Как найти уравнение степенной регрессии

Нелинейные модели парной регрессии

  • Параболическая регрессия
  • Гиперболическая регрессия
  • Показательная (экспоненциальная) регрессия)
  • Степенная регрессия

Параболическая регрессия


Уравнение регрессии в
форме параболы второго порядка имеет следующий вид:

Если при линейной связи
среднее изменение результативного признака на единицу фактора постоянно по всей
области вариации фактора, то при параболической корреляции изменение признака

 меняется
равномерно с изменением величины фактора. В результате связь может даже
поменять знак на противоположный, из прямой превратится в обратную, из обратной в прямую. Такой характер связи присущ  многим системам. Например, с увеличением дозы
удобрений урожайность сельхозкультур сначала
повышается, но если превысить оптимальную величину дозы, то при дальнейшем
росте дозы удобрения растения угнетаются и урожайность снижается.

Нормальные уравнения
метода наименьших квадратов (МНК) для параболы 2-го порядка таковы:

Ввиду симметричности
кривой парабола второй степени далеко не всегда пригодна в конкретных
исследованиях. Чаще исследователь имеет дело лишь с отдельными сегментами
параболы, а не с полной параболической формой.

Кроме того, параметры
параболической связи не всегда могут быть логически истолкованы. Поэтому если
график зависимости не демонстрирует четко выраженной параболы второго порядка
(нет смены направленности связи признаков), то она может быть заменена другой
нелинейной функцией, например степенной. В частности, в литературе часто
рассматривается парабола второй степени для характеристики зависимости
урожайности от количества внесенных удобрений. Данная форма связи мотивируется
тем, что с увеличением количества внесенных удобрений урожайность растет лишь
до достижения оптимальной дозы вносимых удобрений. Дальнейший же рост их дозы
оказывается вредным для растения, и урожайность снижается. Несмотря на несомненную
справедливость данного утверждения, следует отметить, что внесение в почву
минеральных удобрений производится на основе учета достижений агробиологической
науки. Поэтому на практике часто данная зависимость представлена лишь сегментом
параболы, что и позволяет использовать другие нелинейные функции.


Задача 1

Постройте
криволинейную регрессионную модель (параболу) для следующих исходных данных.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Уравнение параболической
регрессии имеет вид:

Составим
расчетную таблицу:

Для
нахождения коэффициентов параболы необходимо решить систему уравнений:

Подставляя
в систему уравнений, получаем:

Решая
систему уравнений, получаем:

Уравнение
параболической регрессии имеет вид:

Коэффициент
детерминации:

Коэффициент эластичности:

Гиперболическая регрессия


Уравнение регрессии в
форме гиперболы имеет следующий вид:

Гиперболические
зависимости характерны для связей, в которых результативный признак не может
варьировать неограниченно, его вариация имеет односторонний предел. Например,
совершенствуя двигатель, можно увеличивать его КПД, но не выше предела, допускаемого
данным видом преобразования энергии. Или таков характер связи между уровнем
душевого дохода в семье и долей семей, имеющих телевизоры – он приближен к
пределу (100%) в наиболее обеспеченной группе семей.

Если величина

 положительна, то при увеличении значений
факторного признака

 значения
результативного признака уменьшаются, причем это уменьшение все время
замедляется, и при

 средняя
величина признака

 будет
равна

.  Классическим примером является кривая Филлипса, характеризующая нелинейное соотношение между
нормой безработицы

 и
процентом прироста заработной платы.

Если же параметр

 отрицателен,
то значения результативного признака с ростом фактора возрастают, причем их
рост замедляется, и в пределе при

 

.  Примером может служить взаимосвязь доли
расходов на товары длительного пользования и общих сумм расходов.
Математическое описание подобного рода взаимосвязей получило название кривых Энегеля.

Нормальные уравнения
метода наименьших квадратов (МНК) для гиперболы таковы:

Легко увидеть, что эти
уравнения, по существу, те же, что для линейной связи. Линеаризация гиперболического
уравнения достигается заменой

 на
новую переменную, которую можно обозначить

. Тогда уравнение гиперболической регрессии
примет вид

.


Задача 2

Постройте
криволинейную регрессионную модель (гиперболу) для следующих исходных данных.

0,96 0,75 0,64 0,55 0,68 0,71 0,95 0,45 0,71 0,63

1,95 2,6 4,28 6,52 4,55 2,91 1,81 8,21 2,84 4,38

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Уравнение гиперблической регрессии имеет вид:

Составим
расчетную таблицу:

Расчетная вспомогательная таблица

1 0,96 1,95 1,042 1,085 2,031 1,436 6,598 4,223
2 0,75 2,6 1,333 1,778 3,467 3,105 0,809 1,974
3 0,64 4,28 1,563 2,441 6,688 4,417 0,169 0,076
4 0,55 6,52 1,818 3,306 11,855 5,880 3,514 6,325
5 0,68 4,55 1,471 2,163 6,691 3,891 0,013 0,297
6 0,71 2,91 1,408 1,984 4,099 3,535 0,221 1,199
7 0,95 1,81 1,053 1,108 1,905 1,499 6,279 4,818
8 0,45 8,21 2,222 4,938 18,244 8,192 17,527 17,682
9 0,71 2,84 1,408 1,984 4,000 3,535 0,221 1,357
10 0,63 4,38 1,587 2,520 6,952 4,559 0,306 0,141
Итого 7,03 40,05 14,905 23,306 65,932 40,048 35,658 38,092

Для
нахождения коэффициентов гиперболической регрессии необходимо решить систему
уравнений:

Подставляя
в систему уравнений, получаем:

Решая
систему уравнений, получаем:

Искомое уравнение гиперболической
регрессии:

Коэффициент
детерминации:

Коэффициент эластичности:

Показательная (экспоненциальная) регрессия


Уравнение регрессии в
показательной форме имеет следующий вид:

Данное
уравнение является нелинейным по коэффициенту

 и относится к классу моделей регрессии,
которые можно с помощью преобразований привести к линейному виду.

Показательная функция
является внутренне линейной, поэтому оценки неизвестных параметров её
линеаризованной формы можно рассчитать с помощью классического метода
наименьших квадратов

Нормальные уравнения
метода наименьших квадратов (МНК) для показательной регрессии:

Отсюда:


Задача 3

Постройте
криволинейную регрессионную модель (показательная функция) для следующих
исходных данных.

1,95 2,58 3,26 4,51 5,14 5,92 6,81 7,45 8,02 8,75

6,1 8,51 10,82 17,92 24,21 33,1 45,51 61,21 72,38 95,24

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Уравнение показательной
регрессии имеет вид:

Составим
расчетную таблицу:

Расчетная вспомогательная таблица

1 1,95 6,1 3,803 1,808 3,526 6,433 0,104 985,960
2 2,58 8,51 6,656 2,141 5,524 8,292 0,048 840,420
3 3,26 10,82 10,628 2,381 7,763 10,904 0,007 711,822
4 4,51 17,92 20,340 2,886 13,015 18,041 0,015 383,376
5 5,14 24,21 26,420 3,187 16,380 23,252 0,918 176,624
6 5,92 33,1 35,046 3,500 20,717 31,835 1,600 19,360
7 6,81 45,51 46,376 3,818 26,000 45,561 0,003 64,160
8 7,45 61,21 55,503 4,114 30,652 58,959 5,066 562,164
9 8,02 72,38 64,320 4,282 34,341 74,176 3,226 1216,614
10 8,75 95,24 76,563 4,556 39,869 99,532 18,423 3333,908
Итого 54,39 375 345,654 32,674 197,788   29,408 8294,409

Для
нахождения коэффициентов показательной регрессии необходимо решить систему
уравнений:

Подставляя
в систему уравнений, получаем:

Решая
систему уравнений, получаем:

Искомое уравнение показательной
регрессии:

Коэффициент
детерминации:

Коэффициент эластичности:

Степенная регрессия


В моделях, нелинейных по
оцениваемым параметрам, но приводимых к линейному виду, метод наименьших
квадратов и его требования применяются не к исходным данным результативного
признака, а к их преобразованным величинам.

Так, в степенной функции:

метод наименьших квадратов
применяется к преобразованному уравнению:

Система линейных уравнений
будет иметь вид:

Отсюда:

Степенная регрессия широко
используется в исследованиях при изучении эластичности спроса от цен.


Задача 4

По данным постройте
степенную регрессию:

2,21 17,45 8,6 61,05 5,76 33,38 16,22 3,88 0,75 149,3

9,63 25,92 31,6 17,71 14,87 44,03 13,7 9,13 3,86 170,45

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Уравнение степенной
регрессии имеет вид:

Составим
расчетную таблицу:

Расчетная вспомогательная таблица

 

1 2,21 9,63 0,793 0,629 2,265 1,796 8,690 105,030 86,655
2 17,45 25,92 2,859 8,176 3,255 9,307 20,871 3,733 48,736
3 8,6 31,6 2,152 4,630 3,453 7,430 15,461 12,093 160,304
4 61,05 17,71 4,112 16,906 2,874 11,818 35,494 274,065 1,510
5 5,76 14,87 1,751 3,066 2,699 4,726 13,045 34,739 16,556
6 33,38 44,03 3,508 12,306 3,785 13,277 27,478 72,911 629,564
7 16,22 13,7 2,786 7,763 2,617 7,293 20,234 1,677 27,446
8 3,88 9,13 1,356 1,838 2,212 2,999 11,033 62,506 96,214
9 0,75 3,86 -0,288 0,083 1,351 -0,389 5,496 180,711 227,373
Итого 149,3 170,45 19,029 55,397 24,511 58,257   747,465 1294,358

Для
нахождения коэффициентов степенной регрессии необходимо решить систему
уравнений:

Подставляя
в систему уравнений, получаем:

Решая
систему уравнений, получаем:

Искомое уравнение
степенной регрессии:

Коэффициент
детерминации:

Коэффициент эластичности:

Уравнение степенной модели имеет вид:

Для
построения этой модели необходимо
произвести линеаризацию переменных.
Для этого произведем логарифмирование
обеих частей уравнения:

lgŷ =lga+blgx

Факт

Lg(Y)

Переменная

Lg(x)

Y(t)

X(t)

1

64.0

1.806

64

1.806

2

56.0

1.748

68

1.833

3

52.0

1.716

82

1.914

4

48.0

1.681

76

1.881

5

50.0

1.699

84

1.924

6

46.0

1.663

96

1.982

7

38.0

1.580

100

2.000

28

354

11.893

570

13.340

Сред.знач.

50.5714

1.699

81.429

1.906

Обозначим
Y=lgŷ, X = lg
x, A = lg a. Тогда уравнение примет вид:

Y=A+bX- линейное уравнение регрессии.

Рассчитаем его параметры, используя
данные таблицы 3.6

Таблица 3.6

1

64

1,8062

64

1,8062

3,2623

3,2623

61.294

2.706

4.23

7.322

2

56

1,7482

68

1,8325

3,2036

3,3581

58.066

-2.066

3.69

4.270

3

52

1,7160

82

1,9138

3,2841

3,6627

49.133

2.867

5.51

8.220

4

48

1,6812

76

1,8808

3,1621

3,5375

52.580

-4.580

9.54

20.976

5

50

1,6990

84

1,9243

3,2693

3,7029

48.088

1.912

3.82

3.657

6

46

1,6628

96

1,9823

3,2960

3,9294

42.686

3.314

7.20

10.982

7

38

1,5798

100

2,0000

3,1596

4,0000

41.159

-3.159

8.31

9.980

итог

354

11,8931

13,3399

22,6370

25,4528

0,51

42.32

65.407

Уравнение
регрессии будет иметь вид :

Y=3.3991-0,8921 X

Перейдем к исходным
переменным x и y, выполнив потенцирование
данного уравнения.

Получим уравнение
степенной модели регрессии:

Определим
индекс корреляции:

Связь
между показателем y
и фактором x
можно
считать достаточно сильной.

Коэффициент
детерминации:
0.836

Вариация результата
Y(объема выпуска продукции)
на 83,6 % объясняется вариацией фактора
Х (объемом капиталовложений).

РассчитаемF-критерий Фишера:

F>FТАБЛ
= 6,61 для 
= 0,05. к1=m=1,
k2=n-m-1=5

Уравнение регрессии
с вероятностью 0,95 в целом статистически
значимое, т. к. F>FТАБЛ.

Средняя
относительная ошибка

.

В среднем расчетные
значения ŷ для степенной модели отличаются
от фактических значений на 6,04 %.

Соседние файлы в папке Дополнительный материал

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Уравнение нелинейной регрессии

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Виды нелинейной регрессии

Здесь ε — случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка — это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx 2 .

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx 2 + dx 3 .

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x) Преобразование Метод линеаризации
y = b x a Y = ln(y); X = ln(x) Логарифмирование
y = b e ax Y = ln(y); X = x Комбинированный
y = 1/(ax+b) Y = 1/y; X = x Замена переменных
y = x/(ax+b) Y = x/y; X = x Замена переменных. Пример
y = aln(x)+b Y = y; X = ln(x) Комбинированный
y = a + bx + cx 2 x1 = x; x2 = x 2 Замена переменных
y = a + bx + cx 2 + dx 3 x1 = x; x2 = x 2 ; x3 = x 3 Замена переменных
y = a + b/x x1 = 1/x Замена переменных
y = a + sqrt(x)b x1 = sqrt(x) Замена переменных

Пример . По данным, взятым из соответствующей таблицы, выполнить следующие действия:

  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05 .
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
Год Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), y Среднедушевые денежные доходы населения (в месяц), руб. (1995 г. — тыс. руб.), х
1995 872 515,9
2000 3813 2281,1
2001 5014 3062
2002 6400 3947,2
2003 7708 5170,4
2004 9848 6410,3
2005 12455 8111,9
2006 15284 10196
2007 18928 12602,7
2008 23695 14940,6
2009 25151 16856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a e bx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e 7.81321500 e 0.000162x = 2473.06858e 0.000162x

Степенное уравнение регрессии имеет вид y = a x b
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e 0.77143204 x 0.9626 = 2.16286x 0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) — 49694.9535

Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

· Рассчитаем параметры уравнений линейной парной регрессии. Для расчета параметров a и b линейной регрессии y=a+b*x решаем систему нормальных уравнений относительно a и b:

По исходным данным рассчитываем ∑y, ∑x, ∑yx, ∑x 2 , ∑y 2 (табл. 2):

№ региона X Y XY X^2 Y^2 Y^cp Y-Y^cp Ai
1 2,800 28,000 78,400 7,840 784,000 25,719 2,281 0,081
2 2,400 21,300 51,120 5,760 453,690 22,870 -1,570 0,074
3 2,100 21,000 44,100 4,410 441,000 20,734 0,266 0,013
4 2,600 23,300 60,580 6,760 542,890 24,295 -0,995 0,043
5 1,700 15,800 26,860 2,890 249,640 17,885 -2,085 0,132
6 2,500 21,900 54,750 6,250 479,610 23,582 -1,682 0,077
7 2,400 20,000 48,000 5,760 400,000 22,870 -2,870 0,144
8 2,600 22,000 57,200 6,760 484,000 24,295 -2,295 0,104
9 2,800 23,900 66,920 7,840 571,210 25,719 -1,819 0,076
10 2,600 26,000 67,600 6,760 676,000 24,295 1,705 0,066
11 2,600 24,600 63,960 6,760 605,160 24,295 0,305 0,012
12 2,500 21,000 52,500 6,250 441,000 23,582 -2,582 0,123
13 2,900 27,000 78,300 8,410 729,000 26,431 0,569 0,021
14 2,600 21,000 54,600 6,760 441,000 24,295 -3,295 0,157
15 2,200 24,000 52,800 4,840 576,000 21,446 2,554 0,106
16 2,600 34,000 88,400 6,760 1156,000 24,295 9,705 0,285
17 3,300 31,900 105,270 10,890 1017,610 29,280 2,620 0,082
19 3,900 33,000 128,700 15,210 1089,000 33,553 -0,553 0,017
20 4,600 35,400 162,840 21,160 1253,160 38,539 -3,139 0,089
21 3,700 34,000 125,800 13,690 1156,000 32,129 1,871 0,055
22 3,400 31,000 105,400 11,560 961,000 29,992 1,008 0,033
Итого 58,800 540,100 1574,100 173,320 14506,970 540,100 0,000
сред значение 2,800 25,719 74,957 8,253 690,808 0,085
станд. откл 0,643 5,417

Система нормальных уравнений составит:

Ур-ие регрессии: = 5,777+7,122∙x. Данное уравнение показывает, что с увеличением среднедушевого денежного дохода в месяц на 1 тыс. руб. доля розничных продаж телевизоров повышается в среднем на 7,12%.

· Рассчитаем параметры уравнений степенной парной регрессии. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 3:

№ рег X Y XY X^2 Y^2 Yp^cp y^cp
1 1,030 3,332 3,431 1,060 11,104 3,245 25,67072
2 0,875 3,059 2,678 0,766 9,356 3,116 22,56102
3 0,742 3,045 2,259 0,550 9,269 3,004 20,17348
4 0,956 3,148 3,008 0,913 9,913 3,183 24,12559
5 0,531 2,760 1,465 0,282 7,618 2,827 16,90081
6 0,916 3,086 2,828 0,840 9,526 3,150 23,34585
7 0,875 2,996 2,623 0,766 8,974 3,116 22,56102
8 0,956 3,091 2,954 0,913 9,555 3,183 24,12559
9 1,030 3,174 3,268 1,060 10,074 3,245 25,67072
10 0,956 3,258 3,113 0,913 10,615 3,183 24,12559
11 0,956 3,203 3,060 0,913 10,258 3,183 24,12559
12 0,916 3,045 2,790 0,840 9,269 3,150 23,34585
13 1,065 3,296 3,509 1,134 10,863 3,275 26,4365
14 0,956 3,045 2,909 0,913 9,269 3,183 24,12559
15 0,788 3,178 2,506 0,622 10,100 3,043 20,97512
16 0,956 3,526 3,369 0,913 12,435 3,183 24,12559
17 1,194 3,463 4,134 1,425 11,990 3,383 29,4585
19 1,361 3,497 4,759 1,852 12,226 3,523 33,88317
20 1,526 3,567 5,443 2,329 12,721 3,661 38,90802
21 1,308 3,526 4,614 1,712 12,435 3,479 32,42145
22 1,224 3,434 4,202 1,498 11,792 3,408 30,20445
итого 21,115 67,727 68,921 22,214 219,361 67,727 537,270
сред зн 1,005 3,225 3,282 1,058 10,446 3,225
стан откл 0,216 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата y.

· Рассчитаем параметры уравнений экспоненциальной парной регрессии. Построению экспоненциальной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 4:

№ региона X Y XY X^2 Y^2 Yp y^cp
1 2,800 3,332 9,330 7,840 11,104 3,225 25,156
2 2,400 3,059 7,341 5,760 9,356 3,116 22,552
3 2,100 3,045 6,393 4,410 9,269 3,034 20,777
4 2,600 3,148 8,186 6,760 9,913 3,170 23,818
5 1,700 2,760 4,692 2,890 7,618 2,925 18,625
6 2,500 3,086 7,716 6,250 9,526 3,143 23,176
7 2,400 2,996 7,190 5,760 8,974 3,116 22,552
8 2,600 3,091 8,037 6,760 9,555 3,170 23,818
9 2,800 3,174 8,887 7,840 10,074 3,225 25,156
10 2,600 3,258 8,471 6,760 10,615 3,170 23,818
11 2,600 3,203 8,327 6,760 10,258 3,170 23,818
12 2,500 3,045 7,611 6,250 9,269 3,143 23,176
13 2,900 3,296 9,558 8,410 10,863 3,252 25,853
14 2,600 3,045 7,916 6,760 9,269 3,170 23,818
15 2,200 3,178 6,992 4,840 10,100 3,061 21,352
16 2,600 3,526 9,169 6,760 12,435 3,170 23,818
17 3,300 3,463 11,427 10,890 11,990 3,362 28,839
19 3,900 3,497 13,636 15,210 12,226 3,526 33,978
20 4,600 3,567 16,407 21,160 12,721 3,717 41,140
21 3,700 3,526 13,048 13,690 12,435 3,471 32,170
22 3,400 3,434 11,676 11,560 11,792 3,389 29,638
Итого 58,800 67,727 192,008 173,320 219,361 67,727 537,053
сред зн 2,800 3,225 9,143 8,253 10,446
стан откл 0,643 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x.

· Рассчитаем параметры уравнений полулогарифмической парной регрессии. Построению полулогарифмической модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем замены:

где

Для расчетов используем данные табл. 5:

№ региона X Y XY X^2 Y^2 y^cp
1 1,030 28,000 28,829 1,060 784,000 26,238
2 0,875 21,300 18,647 0,766 453,690 22,928
3 0,742 21,000 15,581 0,550 441,000 20,062
4 0,956 23,300 22,263 0,913 542,890 24,647
5 0,531 15,800 8,384 0,282 249,640 15,525
6 0,916 21,900 20,067 0,840 479,610 23,805
7 0,875 20,000 17,509 0,766 400,000 22,928
8 0,956 22,000 21,021 0,913 484,000 24,647
9 1,030 23,900 24,608 1,060 571,210 26,238
10 0,956 26,000 24,843 0,913 676,000 24,647
11 0,956 24,600 23,506 0,913 605,160 24,647
12 0,916 21,000 19,242 0,840 441,000 23,805
13 1,065 27,000 28,747 1,134 729,000 26,991
14 0,956 21,000 20,066 0,913 441,000 24,647
15 0,788 24,000 18,923 0,622 576,000 21,060
16 0,956 34,000 32,487 0,913 1156,000 24,647
17 1,194 31,900 38,086 1,425 1017,610 29,765
19 1,361 33,000 44,912 1,852 1089,000 33,351
20 1,526 35,400 54,022 2,329 1253,160 36,895
21 1,308 34,000 44,483 1,712 1156,000 32,221
22 1,224 31,000 37,937 1,498 961,000 30,406
Итого 21,115 540,100 564,166 22,214 14506,970 540,100
сред зн 1,005 25,719 26,865 1,058 690,808
стан откл 0,216 5,417

Рассчитаем a и b:

Получим линейное уравнение: .

· Рассчитаем параметры уравнений обратной парной регрессии. Для оценки параметров приведем обратную модель к линейному виду, заменив , тогда

Для расчетов используем данные табл. 6:

№ региона X Y XY X^2 Y^2 Y^cp
1 2,800 0,036 0,100 7,840 0,001 24,605
2 2,400 0,047 0,113 5,760 0,002 22,230
3 2,100 0,048 0,100 4,410 0,002 20,729
4 2,600 0,043 0,112 6,760 0,002 23,357
5 1,700 0,063 0,108 2,890 0,004 19,017
6 2,500 0,046 0,114 6,250 0,002 22,780
7 2,400 0,050 0,120 5,760 0,003 22,230
8 2,600 0,045 0,118 6,760 0,002 23,357
9 2,800 0,042 0,117 7,840 0,002 24,605
10 2,600 0,038 0,100 6,760 0,001 23,357
11 2,600 0,041 0,106 6,760 0,002 23,357
12 2,500 0,048 0,119 6,250 0,002 22,780
13 2,900 0,037 0,107 8,410 0,001 25,280
14 2,600 0,048 0,124 6,760 0,002 23,357
15 2,200 0,042 0,092 4,840 0,002 21,206
16 2,600 0,029 0,076 6,760 0,001 23,357
17 3,300 0,031 0,103 10,890 0,001 28,398
19 3,900 0,030 0,118 15,210 0,001 34,844
20 4,600 0,028 0,130 21,160 0,001 47,393
21 3,700 0,029 0,109 13,690 0,001 32,393
22 3,400 0,032 0,110 11,560 0,001 29,301
Итого 58,800 0,853 2,296 173,320 0,036 537,933
сред знач 2,800 0,041 0,109 8,253 0,002
стан отклон 0,643 0,009

Рассчитаем a и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x.

· Рассчитаем параметры уравнений равносторонней гиперболы парной регрессии. Для оценки параметров приведем модель равносторонней гиперболы к линейному виду, заменив , тогда

Для расчетов используем данные табл. 7:

№ региона X=1/z Y XY X^2 Y^2 Y^cp
1 0,357 28,000 10,000 0,128 784,000 26,715
2 0,417 21,300 8,875 0,174 453,690 23,259
3 0,476 21,000 10,000 0,227 441,000 19,804
4 0,385 23,300 8,962 0,148 542,890 25,120
5 0,588 15,800 9,294 0,346 249,640 13,298
6 0,400 21,900 8,760 0,160 479,610 24,227
7 0,417 20,000 8,333 0,174 400,000 23,259
8 0,385 22,000 8,462 0,148 484,000 25,120
9 0,357 23,900 8,536 0,128 571,210 26,715
10 0,385 26,000 10,000 0,148 676,000 25,120
11 0,385 24,600 9,462 0,148 605,160 25,120
12 0,400 21,000 8,400 0,160 441,000 24,227
13 0,345 27,000 9,310 0,119 729,000 27,430
14 0,385 21,000 8,077 0,148 441,000 25,120
15 0,455 24,000 10,909 0,207 576,000 21,060
16 0,385 34,000 13,077 0,148 1156,000 25,120
17 0,303 31,900 9,667 0,092 1017,610 29,857
19 0,256 33,000 8,462 0,066 1089,000 32,564
20 0,217 35,400 7,696 0,047 1253,160 34,829
21 0,270 34,000 9,189 0,073 1156,000 31,759
22 0,294 31,000 9,118 0,087 961,000 30,374
Итого 7,860 540,100 194,587 3,073 14506,970 540,100
сред знач 0,374 25,719 9,266 0,146 1318,815
стан отклон 0,079 25,639

Рассчитаем a и b:

Получим линейное уравнение: . Получим уравнение регрессии: .

3. Оценка тесноты связи с помощью показателей корреляции и детерминации:

· Линейная модель. Тесноту линейной связи оценит коэффициент корреляции. Был получен следующий коэффициент корреляции rxy=b=7,122*, что говорит о прямой сильной связи фактора и результата. Коэффициент детерминации r²xy=(0,845)²=0,715. Это означает, что 71,5% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Степенная модель. Тесноту нелинейной связи оценит индекс корреляции. Был получен следующий индекс корреляции =, что говорит о очень сильной тесной связи, но немного больше чем в линейной модели. Коэффициент детерминации r²xy=0,7175. Это означает, что 71,75% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Экспоненциальная модель. Был получен следующий индекс корреляции ρxy=0,8124, что говорит о том, что связь прямая и очень сильная, но немного слабее, чем в линейной и степенной моделях. Коэффициент детерминации r²xy=0,66. Это означает, что 66% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Полулогарифмическая модель. Был получен следующий индекс корреляции ρxy=0,8578, что говорит о том, что связь прямая и очень сильная, но немного больше чем в предыдущих моделях. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,58% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Гиперболическая модель. Был получен следующий индекс корреляции ρxy=0,8448 и коэффициент корреляции rxy=-0,1784 что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,7358. Это означает, что 73,5% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Обратная модель. Был получен следующий индекс корреляции ρxy=0,8114 и коэффициент корреляции rxy=-0,8120, что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy=0,6584. Это означает, что 65,84% вариации результативного признака (розничная продажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

Вывод: по полулогарифмическому уравнению получена наибольшая оценка тесноты связи: ρxy=0,8578 (по сравнению с линейной, степенной, экспоненциальной, гиперболической, обратной регрессиями).

Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

Индекс розничных цен на продукты питания (х) Индекс промышленного производства (у)
1 100 70
2 105 79
3 108 85
4 113 84
5 118 85
6 118 85
7 110 96
8 115 99
9 119 100
10 118 98
11 120 99
12 124 102
13 129 105
14 132 112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

Решаем систему нормальных уравнений относительно a и b:

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/п х у ху x 2 y 2
1 100 70 7000 10000 4900 74,26340 0,060906
2 105 79 8295 11025 6241 79,92527 0,011712
3 108 85 9180 11664 7225 83,32238 0,019737
4 113 84 9492 12769 7056 88,98425 0,059336
5 118 85 10030 13924 7225 94,64611 0,113484
6 118 85 10030 13924 7225 94,64611 0,113484
7 110 96 10560 12100 9216 85,58713 0,108467
8 115 99 11385 13225 9801 91,24900 0,078293
9 119 100 11900 14161 10000 95,77849 0,042215
10 118 98 11564 13924 9604 94,64611 0,034223
11 120 99 11880 14400 9801 96,91086 0,021102
12 124 102 12648 15376 10404 101,4404 0,005487
13 129 105 13545 16641 11025 107,1022 0,020021
14 132 112 14784 17424 12544 110,4993 0,013399
Итого: 1629 1299 152293 190557 122267 1299,001 0,701866
Среднее значение: 116,3571 92,78571 10878,07 13611,21 8733,357 х х
8,4988 11,1431 х х х х х
72,23 124,17 х х х х х

Среднее значение определим по формуле:

Cреднее квадратическое отклонение рассчитаем по формуле:

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Параметры уравнения можно определить также и по формулам:

Таким образом, уравнение регрессии:

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения .

,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

где n – число единиц совокупности;

m – число параметров при переменных х.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

2. Степенная регрессия имеет вид:

Для определения параметров производят логарифмиро­вание степенной функции:

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/п х у lg x lg y lg x*lg y (lg x) 2 (lg y) 2
1 100 70 2,000000 1,845098 3,690196 4,000000 3,404387
2 105 79 2,021189 1,897627 3,835464 4,085206 3,600989
3 108 85 2,033424 1,929419 3,923326 4,134812 3,722657
4 113 84 2,053078 1,924279 3,950696 4,215131 3,702851
5 118 85 2,071882 1,929419 3,997528 4,292695 3,722657
6 118 85 2,071882 1,929419 3,997528 4,292695 3,722657
7 110 96 2,041393 1,982271 4,046594 4,167284 3,929399
8 115 99 2,060698 1,995635 4,112401 4,246476 3,982560
9 119 100 2,075547 2,000000 4,151094 4,307895 4,000000
10 118 98 2,071882 1,991226 4,125585 4,292695 3,964981
11 120 99 2,079181 1,995635 4,149287 4,322995 3,982560
12 124 102 2,093422 2,008600 4,204847 4,382414 4,034475
13 129 105 2,110590 2,021189 4,265901 4,454589 4,085206
14 132 112 2,120574 2,049218 4,345518 4,496834 4,199295
Итого 1629 1299 28,90474 27,49904 56,79597 59,69172 54,05467
Среднее значение 116,3571 92,78571 2,064624 1,964217 4,056855 4,263694 3,861048
8,4988 11,1431 0,031945 0,053853 х х х
72,23 124,17 0,001021 0,0029 х х х

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/п х у
1 100 70 74,16448 17,34292 0,059493 519,1886
2 105 79 79,62057 0,385112 0,007855 190,0458
3 108 85 82,95180 4,195133 0,024096 60,61728
4 113 84 88,59768 21,13866 0,054734 77,1887
5 118 85 94,35840 87,57961 0,110099 60,61728
6 118 85 94,35840 87,57961 0,110099 60,61728
7 110 96 85,19619 116,7223 0,11254 10,33166
8 115 99 90,88834 65,79901 0,081936 38,6174
9 119 100 95,52408 20,03384 0,044759 52,04598
10 118 98 94,35840 13,26127 0,037159 27,18882
11 120 99 96,69423 5,316563 0,023291 38,6174
12 124 102 101,4191 0,337467 0,005695 84,90314
13 129 105 107,4232 5,872099 0,023078 149,1889
14 132 112 111,0772 0,85163 0,00824 369,1889
Итого 1629 1299 1296,632 446,4152 0,703074 1738,357
Среднее значение 116,3571 92,78571 х х х х
8,4988 11,1431 х х х х
72,23 124,17 х х х х

Решая систему нормальных уравнений, определяем параметры логарифмической функции.

Получим линейное уравнение:

Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата . По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Связь достаточно тесная.

В среднем расчётные значения отклоняются от фактических на 5,02%.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

3. Уравнение равносторонней гиперболы

Для определения параметров этого уравнения используется система нормальных уравнений:

Произведем замену переменных

и получим следующую систему нормальных уравнений:

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/п х у z yz
1 100 70 0,010000000 0,700000 0,0001000 4900
2 105 79 0,009523810 0,752381 0,0000907 6241
3 108 85 0,009259259 0,787037 0,0000857 7225
4 113 84 0,008849558 0,743363 0,0000783 7056
5 118 85 0,008474576 0,720339 0,0000718 7225
6 118 85 0,008474576 0,720339 0,0000718 7225
7 110 96 0,009090909 0,872727 0,0000826 9216
8 115 99 0,008695652 0,860870 0,0000756 9801
9 119 100 0,008403361 0,840336 0,0000706 10000
10 118 98 0,008474576 0,830508 0,0000718 9604
11 120 99 0,008333333 0,825000 0,0000694 9801
12 124 102 0,008064516 0,822581 0,0000650 10404
13 129 105 0,007751938 0,813953 0,0000601 11025
14 132 112 0,007575758 0,848485 0,0000574 12544
Итого: 1629 1299 0,120971823 11,13792 0,0010510 122267
Среднее значение: 116,3571 92,78571 0,008640844 0,795566 0,0000751 8733,357
8,4988 11,1431 0,000640820 х х х
72,23 124,17 0,000000411 х х х

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/п х у
1 100 70 72,3262 0,033231 5,411206 519,1886
2 105 79 79,49405 0,006254 0,244083 190,0458
3 108 85 83,47619 0,017927 2,322012 60,61728
4 113 84 89,64321 0,067181 31,84585 77,1887
5 118 85 95,28761 0,121031 105,8349 60,61728
6 118 85 95,28761 0,121031 105,8349 60,61728
7 110 96 86,01027 0,10406 99,79465 10,33166
8 115 99 91,95987 0,071112 49,56344 38,6174
9 119 100 96,35957 0,036404 13,25272 52,04598
10 118 98 95,28761 0,027677 7,357059 27,18882
11 120 99 97,41367 0,016024 2,516453 38,6174
12 124 102 101,46 0,005294 0,291565 84,90314
13 129 105 106,1651 0,011096 1,357478 149,1889
14 132 112 108,8171 0,028419 10,1311 369,1889
Итого: 1629 1299 1298,988 0,666742 435,7575 1738,357
Среднее значение: 116,3571 92,78571 х х х х
8,4988 11,1431 х х х х
72,23 124,17 х х х х

Значения параметров регрессии a и b составили:

Связь достаточно тесная.

В среднем расчётные значения отклоняются от фактических на 4,76%.

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

источники:

http://kazedu.com/referat/102126/1

http://ecson.ru/economics/econometrics/zadacha-1.postroenie-regressii-raschyot-korrelyatsii-oshibki-approximatsii-otsenka-znachimosti-i-prognoz.html


Power regression is a type of non-linear regression that takes on the following form:

y = axb

where:

  • y: The response variable
  • x: The predictor variable
  • a, b: The regression coefficients that describe the relationship between x and y

This type of regression is used to model situations where the response variable is equal to the predictor variable raised to a power.

The following step-by-step example shows how to perform power regression for a given dataset in R.

Step 1: Create the Data

First, let’s create some fake data for two variables: x and y.

#create data
x=1:20
y=c(1, 8, 5, 7, 6, 20, 15, 19, 23, 37, 33, 38, 49, 50, 56, 52, 70, 89, 97, 115) 

Step 2: Visualize the Data

Next, let’s create a scatterplot to visualize the relationship between x and y:

#create scatterplot
plot(x, y)

From the plot we can see that there exists a clear power relationship between the two variables. Thus, it seems like a good idea to fit a power regression equation to the data instead of a linear regression model.

Step 3: Fit the Power Regression Model

Next, we’ll use the lm() function to fit a regression model to the data, specifying that R should use the log of the response variable and the log of the predictor variable when fitting the model:

#fit the model
model <- lm(log(y)~ log(x))

#view the output of the model
summary(model)

Call:
lm(formula = log(y) ~ log(x))

Residuals:
     Min       1Q   Median       3Q      Max 
-0.67014 -0.17190 -0.05341  0.16343  0.93186 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.15333    0.20332   0.754    0.461    
log(x)       1.43439    0.08996  15.945 4.62e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3187 on 18 degrees of freedom
Multiple R-squared:  0.9339,	Adjusted R-squared:  0.9302 
F-statistic: 254.2 on 1 and 18 DF,  p-value: 4.619e-12

The overall F-value of the model is 252.1 and the corresponding p-value is extremely small (4.619e-12), which indicates that the model as a whole is useful.

Using the coefficients from the output table, we can see that the fitted power regression equation is:

ln(y) = 0.15333 + 1.43439ln(x)

Applying e to both sides, we can rewrite the equation as:

  • y = e 0.15333 + 1.43439ln(x)
  • y = 1.1657x1.43439

We can use this equation to predict the response variable, y, based on the value of the predictor variable, x.

For example, if x = 12, then we would predict that y would be 41.167:

y = 1.1657(12)1.43439 = 41.167

Bonus: Feel free to use this online Power Regression Calculator to automatically compute the power regression equation for a given predictor and response variable.

Additional Resources

How to Perform Multiple Linear Regression in R
How to Perform Exponential Regression in R
How to Perform Logarithmic Regression in R

Понравилась статья? Поделить с друзьями:
  • Как найти удаленный номер на вайбере
  • Как в ватсапе найти открытки с поздравлениями
  • Щербинка между зубами у ребенка как исправить
  • Синий экран ошибка 0x0000003b как исправить
  • Как найти колокольчик в игре