 = ", y1
input "x2 = ", x2
input "y2 = ", y2

k = (y1 - y2) / (x1 - x2)
b = y2 - k * x2

decimal 2
print "y = " + k + "x + " + b



x1 = 7.45
y1 = -1
x2 = -3.4
y2 = 3
y = -0.37x + 1.75

п.1. Уравнение касательной

Рассмотрим кривую (y=f(x)).
Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
Уравнение касательной
Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}

Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) — существует и конечна.

Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$

Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}

п.2. Алгоритм построения касательной

На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
Шаг 1. Найти значение функции в точке касания (f(x_0))
Шаг 2. Найти общее уравнение производной (f’ (x))
Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
На выходе: уравнение касательной в виде (y=kx+b)

Например:

Алгоритм построения касательной Пусть (f(x)=x^2+3).
Найдем касательную к этой параболе в точке (x_0=1).

(f(x_0)=1^2+3=4 )
(f'(x)=2x )
(f'(x_0)=2cdot 1=2)
Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

п.3. Вертикальная касательная

В случае, если производная (f'(x_0)=pminfty) — существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).

Внимание!

Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).

Например:

Вертикальная касательная Пусть (f(x)=sqrt[5]{x-1}+1).
Найдем касательную к этой кривой в точке (x_0=1).

(f(x_0)=sqrt[5]{1-1}+1=1)
(f'(x)=frac15(x-1)^{frac15-1}+0=frac15(x-1)^{-frac45}=frac{1}{5(x-1)^{frac45}} )
(f'(x_0)=frac{1}{5(1-1)^{frac45}}=frac10=+infty)
В точке (x_0) проходит вертикальная касательная.
Её уравнение: (x=1)
Ответ: (y=2x+2)

п.4. Примеры

Пример 1. Для функции (f(x)=2x^2+4x)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

Пример 1а Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0).
Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*}

б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

Пример 1б Общее уравнение касательной: (f'(x)=4x+4)
По условию (f'(x_0)=tgalpha=tg45^circ=1)
Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*}

в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

Пример 1в Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*}

г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

Пример 1г У горизонтальной прямой (k=0).
Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*}

Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$

Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

Угловой коэффициент данной прямой (k_1=11).
Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*} Пример 3
Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
и точка касания (8;-2), уравнение (-frac{x+14}{11})

Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b — для второй.
Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Пример 4
Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
Значит, (xinvarnothing) — решений нет, кривая и прямая не пересекаются.
Что и требовалось доказать.

Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
Уравнение касательной: (y=2(x-0)+0=2x)

Пример 5 Ищем расстояние между двумя параллельными прямыми:
(y=2x) и (y=2x-1).
Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

Уравнение перпендикуляра: (y=-frac x2).
Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
Ответ: (frac{sqrt{5}}{5})

Понравилась статья? Поделить с друзьями:
  • Как найти больницу для целевого обучения
  • Certain bad sector exists in dbr как исправить на флешке
  • Как найти родовую гробницу
  • Как найти репетитора для дошкольника
  • Как найти количество прореагировавшего вещества химия