Как найти уравнение используя график

Решение уравнений с помощью графиков

Решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.

Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.

Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение: ( displaystyle 2{x} -10=2)

Как его решить?

Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:

( displaystyle 2x=2+10)

( displaystyle 2x=12)

Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.

Иными словами, у нас будет:

( displaystyle {{y}_{1}}=2x)

( displaystyle {{y}_{2}}=12)

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата ( displaystyle x) точки пересечения графиков:

Наш ответ: ( displaystyle x=6)

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число ( displaystyle 6)!

Вариант 1. Напрямую

Просто строим параболу по данному уравнению: ( displaystyle {{x}^{2}}+2{x} -8=0)

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

( displaystyle x=-frac{b}{2a})

( displaystyle y=-frac{{{b}^{2}}-4ac}{4a})

Ты скажешь «Стоп! Формула для ( displaystyle y) очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни.

Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

( displaystyle x=frac{-2}{2}=-1)

( displaystyle y=-frac{{{2}^{2}}-4cdot left( -8 right)}{4}=-frac{4+32}{4}=-9)

Точно такой же ответ? Молодец!

И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, ( displaystyle 3).

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе.

Для нашего случая точка ( displaystyle Aleft( -1;-9 right)). Нам необходимо еще две точки, соответственно, ( displaystyle x) можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней?

Мне удобней работать с положительными, поэтому я рассчитаю при ( displaystyle x=0) и ( displaystyle x=2).

При ( displaystyle x=0):

( displaystyle y={{0}^{2}}+0-8=-8)

При ( displaystyle x=2):

( displaystyle y={{2}^{2}}+2cdot 2-8=0)

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения?

Правильно, точки, в которых ( displaystyle y=0), то есть ( displaystyle x=2) и ( displaystyle x=-4). Потому что ( displaystyle {{x}^{2}}+2{x} -8=0).

И если мы говорим, что ( displaystyle y={{x}^{2}}+2{x} -8), то значит, что ( displaystyle y) тоже должен быть равен ( displaystyle 0), или ( displaystyle y={{x}^{2}}+2{x} -8=0).

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.

Что у тебя получилось? То же самое?

Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

( displaystyle 4x<{{x}^{3}})?

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, – это с построения двух графиков:

( displaystyle {{y}_{1}}=4x)

( displaystyle {{y}_{2}}={{x}^{3}})

Я не буду расписывать для каждого таблицу – уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично!

Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть ( displaystyle {{y}_{2}}={{x}^{3}}).

Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график ( displaystyle {{y}_{1}}=4x)? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси ( displaystyle Ox) у нас ( displaystyle {{y}_{2}}={{x}^{3}}) находится выше, чем ( displaystyle {{y}_{1}}=4x)? Верно, ( displaystyle xin left( -2;0 right)cup left( 2;+infty right)).

Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; .

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Слайд 6 Найдите корни уравнения , используя графический способ решения уравнений (Рис. 5).

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение .

Для этого: в одной системе координат построить графики функций у1= и у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=воспользоваться встроенной функцией Корень (Рис. 11).
  • 2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    3 этап: Определение корней уравнения.

    Графики функций у1= и у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение имеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;


    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения с точностью до 0,001.

    • ввести функцию у=и построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    График линейной функции, его свойства и формулы

    О чем эта статья:

    Понятие функции

    Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

    Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

    Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

    Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

    Словесный способ.

    Графический способ — наглядно. Его мы и разберем в этой статье.

    График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

    Понятие линейной функции

    Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

    Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

    Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

    Если известно конкретное значение х, можно вычислить соответствующее значение у.

    Нам дана функция: у = 0,5х — 2. Значит:

    если х = 0, то у = -2;

    если х = 2, то у = -1;

    если х = 4, то у = 0 и т. д.

    Для удобства результаты можно оформлять в виде таблицы:

    Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

    Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

    k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

    Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

    Функция Коэффициент k Коэффициент b
    y = 2x + 8 k = 2 b = 8
    y = −x + 3 k = −1 b = 3
    y = 1/8x − 1 k = 1/8 b = −1
    y = 0,2x k = 0,2 b = 0

    Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

    Свойства линейной функции

    Область определения функции — множество всех действительных чисел.

    Множеством значений функции является множество всех действительных чисел.

    График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

    Функция не имеет ни наибольшего, ни наименьшего значений.

    Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

    b ≠ 0, k = 0, значит, y = b — четная;

    b = 0, k ≠ 0, значит, y = kx — нечетная;

    b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

    b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

    Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

    График функции пересекает оси координат:

    ось абсцисс ОХ — в точке (−b/k; 0);

    ось ординат OY — в точке (0; b).

    x = −b/k — является нулем функции.

    Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

    Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

    При k 0, то этот угол острый, если k

    Построение линейной функции

    В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

    Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

    В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

    если k > 0, то график наклонен вправо;

    если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

    если b 0, то график функции y = kx + b выглядит так:

    0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

    Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

    0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

    Если k > 0 и b

    В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

    Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

    Например, график уравнения х = 3:

    Условие параллельности двух прямых:

    График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

    Условие перпендикулярности двух прямых:

    График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

    Точки пересечения графика функции y = kx + b с осями координат:

    С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

    Координаты точки пересечения с осью OY: (0; b).

    С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

    Координаты точки пересечения с осью OX: (−b/k; 0).

    Решение задач на линейную функцию

    Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

    Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

    В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

    Таким образом, нам надо построить график функции y = -4x — 10

    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

    Поставим эти точки в координатной плоскости и соединим прямой:

    Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

    Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

    Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

    Вычтем из второго уравнения системы первое, и получим k = 3.

    Подставим значение k в первое уравнение системы, и получим b = -2.

    Ответ: уравнение прямой y = 3x — 2.

    Как найти k и b по графику линейной функции?

    В новой 9 задаче профильного ЕГЭ много заданий на линейные функции. Самое сложное, что нужно сделать, решая эти задачи – определить формулу линейной функции , т.е. найти (k) и (b) по графику. Примеры таких заданий (решения будут внизу статьи):

    В статье я расскажу про два простых способа найти (k) и (b), если известен график линейной функции.

    Способ 1

    Первый способ основывается на трех фактах:

    Линейная функция пересекает ось (y) в точке (b).
    Примеры:

    Но не советую определять так (b), если прямая пересекает ось не в целом значении или если точка пересечения вообще не видна на графике. Для таких случаев пользуйтесь вторым способом.

    Если функция возрастает, то знак коэффициента (k) плюс, если убывает – минус, а если постоянна, то (k=0).

    Чтоб конкретнее определить (k) надо построить на прямой прямоугольный треугольник так, чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Далее, чтоб определить (k) нужно вертикальную сторону треугольника поделить на горизонтальную и поставить знак согласно возрастанию/убыванию функции.

    Давайте пока что не будем искать формулу иррациональной функции, сосредоточимся только на линейной функции.

    (b=3) – это сразу видно. Функция идет вниз, значит (k 0). (k=+frac=frac<4><4>=1,b=1). (f(x)=x+1).

    Теперь перейдем к функции (g(x)). Найдем координаты точек (D) и (E): (D(-2;4)), (E(-4;1)). Можно составить систему:

    Вычтем второе уравнение из первого, чтоб убрать (b):

    (g(x)=1,5x+7). Обе функции найдены, теперь можно найти абсциссу (икс) точки пересечения. Приравняем (f(x)) и (g(x)).

    Картинку в хорошем качестве, можно скачать нажав на кнопку «скачать статью».

    источники:

    http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii

    http://cos-cos.ru/ege/zadacha203/376/

    Подведём итоги наших знаний о графиках функций.

    Нами были изучены методы построения таких функций, как:

    (y =b) (график — прямая, параллельная оси (x));

    (y = kx) (график — прямая, которая проходит через начало координат);

    (y = kx + m) (график — прямая);

    y=x2

     (график — парабола).

    При необходимости мы сможем преобразовать аналитическую модель на графическую. Допустим, аналитическую модель 

    y=x2

    трансформировать в графическую модель в виде параболы, расположенной в прямоугольной системе координат.

    Этот приём полезен при решении уравнений. Продемонстрируем это на примерах.

    Пример:

    решить уравнение

    x2=2x+8

    .

    Рассмотрим две функции:

    y=x2

    , (y = 2x + 8) — выполним построение графиков этих функций в одной системе координат, чтобы найти их точки пересечения.

    график 2_1.png

    Парабола 

    y=x2

     и прямая (y = 2x + 8) пересекаются в точках (A (- 2; 4)) и (B (4; 16)).

    Корни уравнения

    x2=2x+8

     — значения (x), при которых выражения

    x2

     и (2x + 16) принимают одинаковые значения. Это первые координаты точек (A) и (B)  пересечения графиков:

    x1=−2;x2=4

    .

    Алгоритм графического решения уравнений

    1. Преобразовать уравнение так, чтобы в левой и правой части стояли известные функции.

    b.png   y.png 

    x.png

    2. В одной системе координат начертить графики этих функций.

    3. Определить точки пересечения полученных графиков.

    4. Взять из них значения абсцисс.

    001.png  002.png

    003.png

    Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.

    1 способ – ищем коэффициенты на графике

    Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.

    1. Коэффициент (a) можно найти с помощью следующих фактов:

      — Если (a>0), то ветви параболы направленных вверх, если (a<0), то ветви параболы направлены вниз.

      определяем знак коэффициента a

      — Если (a>1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.

      Определяем значение a

      — Аналогично с (a<-1), только график вытянут вниз.

      определяем значение a

      — Если (a∈(0;1)), то график сжат в (a) раз (по сравнению с «базовым» графиком с (a=1)). Вершина при этом остается на месте.

      парабола при a от 0 до 1

      — Аналогично (a∈(-1;0)), только ветви направлены вниз.

      парабола a от -1 до 0

    2. Парабола пересекает ось y в точке (c).

      определяем c по графику

    3. (b) напрямую по графику не видно, но его можно посчитать с помощью (x_в) — абсциссы (икса) вершины параболы:

      (x_в=-frac{b}{2a})
      (b=-x_вcdot 2a)
      находим b с помощью икс вершины

    Пример (ЕГЭ):

    пример из ЕГЭ

    Решение:
    Во-первых, надо разобраться, где тут (f(x)), а где (g(x)). По коэффициенту (c) видно, что (f(x)) это функция, которая лежит ниже – именно она пересекает ось игрек в точке (4).

    пример из ЕГЭ

    Значит нужно найти коэффициенты у параболы, которая лежит повыше.
    Коэффициент (c) у неё равен (1).
    Ветви параболы направлены вниз – значит (a<0). При этом форма этой параболы стандартная, базовая, значит (a=-1).

    пример из ЕГЭ

    Найдем (b). (x_в=-2), (a=-1).

    (x_в=-frac{b}{2a})
    (-2=-frac{b}{-2})
    (b=-4)

    Получается (g(x)=-x^2-4x+1). Теперь найдем в каких точках функции пересекаются:

    (-x^2-4x+1=-2x^2-2x+4)
    (-x^2-4x+1+2x^2+2x-4=0)
    (x^2-2x-3=0)
    (D=4+4cdot 3=16=4^2)
    (x_1=frac{2-4}{2}=-1);    (x_2=frac{2+4}{2}=3).

    Ответ: (3).

    2 способ – находим формулу по точкам

    Это самый надежный способ, потому что его можно применить практически в любой ситуации, но и самый не интересный, потому что думать тут особо не надо, только уметь решать системы линейных уравнений. Алгоритм прост:

    1. Ищем 3 точки с целыми координатами, принадлежащие параболе.
      Пример:

      нахождение формулы по точкам

    2. Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.

      Пример: (A(-4;5)), (B(-5;5)), (C(-6;3)).

      (begin{cases}5=a(-4)^2+b(-4)+c\5=a(-5)^2+b(-5)+c\3=a(-6)^2+b(-6)+c end{cases})

    3. Решаем систему.
      Пример:

      (begin{cases}5=16a-4b+c\5=25a-5b+c\3=36a-6b+c end{cases})

      Вычтем из второго уравнения первое:

      (0=9a-b)
      (b=9a)

      Подставим (9a) вместо (b):

      (begin{cases}5=16a-36a+c\5=25a-45a+c\3=36a-54a+c end{cases})
      (begin{cases}5=-20a+c\5=-20a+c\3=-18a+c end{cases})

      Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:

      (2=-2a)
      (a=-1)

      Найдем (b):

      (b=-9)

      Подставим в первое уравнение (a):

      (5=20+c)
      (c=-15).

      Получается квадратичная функция:   (y=-x^2-9x-15).

    Пример (ЕГЭ):

    пример из ЕГЭ

    Решение:

    Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи). 

    решение задачи из ЕГЭ

    Таким образом имеем систему:

    (begin{cases}8=a(-1)^2+b(-1)+4\2=a+b+4 end{cases})

    (begin{cases}8=a-b+4\2=a+b+4 end{cases})

    (begin{cases}4=a-b\-2=a+b end{cases})

    Сложим 2 уравнения:

    (2=2a)
    (a=1)

    Подставим во второе уравнение:

    (-2=1+b)
    (b=-3)

    Получается:

    (g(x)=x^2-3x+4)

    Теперь найдем точки пересечения двух функций:

    (-3x+13=x^2-3x+4)
    (x^2-9=0)
    (x=±3)

    Теперь можно найти ординату второй точки пересечения:

    (f(-3)=-3cdot (-3)+13)
    (f(-3)=9+13)
    (f(-3)=22)

    Ответ:   (22).

    3 способ – используем преобразование графиков функций

    Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.

    Главный недостаток этого способа — вершина должна иметь целые координаты.

    Сам способ базируется на следующих идеях:

    1. График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).

      нахождение через преобразование параболы

    2. – Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
      – Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.

      растяжение и сжатие параболы

    3. – График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
      — График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц. 

      Сдвиг параболы вправо и влево

    4. График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
      График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.

      сдвиг параболы вверх и вниз

    У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:

    пример

    Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).

    пример нахождение формулы параболы с помощью преобразования графиков функций

    А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).

    решение примера

    То есть наша функция выглядит так: (y=(x-5)^2-4).
    После раскрытия скобок и приведения подобных получаем искомую формулу:

    (y=x^2-10x+25-4)
    (y=x^2-10x+21)

    Готово.

    Пример (ЕГЭ):

    решение примера из ЕГЭ

    Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:

    1. Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).

      решение примера из ЕГЭ

    2. Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).

    3. Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).

    4. Получается (y=-2(x^2-4x+4)+4=)(-2x^2+8x-8+4=-2x^2+8x-4).

    5. (f(6)=-2cdot 6^2+8cdot 6-4=-72+48-4=-28)

    Смотрите также:
    Как найти k и b по графику линейной функции?

    Как для графика составить уравнение

    Глядя на график прямой, можно без особых сложностей составить ее уравнение. При этом вам могут быть известны две точки, либо нет – в таком случае начинать решение нужно с поиска двух точек, принадлежащих прямой.

    Как для графика составить уравнение

    Инструкция

    Чтобы найти координаты точки, принадлежащей прямой, выберите ее на линии и опустите перпендикулярные линии на оси координат. Определите, какому числу соответствует точка пересечения, пересечение с осью ох – это значение абсциссы, то есть х1, пересечение с осью оу — это ордината, у1.

    Постарайтесь выбрать точку, координаты которой можно определить без дробных значений, для удобства и точности расчетов. Для построения уравнения вам нужно как минимум две точки. Найдите координаты еще одной точки, принадлежащей данной прямой (х2, у2).

    Подставьте значения координат в уравнение прямой, имеющей общий вид у=kx+b. У вас получится система из двух уравнений у1=kx1+b и y2=kx2+b. Решите эту систему, например, следующим способом.

    Выразите b из первого уравнения и подставьте во второе, найдите k, подставьте в любое уравнение и найдите b. Например, решение системы 1=2k+b и 3=5k+b будет выглядеть так: b=1-2k, 3=5k+(1-2k); 3k=2, k=1.5, b=1-2*1,5=-2. Таким образом, уравнение прямой имеет вид y=1,5х-2.

    Зная две точки, принадлежащие прямой, попробуйте воспользоваться каноническим уравнением прямой, оно выглядит таким образом: (х — х1)/(х2 — х1)=(у — у1)/(у2 — у1). Подставьте значения (х1;у1) и (х2;у2), упростите. Например, точки (2;3) и (-1;5) принадлежат прямой (х-2)/(-1-2)=(у-3)/(5-3); -3(х-2)=2(у-3); -3х+6=2у-6; 2у=12-3х или у=6-1,5х.

    Чтобы найти уравнение функции, имеющей нелинейный график, действуйте так. Просмотрите все стандартные графики y=x^2, y=x^3, y=√x, y=sinx, y=cosx, y=tgx и т.д. Если один из них напоминает вам ваш график, возьмите его за основу.

    Начертите на той же оси координат стандартный график функции-основы и найдите его отличия от своего графика. Если график перенесен на несколько единиц вверх или вниз – значит к функции добавлено это число (например, у=sinx+4). Если график перенесен вправо или влево, значит, число добавлено к аргументу (например, у=sin (х+П/2).

    Вытянутый график в высоту график говорит о том, что функция аргумента умножена на какое-то число (например, у=2sinx). Если график, напротив, уменьшен в высоту, значит, число перед функцией меньше 1.

    Сравните график функции-основы и вашей функции по ширине. Если он более узкий, значит перед х стоит число больше 1, широкий – число меньше 1 (например, у=sin0.5х).

    Подставляя в получившееся уравнение функции разные значения х, проверяйте, правильно ли находится значение функции. Если все верно — вы подбрали уравнение функции по графику.

    Обратите внимание

    Возможно, график соответствует найденному уравнению лишь на определенном отрезке. В таком случае укажите, для каких значений х выполняется полученное равенство.

    Войти на сайт

    или

    Забыли пароль?
    Еще не зарегистрированы?

    This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

    Понравилась статья? Поделить с друзьями:
  • Как найти подход к дракону
  • Как найти валентность h2so4
  • Как составить смету для видеонаблюдения
  • Как найти хорошего учителя рассказ
  • Как найти на кого подписан на авито