Как найти уравнение плоскости содержащей грань

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Найти уравнение плоскости

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле
x — x 1 y — y 1 z — z 1 = 0
x 2 — x 1 y 2 — y 1 z 2 — z 1
x 3 — x 1 y 3 — y 1 z 3 — z 1

Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Как найти уравнение плоскости содержащей грань

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .

Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )

Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.

Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.

Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0

Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.

Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:

2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0

Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:

λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0

Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0

  1. Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:

M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0

Ответ: 3 x + 7 y — 5 z — 26 = 0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

  1. Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.

  1. При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0

Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0

Ответ: x — 7 = 0

Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .

Решение

Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .

Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .

источники:

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-vershiny-piramidy-spmn

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-ploskosti/

Пример 1:

Решение от преподавателя:

3) Для нахождения уравнения плоскости, содержащей грань SPN используем уравнение плоскости, проходящей через три точки:

-4x -8y — z + 21 = 0 — уравнение грани А1А2А3

4) Площадь треугольника, построенного на векторах и  находится по формуле:

где

— векторное произведение векторов.

Грань SPN образована векторами .

Находим координаты векторов :

           

и площадь грани SPN:

       

5) Находим нормальный вектор плоскости PMN:

Высота (SН), опущенная из вершины S на грань PMN, перпендикулярна плоскости PMN, а значит направляющий вектор прямой SН параллелен вектору-нормали плоскости PMN, поэтому в качестве направляющего вектора прямой SН можно взять вектор-нормаль плоскости . Высота SН проходит через вершину S, поэтому можно записать каноническое уравнение высоты:

6) Плоскость PMN имеет нормальный вектор  и проходит через точку М(0,0,2), поэтому уравнение этой плоскости имеет вид:

Длину высоты SH находим как расстояние от точки S для плоскости PMN:

7) Находим угол между ребрами SP и SN:

8) Находим угол между ребром SP и гранью PMN, используем нормальный вектор этой грани  (см. п.6):

9) Объем пирамиды, построенной на векторах и находится по формуле:

где

 — смешанное произведение векторов.

Пирамида SPMN  образована векторами .

Находим координаты векторов

и объем пирамиды:

       

Ответ:

Пример 2:

Решение от преподавателя:



Работа вам нужна срочно. Не волнуйтесь, уложимся!

Заполните, пожалуйста, данные для автора:

  • 22423 авторов готовы помочь тебе.
  • 2402 онлайн

Как найти уравнение плоскости пирамиды

Возможно, что и существует специальное понятие плоскости пирамиды, но автору оно неизвестно. Поскольку пирамида относится к пространственным многогранникам, плоскости образовать могут лишь грани пирамиды. Именно они и будут рассмотрены.

Как найти уравнение плоскости пирамиды

Инструкция

Самое простое задание пирамиды — это представление ее координатами точек вершин. Можно использовать и другие представления, которые без труда переводятся как друг в друга, так и в предложенное. Для простоты рассмотрите треугольную пирамиду. Тогда в пространственном случае понятие «основание» становится весьма условным. Поэтому отличать его от боковых граней не следует. При произвольной пирамиде ее боковые грани все равно треугольники, а для составления уравнения плоскости основания все равно хватит трех точек.

Каждая грань треугольной пирамиды полностью определяется тремя точками вершин соответствующего треугольника. Пусть это М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3). Для нахождения уравнения плоскости, содержащей эту грань, используйте общее уравнение плоскости в виде A(x-x0)+B(y-y0)+C(z-z0)=0. Здесь (x0,y0,z0) – произвольная точка плоскости, в качестве которой используйте одну из трех заданных на данный момент, например М1(x1,y1,z1). Коэффициенты A, B, C образуют координаты вектора нормали к плоскости n={A, B, C}. Чтобы найти нормаль, можно использовать координаты вектора, равного векторному произведению [М1,М2] (см. рис. 1). Их и возьмите равными A, B C соответственно. Осталось найти скалярное произведение векторов (n, M1M) в координатной форме и приравнять его нулю. Здесь М(x,y,z) – произвольная (текущая) точка плоскости.

Как найти <em>уравнение</em> <strong>плоскости</strong> <b>пирамиды</b>

Полученный алгоритм построения уравнения плоскости по трем ее точкам можно сделать более удобным для применения. Обратите внимание, что найденная методика предполагает вычисление векторного произведения, а затем скалярного. Это не что иное, как смешанное произведение векторов. В компактной форме оно равно определителю, строки которого состоят из координат векторов М1М={x-x1, y-y1, z-z1}, M1M2={x2-x1, y2-y1, z2-z1}, M1М3={x3-x1, y3-y1, z3-z1}. Приравняйте его нулю и получите уравнение плоскости в виде определителя (см. рис. 2). После его раскрытия придете к общему уравнению плоскости.

Как найти <em>уравнение</em> <strong>плоскости</strong> <b>пирамиды</b>

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.



5.7. Задача с треугольной пирамидой

Концептуально эта задача напоминает задачу с треугольником на плоскости. Только вот треугольников у нас теперь

четыре, и образуют они треугольную пирамиду или тетраэдр:

У треугольной пирамиды есть:

– четыре вершины;

– шесть рёбер (сторон);

– четыре грани.

Чем богаты, тем и рады.

Не буду перечислять геометрические свойства данной фигуры, известные из школьной программы, поскольку аналитическую геометрию интересует совсем

другое, а именно: уравнения рёбер, плоскостей, всевозможные длины, углы и некоторые другие вещи, которые вы увидите прямо сейчас. Типовая задача

формулируется так:

Задача 166

Треугольная пирамида задана координатами своих вершин, пусть это будут вершины . Требуется: … если повезёт, то только 3-4 пункта из перечисленных:

1) найти длину ребра ;

2) составить уравнения стороны ;

3) найти угол между рёбрами ;

4) найти площадь грани ;

5) найти угол между ребром  и плоскостью ;

6) составить уравнение грани ;

7) составить уравнения высоты , опущенной из вершины  на грань ;

8) вычислить длину высоты ;

9) найти основание высоты ;

10) вычислить объем пирамиды;

11) составить уравнения медианы  грани ;

12) составить уравнение плоскости, проходящей через прямую  и вершину ;

13) найти угол между плоскостями  и

14) выполнить чертёж пирамиды  в прямоугольной системе координат.

15) перекреститься левой пяткой.

Во-первых, разберёмся с обозначениями вершин. Самый распространённый вариант, когда они обозначены буквами :

Если бегло просмотреть пункты условия, то легко заметить, что

там часто встречается грань . Чаще всего требуется составить уравнение этой

«особенной» грани, а также найти её площадь. В качестве «особенной» вершины выступает точка , обычно из неё строится перпендикуляр к плоскости .

А всё это я сказал к тому, что в вашей задаче могут быть совершенно другие обозначения вершин. Например, . Здесь «особой» гранью, скорее всего, будет , а «особенной» точкой – вершина .

В этой связи очень важно выполнить схематический рисунок пирамиды, чтобы не запутаться в дальнейшем алгоритме решение. Да, более подготовленные

читатели могут представлять тетраэдр мысленно, но для «чайников» чертёж просто обязателен.

Итак, на предварительном этапе разбираемся с обозначениями вершин, анализируем условие, находим «особенную» плоскость и точку и

выполняем бесхитростный набросок на черновике.

С чего начать решение? Начать лучше всего с того, что загнать координаты вершин в Геометрический

калькулятор (см. приложения), который автоматически рассчитает наиболее популярные пункты. Ибо приятно заранее знать

правильные ответы ;)

Но расписать-то всё нужно подробно. И поэтому оформление решения удобно начать с нахождения векторов. Почти всегда векторы

откладываются от первой вершины, в данном случае – от точки :
Решим эту элементарную задачу:
     

Чтобы комфортнее воспринимать информацию, координаты четырёх точек и трёх полученных вектора рекомендую переписать на отдельный листочек.

Это же сделайте, когда  будете решать свою задачу – чтобы каждый раз не выискивать нужный вектор, нужную точку. Их удобно держать перед

глазами.

Понеслось:

1) Найдём длину ребра . Длина данного ребра равна длине вектора :

Я обычно округляю результаты до двух знаков после запятой, но в условии задачи может быть дополнительное указание проводить округления,

например, до 1 или 3 десятичных знаков.

Полагаю, в случае надобности никого не затруднит аналогичным образом найти длину ребра   или . Как вариант, можно использовать

формулу расстояния между двумя точками: . Но зачем? У нас уже найдены

векторы.

2) Найдём уравнения ребра . Строго говоря, здесь следует

сказать «уравнения прямой, которая содержит ребро», но этим почти всегда пренебрегают. «По умолчанию» обычно подразумевается, что студент запишет канонические уравнения прямой.

Уравнения ребра  составим по точке  (можно взять ) и направляющему

вектору :

Для проверки подставляем координаты точек  в полученное уравнение. Обе

должны «подойти».

3) Найдём угол между сторонами :

Перед вами обычный угол пространственного треугольника,

который рассчитывается как угол между векторами: . И снова при делах задро тривиальная формула:

 – заметьте, что в ходе вычислений можно (и нужно) использовать ранее полученные результаты, в данном случае нам

уже известно, что  (см. пункт 1).

С помощью обратной функции находим сам угол:

4) Найдём площадь грани :

Площадь треугольника вычислим с помощью векторного произведения векторов, используя формулу:


Найдём векторное произведение:


и вычислим его длину:

 …и вынести из-под корня ничего нельзя, поэтому он войдёт в ответ в

неизменном виде.

Таким образом, площадь грани :

Если получаются страшноватые числа, не обращайте внимания, обычная картина. Главное, не допустить ошибку в вычислениях.

5) Найдём угол  между ребром  и плоскостью , прошу прощения за неточность

последующих чертежей, я рисую от руки:

Это стандартная задача, рассмотренная в Задаче 162 (пункт

«д»). Используем формулу:

и с помощью арксинуса рассчитываем сам угол:

6) Составим уравнение грани . А точнее, «уравнение  плоскости,

которая содержит грань». Первая мысль – использовать точки , но есть более выгодное решение. У нас уже найден

вектор нормали  плоскости . Поэтому уравнение грани  составим по точке  (можно взять  либо ) и вектору нормали :

Таким образом:

Для проверки можно подставить координаты точек  в полученное уравнение, все три точки

должны «подойти».

7) Как составить уравнения высоты пирамиды? Звучит грозно, решается просто.

Уравнения высоты , опущенной из вершины  на грань , составим по точке  и направляющему

вектору :

 – по умолчанию записываем канонические уравнения.

Вектор нормали в рассматриваемой задаче работает «на всю катушку», и как только вам предложили найти площадь грани, составить уравнение грани или

уравнения высоты – сразу «пробивайте» векторное произведение.

8) Длину высоты  найдём как расстояние от точки  до плоскости :

Результат громоздкий, поэтому позволим себе вольность не избавляться от иррациональности в знаменателе.

Теперь пунктик потруднее:

9) Найдём основание высоты – точку . Тема пересечения

прямой и плоскости подробно муссировалась в той же в Задаче 162 (пункт «б»). Повторим.

Перепишем уравнения высоты в параметрической форме:

Неизвестным координатам точки  соответствует вполне конкретное значение

параметра :
, или: .

Основание высоты, понятно, лежит в плоскости. Подставим параметрические координаты точки  в уравнение :

Кому-то покажется жестью, но на самом деле шифер :)  Который шуршит.

Полученное значение параметра подставим в координаты нашей точки:
 

Сурово, но идеально точно. Я проверил.

10)  Объём треугольной пирамиды в ангеме традиционно рассчитывается с помощью

смешанного произведения векторов:

Таким образом,

И тут уместно выполнить проверку, вычислив объем тетраэдра по школьной формуле , где  – площадь грани,  – длина высоты, опущенной к этой грани. Уместно ПОТОМУ, что мы знаем и площадь грани , и длину высоты :
, чему мы очень рады.

11) Составим уравнения медианы  грани . Ничего сложного, обычная медиана обычного пространственного треугольника:
По сравнению с треугольником на

плоскости, добавится лишь дополнительная координата. Нам известны вершины , и по формулам координат середины отрезка находим адрес точки :

Уравнения медианы можно составить по двум точкам, но сначала (см. по ссылке, почему) лучше найти

направляющий вектор: . В качестве направляющего можно взять любой

коллинеарный вектор, и сейчас подходящий момент избавиться от дробей:

Уравнения медианы составим по точке  и направляющему вектору :

Заметьте, что уравнения с эстетической точки зрения лучше составить по точке , так как координаты точки «эм» – дробные. Проверка обыденна, нужно подставить координаты точек  в полученные уравнения.

12) Составим уравнение плоскости, проходящей через прямую  и вершину :

Увы, мы не знаем «вкусный» вектор нормали, и поэтому уравнение

плоскости  придётся добывать по точке и двум

неколлинеарным векторам.

В качестве точки обязательно выбираем «одинокую» точку, которая не принадлежит прямой, в данном случае – это вершина . Один из нужных  векторов уже известен: , но, конечно же, удобнее выбрать друга-мажора . Ему в пару подходит вектор , но лучше .
Ибо координаты этого вектора будут целыми:

Уравнение плоскости составим по точке  и двум неколлинеарным векторам :

Непременно проверяем, что координаты точек  удовлетворяют

полученному уравнению.

13) Найдём угол между плоскостями  и .

Это типовая задача.

Обозначим искомый угол через  и используем формулу: , где  – вектор

нормали плоскости . Напоминаю, что вектор  и его длина  уже известны.

Осталось из уравнения  снять вектор нормали:  и аккуратно провести вычисления:

Возиться с такими корнями смысла нет, поэтому сразу находим угол:

От тупизны подальше за ответ таки лучше принять смежного соседа:

14) Выполним точный чертёж пирамиды  прямоугольной системе координат. Да, конечно, существуют программы и онлайн сервисы для построения чертежей, но не

факт, что они под рукой, и не факт, что такой чертёж будет качественным. Поэтому я расскажу вам о ручном способе построения – в тетради с помощью

карандаша и линейки.

С чего начать?

Во-первых, нужно правильно изобразить декартову систему координат на клетчатой бумаге. Во-вторых, необходимо уметь строить точки в трёхмерном пространстве, о чём мы уже вспомнили, когда разбирали канонические уравнения прямой. И сейчас тема получает продолжение.

Построим точку .  Для этого отмеряем 2 единицы в положительном направлении

оси  и 3 единицы в отрицательном направлении оси . В плоскости  прочерчиваем тонкие

пунктирные дорожки, которые параллельны соответствующим  координатным осям. Пересечение этих дорожек отмечено ромбиком (слева

внизу):

Теперь, в соответствии с отрицательной «зетовой» координатой, отмеряем 1 единицу вниз и тоже проводим пунктирную дорожку. Здесь и будет находиться

наша точка , она расположена в нижнем полупространстве.

Для точки  отмеряем 5 единиц «на себя» и 4 единицы вправо, строим параллельные

осям пунктирные дорожки и находим их точку пересечения. В соответствии с «зетовой» координатой, чертим пунктиром «подставку для точки» – 2 единицы

вверх. Данная точка расположена в верхнем полупространстве.

Аналогично строятся две другие точки. Заметьте, что вершина  лежит в самой

плоскости .

Теперь нужно разобраться в удалённости точек, а в этом как раз и помогут пунктирные линии. Немного включаем пространственное воображение и

внимательно смотрим на ось . Очевидно, что самая близкая к нам вершина – , а самая удалённая – .

Строим рёбра. Если есть сомнения, то сначала тонко-тонко прочерчиваем все 6 сторон и начинаем разбираться, какие рёбра видимы, а какие нет. Лучше начать от самой близкой точки . Очевидно, что все

три «исходящих» ребра в поле нашего зрения:

Должен предостеречь, что так бывает далеко не всегда, одно ребро, например, может быть от нас скрыто. Не теряйте визуального восприятия

пространства!

Какие ещё стороны в зоне видимости? ВиднЫ рёбра , а вот сторона  спряталась за пирамидой. Обратите внимание, что она лежит в нижнем

полупространстве и проходит под осями :

Готово.

Следует отметить, что чертеж-«конфетка» получается далеко не всегда. Бывает, что фортуна разворачивается задом. Так, грань пирамиды может полностью

или частично закрывать всё остальное (слева).
       

Но самое скверное, когда перекрываются рёбра (справа). Тут сразу три ребра выстроились на одной прямой (правая верхняя прямая). В

подобной ситуации можно жирно прочертить накладывающиеся стороны разными цветами и ниже чертежа записать дополнительные комментарии о расположении

пирамиды. А можно поступить творчески – поменять оси местами (например,  и ).

Существуют и более мелкие неприятности, например, одна из сторон пирамиды может наложить на координатную ось (а то и вовсе расположиться за ней).
Увы, перечисленные случаи – не редкость на практике.

В конце решения следует выполнить Пункт 15, после чего желательно записать ответ, где по пунктам перечислить

полученные результаты.

6.1. Поверхности второго порядка

5.6.7. Добро пожаловать в «реальные боевые условия»!

| Оглавление |



Автор: Aлeксaндр Eмeлин

Типовые задачи с плоскостями

Составление уравнений плоскостей

Разнообразие видов уравнений плоскостей порождается многообразием геометрических способов их задания. По любому набору геометрических данных, однозначно определяющих плоскость, можно составить уравнение этой плоскости, причем геометрические данные будут отражены в коэффициентах уравнения. И наоборот, коэффициенты любого уравнения плоскости имеют геометрический смысл, соответствующий способу задания плоскости.

Для удобства решения типовых задач, связанных с плоскостями, все основные типы уравнений плоскостей и соответствующие геометрические способы задания этих плоскостей отражены в таблице 4.1.

Примеры составления плоскостей по геометрическим данным указанны в таблице 4.1.

Таблица 4.1. Основные типы уравнений плоскостей

Основные типы уравнений плоскостей


Метрические приложения уравнений плоскостей

Перечислим формулы для вычисления длин отрезков (расстояний) и величин углов по уравнениям образующих их плоскостей.

1. Расстояние d от точки M^{ast}(x^{ast},y^{ast},z^{ast}) до плоскости Ax+By+Cz+D=0 вычисляется по формуле:

d=frac{|Acdot x^{ast}+Bcdot y^{ast}+Ccdot z^{ast}+D|}{sqrt{A^2+B^2+C^2}},.

2. Расстояние между параллельными плоскостями A_1x+B_1y+C_1z+D_1=0 и A_2x+B_2y+C_2z+D_2=0 находится как расстояние d_1 от точки M_2(x_2,y_2,z_2), координаты которой удовлетворяют уравнению A_2x+B_2y+C_2z+D_2=0, до плоскости A_1x+B_1y+C_1z+D_1=0 пo формуле:

d_1=frac{|A_1cdot x_2+B_1cdot y_2+C_1cdot z_2+D_1|}{sqrt{A_1^2+B_1^2+C_1^2}},.

3. а) Угол varphi между двумя плоскостями rho_1colon A_1x+B_1y+C_1z+D_1=0 и rho_2colon A_2x+B_2y+C_2z+D_2=0 находится по формуле:

cosvarphi=frac{|A_1cdot A_2+B_1cdot B_2+C_1cdot C_2|}{sqrt{A_1^2+B_1^2+C_1^2}cdotsqrt{A_2^2+B_2^2+C_2^2}},,

где vec{n}_1=A_1vec{i}+B_1vec{j}+C_1vec{k} и vec{n}_2=A_2vec{i}+B_2vec{j}+C_2vec{k} — нормали к плоскостям rho_1 и rho_2 соответственно.

б) По формуле

cosvarphi=frac{A_1cdot A_2+B_1cdot B_2+C_1cdot C_2}{sqrt{A_1^2+B_1^2+C_1^2}cdotsqrt{A_2^2+B_2^2+C_2^2}}

находится величина varphi того двугранного угла, образованного плоскостями rho_1 и rho_2, в котором лежат точки, принадлежащие разноименным полупространствам, определяемым данными плоскостями.

При решении задач свойства 1-3 используются наряду с метрическими приложениями векторной алгебры.


Пример 4.12. В координатном пространстве Oxyz заданы вершины A(1;3;-1), B(2;1;-2), C(4;2;-6) треугольной пирамиды OABC. Требуется:

а) составить общее уравнение плоскости, содержащей грань ABC;

б) найти расстояние d от вершины C до плоскости грани OAB;

в) найти величину varphi угла между плоскостями граней ABC и OAB;

г) найти величину psi двугранного угла, образованного гранями ABC и OAB пирамиды.

Решение. а) По формуле (4.21) составим уравнение плоскости rho_{ABC} проходящей через три точки A,,B,,Ccolon

begin{vmatrix} x-1&y-3&z-(-1)\ 2-1&1-3&-2-(-1)\ 4-1&2-3&-6-(-1)end{vmatrix}=0 quad Leftrightarrow quad begin{vmatrix}x-1&y-3&z+1\1&-2&-1\3&-1&-5end{vmatrix} =0,.

Разлагая определитель по первой строке, получаем

9cdot(x-1)+2cdot(y-3)+5cdot(z+1)=0 quad Leftrightarrow quad 9cdot x+2cdot y+5cdot z-10=0,.

Итак, искомое уравнение составлено.

б) Для нахождения расстояния d составим уравнение плоскости, проходящей через точки O,,A,,B (см. пункт «а»):

begin{vmatrix}x-0&y-0&z-0\1-0&3-0&-1-0\2-0&1-0&-2-0end{vmatrix}=0 quad Leftrightarrow quad begin{vmatrix}x&y&z\1&3&-1\2&1&-2end{vmatrix}=0 quad Leftrightarrow quad x+z=0.

Пирамида и двугранные углы

Расстояние находим по формуле пункта 1 (см. метрические приложения) для M^{ast}equiv C:

d=frac{|1cdot4+0cdot2+1cdot(-6)+0|}{sqrt{1^2+0^2+1^2}}=frac{2}{sqrt{2}}=sqrt{2},.

в) Острый угол varphi между плоскостями 9x+2y+5z-10=0 и x+z=0 находим по формуле пункта 3,»а»:

cosvarphi=frac{|9cdot1+ 2cdot0+ 5cdot1|}{sqrt{9^2+2^2+5^2}cdot sqrt{1^2+0^2+1^2}}=frac{14}{sqrt{220}}=frac{7}{55},. Следовательно, varphi=arccosfrac{7}{sqrt{55}},.

г) Двугранный угол psi, образованный гранями ABC и OAB пирамиды либо равен острому углу varphi между плоскостями граней, либо дополняет его до picolon,psi=pi-varphi,. Вычисляя угол varphi по формуле пункта 3,»б», получаем тот же результат, что и в пункте «в»: varphi=arccosfrac{7}{sqrt{55}},, т.е. острому углу принадлежат точки, принадлежащие разноименным полупространствам. Выясним, в каких полупространствах (одноименных или разноименных) относительно плоскостей граней ABC и OAB лежит пирамида. Для этого достаточно проверить одну точку пирамиды, не принадлежащую граням ABC и OAB. Возьмем точку N — середину ребра OCcolon,N(2;1;-3) (рис.4.23). Вычислим значения линейных четырехчленов в этой точке:

9cdot2+2cdot1+5cdot(-3)-10=-5&lt;0 и 1cdot2+0cdot1+1cdot(-3)+0=-1&lt;0.

Следовательно, точка N принадлежит одноименным полупространствам. Поэтому двугранный угол при ребре AB не острый, а тупой, т.е. psi=pi-varphi=pi-arccosfrac{7}{sqrt{55}},.


Системы линейных уравнений с тремя неизвестными

Системой m линейных алгебраических уравнений с тремя неизвестными называется система уравнений вида

begin{cases} a_{11}cdot x_1+a_{12}cdot x_2+a_{13}cdot x_3=b_1,\ a_{21}cdot x_1+a_{22}cdot x_2+a_{23}cdot x_3=b_2,\ quadvdots\ a_{m1}cdot x_1+a_{m2}cdot x_2+a_{m3}cdot x_3=b_m. end{cases}

(4.29)

Числа a_{ij},~i=1,ldots,m,,j=1,2,3 называются коэффициентами системы; b_1,b_2,ldots,b_m — свободными членами; x_1,x_2,x_3 — неизвестными.

Решением системы называется такая упорядоченная тройка чисел (alpha_1,alpha_2,alpha_3), что после замены неизвестных x_1,x_2,x_3 соответственно числами alpha_1,alpha_2,alpha_3 каждое уравнение системы превращается в верное числовое равенство. На системы с тремя неизвестными переносятся все термины, применяемые к системам с двумя неизвестными.

Матричная запись неоднородной системы уравнений (4.29) имеет вид

Ax=b,

(4.30)

где A=begin{pmatrix} a_{11}&a_{12}&a_{13}\ vdots&vdots&vdots\ a_{m1}& a_{m2}& a_{m3}end{pmatrix} — матрица системы, b=begin{pmatrix}b_1\vdots\b_mend{pmatrix} — столбец свободных членов, x=begin{pmatrix}x_1\x_2\x_3end{pmatrix} – столбец неизвестных.

Рангом системы уравнений (4.29) называется ранг матрицы A системы: r=operatorname{rang}A т.е. максимальное число линейно независимых строк матрицы A (максимальное число линейно независимых уравнений системы).

Рассматривается случай, когда все уравнения системы первой степени, т.е. коэффициенты при неизвестных каждого уравнения не равны нулю одновременно. Поэтому матрица A системы ненулевая, более того, все ее строки ненулевые.

Поскольку матрица системы (4.29) ненулевая и содержит три столбца, то ее ранг r=operatorname{rang}Aleqslant3. Ранг может быть равен либо единице (r=1, если все строки матрицы A пропорциональны), либо двум (r=2, если имеются две линейно независимые строки), либо трем (r=3, если имеются три линейно независимые строки).

Примеры пересечения плоскостей

Выясним геометрический смысл и свойства решений системы уравнений (4.29).

Пусть в пространстве задана аффинная система координат Ox_1x_2x_3. Множество точек M(x_1x_2x_3), координаты которых удовлетворяют линейному уравнению с тремя неизвестными

a_{i1}x_1+a_{i2}x_2+a_{i3}x_3=b_{i}, или a_{i1}x_1+a_{i2}x_2+a_{i3}x_3-b_{i}=0,

представляет собой плоскость. Поэтому множество решений системы уравнений является пересечением плоскостей

a_{i1}x_1+a_{i2}x_2+a_{i3}x_3=b_{i}, i=1,ldots,m,.

Рассмотрим примеры пересечения плоскостей.

1. Если ранг системы (4.29) равен 1, то коэффициенты при неизвестных всех уравнений пропорциональны. В этом случае любые две плоскости параллельны (система уравнений несовместна (рис.4.24,а)) или совпадают (в этом случае вся система (4.29) равносильна одному, например, первому ее уравнению (рис.4.24,б)).

2. Если ранг системы равен 2, то в системе имеются два линейно независимых уравнения. Плоскости, соответствующие этим уравнениям, пересекаются, например, по прямой l (рис. 4.24,в,г). Поэтому множеством решений системы (4.29) является либо эта прямая (система совместна, все плоскости проходят через прямую l, т.е. все плоскости принадлежат собственному пучку плоскостей (рис. 4.24,в)), либо пустое множество (система несовместна (рис.4.24,г)).

3. Если ранг системы равен 3, то в системе имеются три линейно независимых уравнения. Плоскости, соответствующие этим уравнениям, пересекаются в одной точке, например, в точке X_0 (рис. 4.24,д,е). Поэтому множеством решений системы (4.29) является либо одна точка X_0 (система совместна, все плоскости проходят через точку X_0, т.е. все плоскости принадлежат собственной связке плоскостей (рис. 4.24,д)), либо пустое множество (система несовместна (рис. 4.24,е)).

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как найти звуковой домик
  • Как правильно составить почтовый ящик
  • Как найти музыки мамочка
  • Как найти айди блока в майнкрафт
  • Как составить рассказ про зоопарк