Как найти уравнение прямой через вектор

Содержание

  • Уравнение прямой на плоскости
    • Уравнения прямой на плоскости в координатной форме
      • Общее уравнение прямой
      • Параметрическое уравнение прямой
      • Параметрическое уравнение прямой в канонической форме
      • Уравнение прямой, проходящей через две точки
    • Уравнения прямой на плоскости в векторной форме
      • Векторное уравнение прямой в параметрической форме
      • Нормальное векторное уравнение прямой
      • Векторное уравнение прямой, проходящей через две точки
  • Уравнение прямой в пространстве
    • Уравнения прямой в пространстве в координатной форме
      • Параметрические уравнения прямой
      • Параметрические уравнения прямой в канонической форме
      • Уравнение прямой, проходящей через две точки
      • Прямая как пересечение двух плоскостей
    • Уравнения прямой в пространстве в векторной форме
      • Векторное уравнение прямой в параметрической форме
      • Векторные уравнения прямой
      • Векторное уравнение прямой, проходящей через две точки

Уравнение прямой на плоскости

Уравнения прямой на плоскости в координатной форме

Любую прямую линию на плоскости можно задать общим уравнением прямой в декартовой системе координат:

    [Ax + By + C = 0,qquad (A^2 + B^2 ne 0),]

то есть числа A, B одновременно не равны нулю.

Прямая линия на плоскости может быть задана параметрическим уравнением прямой:

    [x = x_0 + alpha t, qquad y = y_0 + beta t,]

где числа alpha, beta не равны нулю одновременно. Числа alpha, beta являются компонентами направляющего вектора прямой — ненулевого вектора, лежащего на прямой.

Если alpha ne 0, beta ne 0, то после исключения из уравнений прямой в параметрической форме параметра t уравнение прямой приводятся к канонической форме:

    [frac{x - x_0}{alpha} = frac{y - y_0}{beta}.]

Уравнение прямой, проходящей через две точки (x_1, y_1) и (x_2, y_2):

    [frac{x - x_1}{x_2 - x_1} = frac{y - y_1}{y_2 - y_1}.]

При x_1 = x_2 или y_1 = y_2 это уравнение принимает соответственно вид x = x_1 или y = y_1.

Уравнения прямой на плоскости в векторной форме

Векторное уравнение прямой в параметрической форме:

    [textbf{r} = textbf{r}_0 + textbf{a}t, qquad textbf{a} ne textbf{0},]

где textbf{a} — направляющий вектор прямой, textbf{r}_0 — радиус-вектор некоторой точки прямой.

Параметрическое уравнение прямой в векторной форме

Нормальное векторное уравнение прямой:

    [left(textbf{r}-textbf{r}_0, textbf{n}right) = 0, qquad textbf{n} ne textbf{0},]

где textbf{n} — вектор нормали к прямой.

Это уравнение также можно записать в форме

    [left(textbf{r}, textbf{n}right) = D, qquad textbf{n} ne textbf{0},]

причём если вектор textbf{n} — единичный, то величина D =  left(textbf{r}_0, textbf{n}right) есть расстояние от точки O до прямой. Вообще говоря, это уравнение имеет следующий смысл: проекция радиус-вектора любой точки прямой на нормаль к этой прямой постоянна.

Векторное уравнение прямой, проходящей через две различные точки:

    [textbf{r} = textbf{r}_1 + left(textbf{r}_2 - textbf{r}_1right)t,]

где textbf{r}_1 и textbf{r}_2 — радиус-векторы данных точек.

Уравнение прямой в векторной форме по двум точкам

Это уравнение легко получается из векторного уравнения прямой в параметрической форме, если в качестве направляющего вектора прямой textbf{a} взять вектор textbf{r}_2 - textbf{r}_1.

Уравнение прямой в пространстве

Уравнение прямой в пространстве в координатной форме

Прямая линия в пространстве может быть задана параметрическими уравнениями:

    [x = x_0 + alpha t, quad y = y_0 + beta t, quad z = z_0 + gamma t.]

Числа alpha, beta, gamma являются компонентами направляющего вектора прямой.

Исключением параметра t параметрические уравнения прямой приводятся к канонической форме:

    [frac{x - x_0}{alpha} = frac{y - y_0}{beta} = frac{z - z_0}{gamma}.]

Если, например, gamma = 0, то канонические уравнения принимают вид

    [frac{x - x_0}{alpha} = frac{y - y_0}{beta},quad z = z_0.]

Аналогично для любой другой компоненты направляющего вектора.

Если два параметра равны нулю, например, beta = gamma = 0, то канонические уравнения имеют вид y = y_0, z = z_0. Аналогично для любых других пар компонент направляющего вектора.

Уравнение прямой в пространстве, проходящей через две точки (x_1, y_1, z_1) и (x_2, y_2, z_2):

    [frac{x - x_1}{x_2 - x_1} = frac{y - y_1}{y_2 - y_1} = frac{z - z_1}{z_2 - z_1}.]

Если, например, z_1 = z_2, то уравнения прямой принимают вид

    [frac{x - x_1}{x_2 - x_1} = frac{y - y_1}{y_2 - y_1}, quad z = z_1.]

Если к тому же y_1 = y_2, то уравнения прямой записываются в виде y = y_1, z = z_1. Аналогично для любых двух пар совпадающих координат точек.

Прямая в пространстве может быть задана как пересечение двух непараллельных плоскостей:

    begin{equation*} begin{cases} A_1x + B_1y + C_1z + D_1 = 0,\ A_2x + B_2y + C_2z + D_2 = 0. end{cases} end{equation*}

Уравнение прямой в пространстве в векторной форме

Прямая линия в пространстве может быть задана уравнением в параметрической форме:

    [textbf{r} = textbf{r}_0 + textbf{a}t, qquad textbf{a} ne textbf{0},]

где textbf{a} — направляющий вектор прямой, textbf{r}_0 — радиус-вектор некоторой точки прямой. Это уравнение совпадает с параметрическим векторным уравнением прямой на плоскости.Параметрическое уравнение прямой в векторной форме

Прямую в пространстве можно задать векторными уравнениями:

    [left[textbf{r} - textbf{r}_0, textbf{a}right]=textbf{0}, qquad textbf{a} ne textbf{0}]

или

    [left[textbf{r}, textbf{a}right]=textbf{b}, quad textbf{a} ne textbf{0}, quad (textbf{a}, textbf{b}) ne 0.]

Векторное уравнение прямой в пространстве, проходящей через две различные точки:

    [textbf{r} = textbf{r}_1 + left(textbf{r}_2 - textbf{r}_1right)t,]

где textbf{r}_1 и textbf{r}_2 — радиус-векторы двух точек прямой.Уравнение прямой в векторной форме по двум точкам

Векторное уравнение прямой в пространстве

Пусть
для прямой известны
ее направляющий вектори
точка,
лежащая на этой прямой. Пусть
произвольная (текущая) точка прямой.
Обозначим черезиr радиус-векторы
точек исоответственно
(рис. 11.11).

Рис.11.11.Векторное
уравнение прямой

Тогда
вектор коллинеарен
векторуp и,
следовательно, ,
где
некоторое число. Из рис. 11.11 видно, что

(11.12)

Это
уравнение называется векторным
уравнением
 прямой
или уравнением
в векторной форме
.
При каждом значении параметра мы
будем получать новую точкуна
прямой.

Общие уравнения прямой в пространстве

Линия
в трехмерном пространстве определяется,
вообще говоря, пересечением двух
поверхностей, т.е. описывается системой
двух уравнений.

Прямую
в пространстве можно рассматривать как
линию пересечения двух плоскостей и,
следовательно, описывать системой двух
линейных уравнений

м
н
о

A1x + B1y + C1z + D1 =
0

A2x + B2y + C2z + D2 =
0

при
условии, что эти плоскости непараллельны,
т.е. их нормальные векторы неколлинеарны.

Расстояние
между скрещивающимися прямыми в
пространстве

  • В
    трехмерном пространстве в прямоугольной
    системе координат Oxyz заданы две
    скрещивающиеся прямые a и b.
    Прямую a определяют параметрические
    уравнения прямой в пространствевида

X=-2

Y=2t+1

Z=-3t+4

 ,
а прямую b – канонические
уравнения прямой в пространстве.
Найдите расстояние между заданными
скрещивающимися прямыми.

Очевидно,
прямая a проходит через точку и
имеет направляющий вектор.
Прямая b проходит через точку,
а ее направляющим вектором является
вектор.

Вычислим
векторное произведение векторов и:

Таким
образом, нормальный вектор плоскости,
проходящей через прямую b параллельно
прямой a, имеет координаты.

Тогда
уравнение плоскости есть
уравнение плоскости, проходящей через
точкуи
имеющей нормальный вектор:

Нормирующий
множитель для общего уравнения
плоскости равен.
Следовательно, нормальное уравнение
этой плоскости имеет вид.

Осталось
воспользоваться формулой для вычисления
расстояния от точки до
плоскости:

Это
и есть искомое расстояние между заданными
скрещивающимися прямыми.

УГОЛ
МЕЖДУ ПРЯМЫМИ

Углом между
прямыми в пространстве будем называть
любой из смежных углов, образованных
двумя прямыми, проведёнными через
произвольную точку параллельно данным.

Пусть
в пространстве заданы две прямые:

Очевидно,
что за угол φ между прямыми можно принять
угол между их направляющими векторами и.
Так как,
то по формуле для косинуса угла между
векторами получим

.

Условия
параллельности и перпендикулярности
двух прямых равносильны условиям
параллельности и перпендикулярности
их направляющих векторов и:

Две
прямые параллельны тогда
и только тогда, когда их соответствующие
коэффициенты пропорциональны,
т.е. l1 параллельна l2 тогда
и только тогда, когда параллелен.

Две
прямые перпендикулярны тогда
и только тогда, когда сумма произведений
соответствующих коэффициентов равна
нулю: .

Примеры.

  1. Найти
    угол между прямыми и.

  1. Найти
    уравнения прямой проходящей через
    точку М1(1;2;3)
    параллельно прямой l1:

Поскольку
искомая прямая l параллельна l1,
то в качестве направляющего вектора
искомой прямой l можно
взять направляющий вектор прямой l1.

  1. Составить
    уравнения прямой, проходящей через
    точку М1(-4;0;2)
    и перпендикулярной прямым: и.

Направляющий
вектор прямой l можно
найти как векторное произведение
векторов и:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Прямая (прямая линия) — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

A x + B y + C = 0

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

y = k x + b

где kугловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

k = tg φ

Уравнение прямой в отрезках на осях

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M(x1, y1) и N(x2, y2), такие что x1x2 и y1y2, то уравнение прямой можно найти, используя следующую формулу

xx1  =  yy1
x2x1 y2y1

Параметрическое уравнение прямой на плоскости

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x0y = m t + y0

где N(x0, y0) — координаты точки лежащей на прямой, a = {l, m} — координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N(x0, y0) лежащей на прямой и направляющего вектора a = {l; m} (l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Пример 1. Найти уравнение прямой проходящей через две точки M(1, 7) и N(2, 3).

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 12 — 1 = y — 73 — 7

Упростив это уравнение получим каноническое уравнение прямой

x — 11 = y — 7-4

Выразим y через x и получим уравнение прямой с угловым коэффициентом

y — 7 = -4(x — 1)

y = -4x + 11

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN.

MN = {2 — 1; 3 — 7} = {1; -4}

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1y = -4t + 7

Пример 2. Найти уравнение прямой проходящей через две точки M(1, 3) и N(2, 3).

Решение. Так как My — Ny = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN.

MN = {2 — 1; 3 — 3} = {1; 0}

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1y = 3

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M(x1, y1, z1) и N(x2, y2, z2), такие что x1x2, y1y2 и z1z2, то уравнение прямой можно найти используя следующую формулу

xx1  =  yy1  =  zz1
x2x1 y2y1 z2z1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x0
y = m t + y0
z = n t + z0

где (x0, y0, z0) — координаты точки лежащей на прямой, {l; m; n} — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M(x0, y0, z0) лежащей на прямой и направляющего вектора n = {l; m; n}, то уравнение прямой можно записать в каноническом виде, используя следующую формулу

xx0  =  yy0  =  zz0
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0

при условии, что не имеет место равенство

A1  =  B1  =  C1 .
A2 B2 C2

Понравилась статья? Поделить с друзьями:
  • Как составить договор купли продажи простой письменной формы
  • Вторая мировая война как найти деда
  • Как найти свой faceit по стиму
  • Как найти цель для команды
  • Как найти процентное уменьшение