Как найти уравнение прямой заданной пересечением плоскостей



5.4.4. Прямая, заданная пересечением двух плоскостей

Если плоскости   пересекаются, то система линейных уравнений  задаёт прямую в пространстве.

То есть прямая задана уравнениями двух плоскостей. Типовая и

распространенная задача состоит в том, чтобы переписать уравнения прямой в каноническом виде:

Задача 151

Записать канонические уравнения прямой

Решение: чтобы составить канонические уравнения прямой, нужно знать точку и направляющий вектор. А у нас даны уравнения двух

плоскостей….

1) Сначала найдём какую-либо точку, принадлежащую данной прямой. Как это сделать? Методом подбора. В системе уравнений обнулим

какую-нибудь координату, например, . Тогда получается система двух линейных

уравнений с двумя неизвестными: . Почленно складываем уравнения и находим

решение системы:

Таким образом, точка  принадлежит данной прямой. Но принадлежит ли?

Выполним проверку – подставим её координаты в исходную систему уравнений:

Получены верные равенства, значит, действительно .

В процессе подбора обратите внимание на следующий технический момент: желательно найти точку с целыми координатами. Если бы в

системе мы обнулили «икс» или «зет», то не факт, что получилась бы «хорошая» точка без дробных координат. Такой анализ и подбор точки следует

проводить мысленно или на черновике.

2) Как найти направляющий вектор прямой? Существует готовая формула: если прямая задана пересечением двух

плоскостей , то вектор  является направляющим вектором данной прямой.
В нашей задаче:

Однако всех формул не упомнишь и поэтому очень важно понимать, откуда они взялись. Направляющий вектор нашей прямой ортогонален нормальным векторам плоскостей:  и , поэтому вектор «пэ» можно найти как векторное произведение векторов нормали: .
Из уравнений плоскостей  «снимаем» их векторы нормали:
 и находим направляющий вектор прямой:

Проверим результат с помощью скалярного произведения:
, ч.т.п.

И, наконец, завершающий этап:

3) Составим канонические уравнения прямой по точке  и

направляющему вектору :

Ответ:

Аналогичная задача для самостоятельного решения:

Задача 152

Записать канонические уравнения прямой

Будьте внимательны! Ваш ответ может отличаться от моего ответа (смотря, какую точку подберёте). Если отличие есть, то для проверки возьмите точку из вашего уравнения

и подставьте в моё уравнение (или наоборот).

Полное решение и ответ в конце книги.

И сейчас самое время перейти к простейшим задачам с пространственной прямой:

5.5.1. Взаимное расположение прямых

5.4.3. Параметрические уравнения прямой

| Оглавление |



Автор: Aлeксaндр Eмeлин

Написать канонические и параметрические уравнения прямой, образованной пересечением плоскостей

Решение

1) Найдем координаты фиксированной точки. Из исходной системы уравнений 

исключим z. 

Положим z=0, тогда:

откуда находим: x=1, y= -2.

Таким образом, нашли координаты фиксированной точки M0(1,-2,0).

2) Направляющий вектор определяется как векторное произведение нормалей двух плоскостей, образующих прямую:

3) Запишем канонические уравнения:

4) Обозначив,

получаем параметрические уравнения:

x=t+1, y=4t-2, z=4

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Прямая как линия пересечения плоскостей

Прямая
в пространстве может быть определена
как линия пересечения двух непараллельных
плоскостей
и,
то есть как множество точек, удовлетворяющих
системе двух линейных уравнений

(V.5)

Справедливо
и обратное утверждение: система двух
независимых линейных уравнений вида
(V.5)
определяет прямую как линию пересечения
плоскостей (если они не параллельны).
Уравнения системы (V.5)
называются общим
уравнением
прямой
в пространстве
.

Пример
V.12.
Составить
каноническое уравнение прямой, заданной
общими уравнениями плоскостей

Решение.
Чтобы написать
каноническое уравнение прямой или, что
тоже самое, уравнение прямой, проходящей
через две данные точки, нужно найти
координаты каких-либо двух точек прямой.
Ими могут служить точки пересечения
прямой с какими-нибудь двумя координатными
плоскостями, например Oyz
и Oxz.

Точка
пересечения прямой с плоскостью Oyz
имеет абсциссу
.
Поэтому, полагая в данной системе
уравнений,
получим систему с двумя переменными:

Ее
решение
,вместе сопределяет точкуискомой прямой. Полагая в данной системе
уравнений,
получим систему

решение
которой
,вместе сопределяет точкупересечения прямой с плоскостьюOxz.

Теперь
запишем уравнения прямой, проходящей
через точки
и:или,
гдебудет направляющим векто-ром этой
прямой.

Пример
V.13.
Прямая задана
каноническим уравнением
.
Составить общее уравнение этой прямой.

Решение.
Каноническое
уравнение прямой можно записать в виде
системы двух независимых уравнений:

Получили
общее уравнение прямой, которая теперь
задана пересечением двух плоскостей,
одна из которых
параллельна осиOz
(),
а другая– осиОу
().

Данную
прямую можно представить в виде линии
пересечения двух других плоскостей,
записав ее каноническое уравнение в
виде другой пары независимых уравнений:

Замечание.
Одна и та же прямая может быть задана
различными системами двух линейных
уравнений (то есть пересечением различных
плоскостей, так как через одну прямую
можно провести бесчисленное множество
плоскостей), а также различными
каноническими уравнениями (в зависимости
от выбора точки на прямой и ее направляющего
вектора).

Ненулевой
вектор, параллельный прямой линии, будем
называть ее направляющим
вектором
.

Пусть
в трехмерном пространстве

задана прямая l,
проходящая через точку
,
и ее направляющий вектор.

Любой
вектор
,
где,
лежащий на прямой, коллинеарен с вектором,
поэтому их координаты пропорциональны,
то есть

.
(V.6)

Это
уравнение называется каноническим
уравнением прямой. В частном случае,
когда ﻉ
есть
плоскость, получаем уравнение прямой
на плоскости

.
(V.7)

Пример
V.14.
Найти уравнение прямой, проходящей
через две точки
,.

Будем
считать вектор
направляющим, тогда уравнение искомой
прямой имеет вид

,

где
,,.

Удобно
уравнение (V.6)
записать в параметрической форме. Так
как координаты направляющих векторов
параллельных прямых пропорциональны,
то, полагая

,

получим

где
t
– параметр,
.

Расстояние от точки до прямой

Рассмотри
двухмерное евклидовое пространство ﻉ

с
декартовой системой координат. Пусть
точка

и
lﻉ.
Найдем расстояние от этой точки до
прямой. Положим
,
и прямая l
задается уравнением
(рис.V.8).

Расстояние

,
вектор
,
где

– нормальный вектор прямой l,


и

– коллинеарны, поэтому их координаты
пропорциональны, то есть
,
следовательно,

,

.

Рис.
V.8

Отсюда
или умножая эти уравнения
наA
и B
соответственно и складывая их, находим
,
отсюда

или

.

Формула

(V.8)

определяет
расстояние от точки
до прямой.

Пример
V.15.
Найти уравнение прямой, проходящей
через точку
перпендикулярно прямойl:
и найти расстояние отдо прямойl.

Из
рис. V.8
имеем
,
а нормальный вектор прямойl
.
Из условия перпендикулярности имеем

или

.

Так
как
,
то

.
(V.9)

Это
и есть уравнение прямой, проходящей
через точку
,перпендикулярно
прямой
.

Пусть
имеем уравнение прямой (V.9),
проходящей через точку
,
перпендикулярна прямойl:
.
Найдем расстояние от точкидо прямойl,
используя формулу (V.8).

Для
нахождения искомого расстояния достаточно
найти уравнение прямой, проходящей
через две точки
и точку,
лежащую на прямой в основании
перпендикуляра. Пусть
,
тогда

.
(V.10)

Так
как
,
а вектор,
то

.
(V.11)

Поскольку
точка
лежит на прямойl,
то имеем еще одно равенство
или

Приведем систему
к виду, удобному для применения метода
Крамера

Ее решение имеет
вид

,

.
(V.12)

Подставляя
(V.12)
в (V.10),
получаем исходное расстояние.

Пример
V.16.
В двухмерном пространстве задана точка
и прямая.
Найти расстояние от точкидо прямой; записать уравнение прямой,
проходящей через точкуперпендикулярно заданной прямой и найти
расстояние от точкидо основания перпендикуляра к исходной
прямой.

По
формуле (V.8)
имеем

.

Уравнение
прямой, содержащей перпендикуляр, найдем
как прямую, проходящую через две точки
и,
воспользовавшись формулой (V.11).
Так как
,
то, с учетом того, что,
а,
имеем

.

Для
нахождения координат
имеем систему с учетом того, что точкалежит на исходной прямой

Следовательно,
,,
отсюда.

Рассмотрим
трехмерное евклидовое пространство ﻉ.
Пусть точка

и
плоскость ﻉ.
Найдем расстояние от этой точки
до плоскости,
заданной уравнением
(рис.V.9).

Рис.
V.9

Аналогично
двухмерному пространству имеем
и вектор,
а,
отсюда

.
(V.13)

Уравнение
прямой, содержащей перпендикуляр к
плоскости ,
запишем как уравнение прямой, проходящей
через две точки
и,
лежащую в плоскости:

.
(V.14)

Для
нахождения координат точки
к двум любым равенствам формулы (V.14)
добавим уравнение

.
(V.15)

Решая
систему трех уравнений (V.14),
(V.15),
найдем
,,– координаты точки.
Тогда уравнение перпендикуляра запишется
в виде

.

Для
нахождения расстояния от точки
до плоскости
вместо формулой (V.13)
воспользуемся

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Этот онлайн калькулятор предназначен для проверки решений задач, которые можно сформулировать следующим образом:

Записать канонические (или параметрические) уравнения прямой, заданной уравнениями двух плоскостей
left{ A_1x+B_1y+C_1z+D_1=0 atop A_2x+B_2y+C_2z+D_2=0.

Вы задаете коэффициенты уравнений плоскостей, А₁, B₁, C₁, D₁ и A₂, B₂, C₂, D₂, калькулятор выдает уравнения прямой в параметрической и канонической формах, а также найденную точку, принадлежащую прямой и направляющий вектор прямой.

Обратите внимание, в том случае если уравнения плоскостей заданы в виде
left{ A_1x+B_1y+C_1z=D_1 atop A_2x+B_2y+C_2z=D_2
при вводе коэффициентов D₁ и D₂ надо поменять знак.

Немного теории, как обычно, можно почерпнуть под калькулятором

PLANETCALC, Нахождение уравнений прямой, заданной пересечением двух плоскостей

Нахождение уравнений прямой, заданной пересечением двух плоскостей

Общее уравнение первой плоскости

Общее уравнение второй плоскости

Точка, принадлежащая прямой

Направляющий вектор прямой

Канонические уравнения прямой

Параметрические уравнения прямой

Точность вычисления

Знаков после запятой: 2

Канонические уравнения прямой, заданной пересечением двух плоскостей

Если плоскости пересекаются, то система уравнений, приведенная в начале статьи, задает прямую в пространстве. Для записи уравнений этой прямой в каноническом виде, надо найти какую либо точку, принадлежащую этой прямой, и направляющий вектор.

Точка, принадлежащая прямой, также принадлежит и каждой из плоскостей, то есть является одним из решений системы уравнений выше. Для нахождения точки, принадлежащей прямой, переходят от системы из двух уравнений с тремя неизвестными к системе из двух уравнений с двумя неизвестными, произвольно принимая какую-либо координату точки за ноль. Как правило, при решении задач, выбирают ту координату, при занулении которой решение системы из двух уравнений с двумя неизвестными дает в ответе целые числа. Калькулятор учитывает этот факт и также пытается найти целочисленное решение, зануляя все координаты по очереди.

Направляющий вектор прямой ортогонален нормальным векторам плоскостей, которые задаются коэффициентами A, B и С в общем уравнении плоскости Ax+By+Cz+D=0. Таким образом его можно найти как результат векторного произведения нормальных векторов плоскостей hat{p}=hat{n_1}timeshat{n_2}.

Точка (x_0;y_0;z_0) и вектор (p_1;p_2;p_3) дают нам канонические уравнения прямой:

frac{x-x_0}{p_1}=frac{y-y_0}{p_2}=frac{z-z_0}{p_3}

Существуют частные случаи, когда одна или две координаты направляющего вектора равны нулю.

В случае, если нулю равны две координаты, направляющий вектор коллинеарен одной из координатных осей. Соответственно, точки прямой могут принимать любое значение по этой оси, при этом значения по двум другим осям будут постоянны. Например, если двумя нулевыми координатами будут y и z, канонические уравнения прямой будут выглядеть так:
y-y_0=0; z-z_0=0

В случае. если нулю равна одна координата, направляющий вектор лежит в одной из координатных плоскостей (плоскостей, образованных парами координатных осей), значение координаты по третьей оси, ортогональной этой плоскости (как раз той, для которой координата направляющего вектора равна нулю), опять будет постоянным. Например, если нулевой координатой будет x, то канонические уравнения прямой будут выглядеть так:
x-x_0=0; frac{y-y_0}{p_2}=frac{z-z_0}{p_3}

Эти случаи также учитываются калькулятором.

Параметрические уравнения прямой, заданной пересечением двух плоскостей

Зная точку, принадлежащую прямой и ее направляющий вектор, несложно записать и параметрические уравнения прямой.
Для точки (x_0;y_0;z_0), принадлежащей прямой, и направляющего вектора (p_1;p_2;p_3) параметрические уравнения прямой выглядят так:
x=p_1t+x_0\y=p_2t+y_0\z=p_3z+z_0

Уравнение прямой как результат пересечения плоскостей

Коэффициенты первой плоскости
Коэффициенты второй плоскости
Уравнение первой плоскости
Уравнение второй плоскости
Уравнение прямой как пересечение двух плоскостей

Определяем  уравнение прямой в пространстве если нам известны  общие уравнения двух плоскостей.

Обновление  от 13 октября 2019 года: Используется алгоритм описанный в статье ФРС. Фундаментальное решение системы уравнений

Если  первая  плоскость задана уравнением вида

Ax+By+Cz+D=0

а другая плоскость  уравнением вида

A_2x+B_2y+C_2z+D_2=0

и они перескаются, то  уравнение полученной прямой можно найти по двум точкам, принадлежащих одновременно этим плоскостям.

Прямая в пространстве, проходящая через две точки M(x_0,y_0,z_0) и M(x_0,y_0,z_0)  может быть представлена в виде канонического уравнения

(cfrac{x-x_0}{x_1-x_0}=cfrac{y-y_0}{y_1-y_0}=cfrac{z-z_0}{z_1-z_0})

B принципе этого достаточно  что бы решить уравнение. Положим что z=0  ( можно брать любое число, но с нулем оно как то удобнее) тогда уравнения плоскости приобретают вид

Ax+By+D=0

A_2x+B_2y+D_2=0

Получили систему линейных уравнений которая легко решается.

Определили таким образом точку M(x_0,y_0,0)

Теперь пусть z=1 и решаем систему 

A_1x+B_1y+(С_1+D_1)=0

A_2x+B_2y+D_2=0

и получаем вторую точку  M(x_0,y_0,1)

Эти две точки принадлежат обеим плоскостям и значит уравнение прямой имеет вид

(cfrac{x-x_0}{x_1-x_0}=cfrac{y-y_0}{y_1-y_0}=cfrac{z}{1})

Есть еще второй способ, использующий вектора. Рассмотрим и его.

Если известна точка в пространстве  M(x_0,y_0,z_0) и направляющий вектор v(m,n,p)

то уравнение прямой имеет вид

 (cfrac{x-x_0}{m}=cfrac{y-y_0}{n}=cfrac{z-z_0}{p})

 Узнав координаты точки M(x_0,y_0,z_0)   ( например по выше приведенному решению)  нам осталось  узнать направляющий вектор.

Для этого вычислим векторное произведение

(begin{pmatrix}i&j&k\A_1&B_1&C_1\A_2&B_2&C_2end{pmatrix}=im+jn+kp)

и подставив вычисленные значения в  уравнение

(cfrac{x-x_0}{m}=cfrac{y-y_0}{n}=cfrac{z-z_0}{p})

мы узнаем уравнение прямой в пространстве, как пресечение двух плоскостей.

Созданный онлайн калькулятор позволяет автоматически находить  уравнение прямой по двум заданным  общим уравнениям плоскостей.

Условие параллельности плоскостей

Две плоскости заданные уравнениями вида

Ax+By+Cz+D=0

A_2x+B_2y+C_2z+D_2=0

лишь тогда параллельны, когда верным  становится соотношение

(cfrac{A_1}{A_2}=cfrac{B_1}{B_2}=cfrac{C_1}{C_2})

Понравилась статья? Поделить с друзьями:
  • Как найти остаточную стоимость машины
  • Python как найти папку по имени
  • Как найти произведение нечетных цифр числа
  • Как найти ставку дисконтирования для npv
  • Как найти тангенс угла наклонной касательной