Как найти уравнение стороны пирамиды

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Пирамиды. Правильные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности пирамиды

Пирамиды

Рассмотрим произвольную плоскость α , произвольный выпуклый n – угольник A1A2 . An , расположенный в этой плоскости, и точку S , не лежащую в плоскости α .

Определение 1. Пирамидой ( n — угольной пирамидой) называют фигуру, образованную отрезками, соединяющими точку S со всеми точками многоугольника A1A2 . An (рис. 1) .

Точку S называют вершиной пирамиды.

Точки A1 , A2 , . , An , S часто называют просто вершинами пирамиды.

Боковые ребра и ребра основания пирамиды часто называют просто ребрами пирамиды.

Множество всех боковых граней пирамиды составляет боковую поверхность пирамиды.

Боковые грани и основание пирамиды часто называют просто гранями пирамиды.

Полная поверхность пирамиды состоит из основания пирамиды и ее боковой поверхности.

Теорема Эйлера. Для любой пирамиды справедливо равенство:

Доказательство. Заметим, что у n — угольной пирамиды (n + 1) вершина, n боковых граней, 1 основание, n ребер основания и n боковых ребер. Следовательно, у n — угольной пирамиды (n + 1) грань и 2n ребер.

то теорема Эйлера доказана.

Правильные пирамиды. Свойства правильной пирамиды

Замечание 2. Если центр основания A1A2 . An правильной пирамиды SA1A2 . An обозначить буквой O , то длина отрезка SO будет равняться высоте пирамиды. Часто и сам отрезок SO называют высотой пирамиды, опущенной из вершины S .

Определение 4. Высоту боковой грани правильной пирамиды, опущенную из вершины S , называют апофемой .

На рисунке 3 отрезок SB – апофема грани SAnAn-1 и отрезок SC – апофема грани SA2A1 .

Замечание 3 . У любой правильной n – угольной пирамиды можно провести n апофем.

Свойства правильной пирамиды:

Все боковые ребра правильной пирамиды равны.

Все боковые грани правильной пирамиды являются равными равнобедренными треугольниками.

У любой правильной пирамиды все апофемы равны.

Все боковые ребра правильной пирамиды образуют с плоскостью основания пирамиды равные углы.

Все боковые грани правильной пирамиды образуют с плоскостью основания пирамиды равные двугранные углы.

Тетраэдры. Правильные тетраэдры

Определение 5. Произвольную треугольную пирамиду называют тетраэдром.

Утверждение. У любой правильной треугольной пирамиды противоположные ребра попарно перпендикулярны.

Доказательство. Рассмотрим правильную треугольную пирамиду SABC и пару ее противоположных ребер, например, AC и BS . Обозначим буквой D середину ребра AC . Поскольку отрезки BD и SD являются медианами в равнобедренных треугольниках ABC и ASC , то BD и SD перпендикулярны ребру AC (рис. 4).

По признаку перпендикулярности прямой и плоскости заключаем, что прямая AC перпендикулярна плоскости BSD. Следовательно, прямая AC перпендикулярна прямой BS , что и требовалось доказать.

Определение 6. Правильную треугольную пирамиду, у которой все ребра равны, называют правильным тетраэдром (рис. 5).

Задача. Найти высоту правильного тетраэдра с ребром a .

Решение. Рассмотрим правильный тетраэдр SABC . Пусть точка O – основание перпендикуляра, опущенного из вершины S на плоскость ABC. Поскольку SABC – правильная пирамида, то точка O является точкой пересечения медиан равностороннего треугольника ABC. Следовательно,

где буквой D обозначена середина ребра AC (рис. 6).

,

.

По теореме Пифагора из треугольника BSO находим

Ответ.

Формулы для объема, площади боковой и полной поверхности пирамиды

Введем следующие обозначения

V объем пирамиды
Sбок площадь боковой поверхности пирамиды
Sполн площадь полной поверхности пирамиды
Sосн площадь основания пирамиды
Pосн периметр основания пирамиды

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности пирамиды :

,

Пирамида Рисунок Формулы для объема, площади боковой и полной поверхности
Произвольная пирамида
Правильная n – угольная пирамида
Правильный тетраэдр

Формулы для объема, площади боковой и полной поверхности:

,

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

источники:

http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy

http://www.resolventa.ru/uslugi/uslugischoollos.htm

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Как найти уравнение сторон пирамиды

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Пирамида

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей :

$АВ=an$ — сторона правильного многоугольника

$R$ — радиус описанной окружности

$r$ — радиус вписанной окружности

$n$ — количество сторон и углов

В зависимости от многоугольника, лежащего в основании, пирамиды могут быть треугольными, четырехугольными и т.д.

У треугольной пирамиды есть еще одно название – тетраэдр (четырехгранник).

Формулы вычисления объема и площади поверхности произвольной пирамиды.

Чтобы были понятны формулы, введем обозначения:

$P_<осн>$ -периметр основания;

$S_<осн>$ — площадь основания;

$S_<бок>$ — площадь боковой поверхности;

$S_<п.п>$ — площадь полной поверхности;

В произвольной пирамиде боковые грани могут быть разными треугольниками, поэтому площадь боковой поверхности равна сумме площадей всех боковых граней, найденных по отдельности.

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник

  1. $S=/<2>$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S=/<2>$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√$, где $р$ — это полупериметр $p=/<2>$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S=/<4R>$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

$S=/<2>$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S=<(a+b)·h>/<2>$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее высота приходит в центр основания (в центр описанной окружности). Все боковые ребра правильной пирамиды равны, следовательно, все боковые грани являются равнобедренными треугольниками.

Формулы вычисления объема и площади поверхности правильной пирамиды.

$h_a$- высота боковой грани (апофема)

В основании лежат правильные многоугольники, рассмотрим их площади:

  1. Для равностороннего треугольника $S=/<4>$, где $а$ — длина стороны.
  2. Квадрат $S=a^2$, где $а$ — сторона квадрата.
  3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

Найдите объём правильной треугольной пирамиды, стороны основания которой равны $10$, а высота равна $5√3$.

Объем пирамиды равен трети произведения площади основания на высоту:

Так как пирамида правильная, то в основании у нее лежит равносторонний треугольник, найдем его площадь по формуле:

Подставим все данные в формулу объема и вычислим его:

Подобные пирамиды: при увеличении всех линейных размеров пирамиды в $k$ раз, его объём увеличится в $k^3$ раз.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

источники:

http://reshka.feniks.help/vysshaya-matematika/analiticheskaja-geometrija/dany-koordinaty-vershin-piramidy

http://examer.ru/ege_po_matematike/teoriya/piramida

Онлайн решение Пирамиды по координатам вершин

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Пример 1:

Даны координаты вершин пирамиды А1А2А3А4.

Найти:

1) координаты и модули векторов А1 А2и А1 А4;  

2) угол между ребрами А1 А2и А1 А4;          

3) площадь грани А1 А2 А3;         

4) объем пирамиды;

5) уравнение прямой А1 А2;

6) уравнение плоскости А1 А2 А3;

7) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3.

Сделать чертеж.

А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).

Решение от преподавателя:

Пример 2:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

 Уравнение плоскости. 
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-3)(1*2-0*3) — (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y — 3z-38 = 0 

Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 
https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20%20=%20frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7bsqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7dsqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
Уравнение прямой A1A4
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%203%7d%7b-3%7d%20=%20frac%7by%20-%202%7d%7b0%7d%20=%20frac%7bz%20%2B%202%7d%7b4%7d
γ = arcsin(0.267) = 15.486o 

Уравнение высоты пирамиды через вершину A4(0,2,2) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%200%7d%7b2%7d%20=%20frac%7by%20-%202%7d%7b13%7d%20=%20frac%7bz%20-%202%7d%7b-3%7d

Уравнение плоскости через вершину A4(0,2,2) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
2(x-0)+13(y-2)-3(z-2) = 0 
или 
2x+13y-3z-20 = 0

Пример 4:

Решение от преподавателя:

Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 

  1. Уравнение плоскости
    Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-0)(3*2-8*3) — (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x — 15y + 33z-18 = 0 
Упростим выражение: -6x — 5y + 11z-6 = 0 

2) Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 

Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 
Уравнение прямой A1A4

γ = arcsin(0.193) = 11.128o 

3) Уравнение высоты пирамиды через вершину A4(0,5,4) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 

4) Уравнение плоскости через вершину A4(0,5,4) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости

Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 
-6(x-0)-5(y-5)+11(z-4) = 0 
или 
-6x-5y+11z-19 = 0 

5)  Координаты вектора  A1A4(0;4;3) 

Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:

Пример 5:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Пример 6:

Решение от преподавателя:

1) Даны координаты  вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 
Координаты векторов
Координаты векторов:       A1A2(3;3;3)        A1A4(0;4;3) 

Модули векторов (длина ребер пирамиды) 
Длина вектора a(X;Y;Z) выражается через его координаты формулой: 


Угол между ребрами.

 Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
   ,    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3): 

А1 = arccos(0,808)

Найдем площадь грани с учётом геометрического смысла векторного произведения: 
S =
Найдем векторное произведение

=i(3*2-8*3) — j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i — 15j + 33k 

3) Объем пирамиды
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

 

Координатывекторов:A1A2(3;3;3)    A1A3(-3;8;2) A1A4(0;4;3) :      

где определитель матрицы равен: 
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39 

Пример 7:

Решение от преподавателя:

  1. Угол между ребрами. 
    Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7ba_%7b1%7da_%7b2%7d%7d%7b|a_%7b1%7d|cdot%20|a_%7b2%7d|%7d
    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    γ = arccos(0) = 90.0030 
  2. Площадь грани 
    Площадь грани можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=S%20=%20frac%7b1%7d%7b2%7d%20|a|cdot%20|b|%20sin%20gamma
    где 
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%20cos%20gamma%5e%7b2%7d%7d
    Найдем площадь грани A1A2A3 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%200%5e%7b2%7d%7d%20=%201
    Площадь грани A1A2A3 
  3. Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

https://chart.googleapis.com/chart?cht=tx&chl=%20=%20frac%7b18%7d%7b6%7d%20=%203

где определитель матрицы равен: 
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18 

Пример 8:

Даны координаты вершин пирамиды А1А2А3А4 . Найти:

1) длину ребра А1А2;

2) угол между рёбрами А1Аи А1А4 ;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3; 5; 4),        А2(8; 7; 4),            А3(5; 10; 4),          А4(4; 7; 8).

Решение от преподавателя:

1) Длина ребра A1A2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1А2А3;

Найдем уравнение стороны А1А4:

Вектор нормали:  к плоскости А1А2А3.

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

Итак: z=4 – уравнение плоскости А1А2А3.

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

A4O – высота:

Уравнение A4O:

Т.к. , то

В результате получаем уравнение высоты:

Пример 9:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Аналитическая геометрия — задача на расчет пирамиды (тетраэдра)

Краткая теория


Вузовская аналитическая геометрия отличается от курса школьной геометрии. Главное отличие состоит в том, что она основным своим инструментом имеет набор алгебраических формул и методов вычислений. В основе аналитической геометрии лежит метод координат.
Аналитическая геометрия имеет набор формул, готовых уравнений и алгоритмов действия. Для успешного и правильного решения главное — разобраться и уделить задаче достаточно времени.

Данная задача является типовой в курсе аналитической геометрии и требует использования различных методов и знаний, таких как декартовые прямоугольные координаты и вектора в пространстве.

Пример решения задачи

Задача

Даны координаты
вершин пирамиды 
. Найти:

Сделать чертеж.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Длина ребра

Длину ребра

 найдем по
формуле расстояния между 2-мя точками:

Угол между ребрами

Угол между ребрами

 и

 найдем как угол
между направляющими векторами

  и

:

Косинус угла между
векторами:

Угол между ребром и гранью. Векторное произведение

Вычислим угол между
ребром

 и гранью

.

Для этого вычислим
координаты нормального вектора плоскости

 –им будет
векторное произведение векторов 

 и

.

 

Найдем векторное произведение. Для этого

вычислим определитель:

Нормальный вектор
плоскости:

  

Синус угла:

Площадь грани

Вычислим площадь
грани

. Она будет численно равна половине модуля векторного
произведения векторов

    и 

:

Искомая площадь:

Объем пирамиды. Смешанное произведение векторов

Вычислим объем
пирамиды. Он будет равен шестой части модуля смешанного произведения векторов

  и

:

Для того чтобы вычислить смешанное произведение, необходимо
найти определитель квадратной матрицы, составленной из координат векторов:

Искомый объем
пирамиды:

Уравнение прямой в пространстве

Вычислим уравнение
прямой

.  Направляющим
вектором искомой прямой является вектор

. Кроме того, прямая проходит через точку

 

Уравнение искомой
прямой:

Уравнение плоскости

Вычислим уравнение
плоскости

. Нормальный вектор плоскости

. кроме того, плоскость проходит через точку

 -уравнение
грани

 

Уравнение высоты, опущенной на грань

Составим уравнение
высоты, опущенной на грань

 из вершины

:

Нормальный вектор

 является
направляющим вектором высоты, кроме того, высота проходит через точку

 

Искомое уравнение
высоты:

Сделаем схематический чертеж:

Понравилась статья? Поделить с друзьями:
  • Как найти трещину на блоке цилиндра
  • Visage как найти джинсы
  • Как составить алгоритм самосохранительного поведения
  • Дневник ру как найти свою страницу
  • 1с восстановить положение окна как исправить