McLosos — 14 октября, 2008 — 21:54
Камень брошен со скоростью V1 = 20 м/с под углом α = π/6 к горизонту.
- Напишите закон движения камня: x(t) и y(t).
- Найдите уравнение траектории камня и начертите ее в координатах OXY.
- Определите дальность полета камня и максимальную высоту подъема.
- При каком условии при заданной начальной скорости дальность полета будет максимальна?
- Определите нормальное и тангенциальное ускорение в верхней точке траектории.
Сопротивлением воздуха можно пренебречь.
Задачу дал на дом преподаватель на курсах при Московском Горном Государственном Институте. Она была взята из методического пособия Хайрнасова А.З.
Теги:
- кинематика
- механика
- формулы и графики
- свободное падение
- криволинейное движение
- неравномерное движение
- задачи с подсказками
- версия для печати
Тело, брошенное под углом к горизонту: типы траекторий, формулы
Каждый из нас бросал камни в небо и наблюдал за траекторией их падения. Это самый распространенный пример движения твердого тела в поле гравитационных сил нашей планеты. В данной статье рассмотрим формулы, которые могут пригодиться для решения задач на свободное движение тела, брошенного к горизонту под углом.
Понятие о движении к горизонту под углом
Когда некоторому твердому объекту сообщают начальную скорость, и он начинает набирать высоту, а затем, снова падать на землю, то принято считать, что тело движется по параболической траектории. На самом деле решение уравнений для этого типа движения показывает, что описываемая телом линия в воздухе — это часть эллипса. Однако для практического использования параболическая аппроксимация оказывается достаточно удобной и приводит к точным результатам.
Вам будет интересно: Явление фотоэффекта. Красная граница фотоэффекта. Пример решения задачи
Примерами движения тела, брошенного под углом к горизонту, является выстрел снаряда из дула пушки, удар ногой по мячу, и даже прыжки гальки на поверхности воды («жабки»), по которым проводятся международные соревнования.
Тип движения под углом изучает баллистика.
Свойства рассматриваемого типа движения
Когда рассматривают траекторию движения тела в поле гравитационных сил Земли, то оказываются справедливыми следующие утверждения:
- знание начальной высоты, скорости и угла к горизонту позволяет рассчитать всю траекторию;
- угол вылета равен углу падения тела при условии, что начальная высота равна нулю;
- движение по вертикали можно рассматривать независимо от движения по горизонтали;
Отметим, что указанные свойства справедливы, если сила трения в процессе полета тела пренебрежимо мала. В баллистике при изучении полетов снарядов учитывают много разных факторов, в том числе и трение.
Типы параболического движения
В зависимости от того, с какой высоты начинается движение, на какой высоте заканчивается, и как направлена начальная скорость, выделяют следующие типы параболического движения:
- Полная парабола. В этом случае тело бросают с поверхности земли, и на эту поверхность оно падает, описав при этом полную параболу.
- Половина параболы. Такой график движения тела наблюдается, если его бросить с некоторой высоты h, направив скорость v параллельно горизонту, то есть под углом θ = 0o.
- Часть параболы. Такие траектории возникают, когда тело брошено под некоторым углом θ≠0o, и разница начальной и конечной высоты тоже не равна нулю (h-h0≠0). Большинство траекторий движения объектов относятся именно к этому типу. Например, выстрел с пушки, стоящей на холме, или бросок баскетболистом мяча в корзину.
График движения тела, соответствующий полной параболе, приведен выше.
Необходимые для расчета формулы
Приведем формулы для описания движения тела, брошенного под углом к горизонту. Пренебрегая силой трения, и учитывая только силу тяжести, можно записать два уравнения для скорости перемещения объекта:
Так как сила тяжести направлена вертикально вниз, то горизонтальную компоненту скорости vx она не изменяет, поэтому в первом равенстве отсутствует зависимость от времени. Компонента vy в свою очередь испытывает влияние силы тяжести, которая сообщает g ускорение телу, направленное к земле (отсюда знак минус в формуле).
Теперь запишем формулы для изменения координат тела, брошенного под углом к горизонту:
y = y0 + v0*sin(θ)*t — g*t2/2
Начальная координата x0 часто принимается равной нулю. Координата y0 — это не что иное, как высота h, с которой бросают тело (y0 = h).
Теперь выразим время t из первого выражения и подставим его во второе, получим:
y = h + tg(θ)*x — g /(2*v02*cos2(θ))*x2
Это выражение в геометрии соответствует параболе, ветви которой направлены вниз.
Приведенных уравнений достаточно, чтобы определить любые характеристики этого типа движения. Так, их решение приводит к тому, что максимальная дальность полета достигается, если θ = 45o, максимальная же высота, на которую поднимется брошенное тело, достигается при θ = 90o.
Движение тела, брошенного под углом к горизонту
теория по физике 🧲 кинематика
Когда тело бросают вверх под углом к горизонту, оно сначала равнозамедленно поднимается, а затем равноускорено падает. При этом оно перемещается относительно земли с постоянной скоростью.
Важные факты! График движения тела, брошенного под углом к горизонту:
α — угол, под которым было брошено тело
- Вектор скорости тела, брошенного под углом к горизонту, направлен по касательной к траектории его движения.
- Так как начальная скорость направлена не вдоль горизонтальной линии, обе ее проекции отличны от нуля. Проекция начальной скорости на ось ОХ равна v0x = v0cosα. Ее проекция на ось ОУ равна v0y = v0sinα.
- Проекция мгновенной скорости на ось ОХ равна: vx = v0 cosα. Ее проекция на ось ОУ равна нулю: vy = v0 sinα – gt.
- Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.
Кинематические характеристики
Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:
Минимальной скорости тело достигает в верхней точке траектории. Она выражается формулой:
Максимальной скоростью тело обладает в момент начала движения и в момент падения на землю. Начальная и конечная скорости движения тела равны:
Время подъема — время, которое требуется телу, чтобы достигнуть верхней точки траектории. В этой точке проекция скорости на ось ОУ равна нулю: vy = 0. Время подъема определяется следующей формулой:
Полное время — это время всего полета тела от момента бросания до момента приземления. Так как время падения равно времени подъема, формула для определения полного времени полета принимает
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:
Подставляя в выражение формулу полного времени полета, получаем:
Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:
Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости на эту ось равна v0 cosα, данная формула принимает вид:
Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:
Учитывая, что начальная координата равна 0, проекция начальной скорости на ось ОУ равна v0 sinα, а проекция ускорения свободного падения на эту ось равна –g, эта формула принимает вид:
Наибольшая высота подъема — расстояние от земли до верхней точки траектории. Наибольшая высота подъема обозначается h и вычисляется по формуле:
Пример №1. Небольшой камень бросили с ровной горизонтальной поверхности под углом к горизонту. На какую максимальную высоту поднялся камень, если ровно через 1 с после броска его скорость была направлена горизонтально?
Скорость направляется горизонтально в верхней точке полета. Значит, время подъема равно 1 с. Из формулы времени подъема выразим произведение начальной скорости на синус угла, под которым было брошено тело:
Подставим полученное выражение в формулу для определения наибольшей высоты подъема и сделаем вычисления:
Тело, брошенное под углом к горизонту с некоторой высоты
Когда тело бросают под углом к горизонту с некоторой высоты, характер его движения остается прежним. Но приземлится оно дальше по сравнению со случаем, если бы тело бросали с ровной поверхности.
График движения тела, брошенного под углом к горизонту с некоторой высоты:
Время падения тела больше времени его подъема: tпад > tпод.
Полное время полета равно:
Уравнение координаты x:
Уравнение координаты y:
Пример №2. С балкона бросили мяч под углом 60 градусов к горизонту, придав ему начальную скорость 2 м/с. До приземления мяч летел 3 с. Определить дальность полета мяча.
Косинус 60 градусов равен 0,5. Подставляем известные данные в формулу:
x = v0 cosα t = 2 ∙ 0,5 ∙ 3 = 3 м.
Алгоритм решения
Решение
Запишем исходные данные:
Построим чертеж и укажем на нем все необходимое:
Нулевой уровень — точка D.
Закон сохранения энергии:
Потенциальная энергия шарика в точке А равна:
Кинетическая энергия шарика в точке А равна нулю, так как скорость в начале свободного падения нулевая.
В момент перед упругим ударом с плитой в точке В потенциальная энергия шарика минимальна. Она равна:
Перед ударом кинетическая энергия шарика равна:
Согласно закону сохранения энергии:
E p A = E p B + E k B
m g H = m g l 1 + m v 2 2 . .
Отсюда высота H равна:
H = m g l 1 m g . . + m v 2 2 m g . . = l 1 + v 2 2 g . .
Относительно точки В шарик поднимется на высоту h – l1. Но данный участок движения можно рассматривать как движение тела, брошенного под углом к горизонту. В таком случае высота полета определяется формулой:
h − l 1 = v 2 sin 2 . β 2 g . . = v 2 sin 2 . ( 90 − 2 α ) o 2 g . .
l 1 = h − v 2 sin 2 . ( 90 − 2 α ) o 2 g . .
Шарик падал в течение времени t, поэтому мы можем рассчитать высоту шарика над плитой и его скорость в точке В:
H = l 1 + v 2 2 g . . = h − ( g t ) 2 sin 2 . ( 90 − 2 α ) o 2 g . . + ( g t ) 2 2 g . .
H = h − g t 2 sin 2 . ( 90 − 2 α ) 2 . . + g t 2 2 . . = h − g t 2 2 . . ( sin 2 . ( 90 − 2 α ) o − 1 )
H = 1 , 4 − 10 · 0 , 4 2 2 . . ( sin 2 . ( 90 − 6 0 ) o − 1 )
H = 1 , 4 − 5 · 0 , 16 ( sin 2 . 3 0 o − 1 )
H = 1 , 4 − 0 , 8 ( ( 1 2 . . ) 2 − 1 ) = 1 , 4 − 0 , 8 ( 1 4 . . − 1 )
H = 1 , 4 + 0 , 6 = 2 ( м )
pазбирался: Алиса Никитина | обсудить разбор | оценить
В момент t=0 мячик бросают с начальной скоростью v0 под углом α к горизонту с балкона высотой h (см. рисунок).
Графики А и Б представляют собой зависимости физических величин, характеризующих движение мячика в процессе полёта, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия мячика отсчитывается от уровня y=0).
К каждой позиции графика подберите соответствующую позицию утверждения и запишите выбранные цифры в порядке АБ.
Алгоритм решения
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Решение
Исходя из условия задачи, мячик движется неравномерно. Этот случай соответствует движению тела, брошенного под углом к горизонту.
Записываем формулы для физических величин из таблицы, учитывая, что речь идет о движении тела, брошенного под углом к горизонту.
Координата x меняется согласно уравнению координаты x:
Так как начальная координата нулевая, а проекция ускорения свободного падения тоже равна нулю, это уравнение принимает вид:
Проекция скорости мячика на ось ОХ равна произведению начальной скорости на время и косинус угла, под которым мячик был брошен. Поэтому уравнение координаты x принимает вид:
В этом уравнении начальная скорость и угол α — постоянные величины. Меняется только время. И оно может только расти. Поэтому и координата x может только расти. В этом случае ей может соответствовать график, представляющий собой прямую линии, не параллельную оси времени. Но графики А и Б не могут описывать изменение этой координаты.
Формула проекции скорости мячика на ось ОХ:
Начальная скорость и угол α — постоянные величины. И больше ни от чего проекция скорости на ось ОХ не зависит. Поэтому ее может охарактеризовать график в виде прямой линии, параллельной оси времени. Такой график у нас есть — это Б.
Кинетическая энергия мячика равна половине произведения массы мячика на квадрат его мгновенной скорости. По мере приближения к верхней точке полета скорость тела уменьшается, а затем растет. Поэтому кинетическая энергия также сначала уменьшается, а затем растет. Но на графике А величина наоборот — сначала увеличивается, потом уменьшается. Поэтому он не может быть графиком зависимости кинетической энергии мячика от времени.
Остается последний вариант — координата y. Уравнение этой координаты имеет вид:
Это квадратическая зависимость, поэтому графиком зависимости координаты y от времени может быть только парабола. Так как мячик сначала движется вверх, а потом — вниз, то и график должен сначала расти, а затем — убывать. График А полностью соответствует этому описанию.
Теперь записываем установленные соответствия в порядке АБ: 42.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Мальчик бросил стальной шарик вверх под углом к горизонту. Пренебрегая сопротивлением воздуха, определите, как меняются по мере приближения к Земле модуль ускорения шарика и горизонтальная составляющая его скорости?
Для каждой величины определите соответствующий характер изменения:
- увеличивается
- уменьшается
- не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Сделать чертеж, иллюстрирующий ситуацию.
- Записать формулы, определяющие указанные в условии задачи величины.
- Определить характер изменения физических величин, опираясь на сделанный чертеж и формулы.
Решение
Модуль ускорения шарика |g| — величина постоянная, так как ускорение свободного падения не меняет ни направления, ни модуля. Поэтому модуль ускорения не меняется (выбор «3»).
Горизонтальная составляющая скорости шарика определяется формулой:
Угол, под которым было брошено тело, поменяться не может. Начальная скорость броска тоже. Больше ни от каких величин горизонтальная составляющая скорости не зависит. Поэтому проекция скорости на ось ОХ тоже не меняется (выбор «3»).
Ответом будет следующая последовательность цифр — 33.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Движение тела, брошенного под углом к горизонту (бросок)
Движение тела, брошенного под углом к горизонту, — движение тела в двумерной системе координат (по двум осям) при изначальном направлении начальной скорости под углом к горизонту. Данное движение является сложным видом механического движения с криволинейной траекторией. Такие типы движений принято рассматривать в проекции на оси выбранной системы координат. В нашем конкретном случае возьмём декартову систему координат и запустим тело под углом к оси ОХ (рис. 1).
Рис. 1. Тело бросили под углом к горизонту
Классическая постановка задач на подобную тематику: тело бросили под углом к горизонту с начальной скоростью , найти различные параметры движения.
Первое, что мы сделаем, это попробуем данное сложное движение представить как сумму простых (рис. 2).
Рис. 2. Тело бросили под углом к горизонту (максимальная высота подъёма, путь по горизонтали, движение)
Рассмотрим само движение. После броска траектория движущегося тела представляет собой параболу (докажем позже). Выберем произвольную точку на параболе и укажем ускорение, с которым движется тело в данный момент (ускорение свободного падения). Направление данного ускорения — вертикально вниз. Проекции данного ускорения на ось ОХ ( (м/ ), а на ось OY ( (м/ ).
Тогда, вдоль оси ОХ, тело движется равномерно (т.к. ускорение вдоль этой оси равно 0). Более сложным является движение тела вдоль оси OY: между точками A и B тело движется замедляясь, при этом движение равнозамедленное. Между точками B и C движение равноускоренное (рис.2, подписи). Исходя из установленного вида движения, можем решать задачу.
Рис. 3. Тело бросили под углом к горизонту (проекции скоростей)
Для рассмотрения движения тела вдоль осей, введём начальные скорости движения тела вдоль выбранных нами осей (рис. 3). На рисунке представлена часть траектории в самом начале движения. Начальные скорости движения вдоль осей обозначим и . Исходя из треугольника, катетами которого являются наши проекции (можно построить параллельным переносом), а гипотенузой — модуль вектора начальной скорости ( ), можем найти значения необходимых нам проекций:
Вернёмся к рисунку 2. Попробуем найти полное время полёта ( ). Для этого воспользуемся тем, что вдоль оси OY тело движется равнозамедленно, а в точке B движение вдоль этой оси и вовсе останавливается. Таким образом, конечная скорость в этой точке вдоль оси OY равна 0. Тогда, исходя из движения:
— т.к. время движения от точки А до B, и от B до C одинаково. Тогда:
Перейдём к вопросу о максимальной дальности броска в горизонтальном направлении ( ).
Вдоль горизонта тело движется равномерно (рис. 2). Тогда путь, проделанный телом за время :
А с учётом (1) и (5):
Перейдём к максимальной высоте полёта ( ). Данный параметр связан с движением тела вдоль оси OY, которое, как мы выяснили, является равноускоренным/равнозамедленным. Рассмотрим участок BC: для него вдоль соответствующей оси тело без начальной скорости движется с ускорением ( ) в течение времени , формируем уравнение:
Таким образом, ряд параметров движения при броске под углом к горизонту можно вычислить, зная лишь начальные параметры броска.
Рис. 4. Тело бросили под углом к горизонту (конечная скорость)
Далее попробуем найти конечную скорость движения (при таких движениях, конечная скорость — скорость при подлёте к Земле). Рассмотрим конечную точку движения С (рис. 4). Скорость тела направлена под неким углом . Построим проекции данного вектора на оси OX и OY. На основании построенного треугольника реализуем теорему Пифагора для поиска модуля полной конечной скорости:
Найдём компоненты вектора . Т.к. движение вдоль оси OX равномерное, значит, , используя (1):
Движение вдоль оси OY от точки B в точку C равноускоренное, причём, без начальной скорости за время , тогда:
Используя (5), получим:
Подставим (12) и (13) в (10):
Для избавления от тригонометрических функций мы воспользовались основным тригонометрическим тождеством. Таким образом, доказано, что конечная скорость такого движения равна начальной, кроме того, из треугольника видно, что тело подлетело к земле под углом .
Вывод:
- для движения тела, брошенного под углом к горизонту, выведены добавочные формулы: (5), (7), (9), которые могут существенно упростить решение задачи.
- представлен один из общих способов нахождения скорости при криволинейном движении (через теорему Пифагора и поиск компонент вектора).
http://www.abitur.by/fizika/teoreticheskie-osnovy-fiziki/mexanicheskoe-dvizhenie/dvizhenie-tela-broshennogo-pod-uglom-k-gorizontu-brosok/
Что такое движение тела брошенного под углом к горизонту
Определение
Движением тела под углом к горизонту в физике называют сложное криволинейное перемещение, которое состоит из двух независимых движений, включая равномерное прямолинейное движение в горизонтальном направлении и свободное падение по вертикали.
В процессе подбрасывания объекта вверх под углом к горизонту вначале наблюдают его равнозамедленный подъем, а затем равноускоренное падение. Скорость перемещения тела, относительно поверхности земли, остается постоянной.
На графике изображено схематичное движение тела, которое подбросили под углом к горизонту. В этом случае α является углом, под которым объект начал свое перемещение. Характеристики такого процесса будут следующими:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
- Направление вектора скорости тела, которое подбросили под определенным углом к горизонту, будет совпадать с касательной к траектории его перемещения.
- Начальная скорость отличается от направления горизонтальной линии, а обе ее проекции не равны нулю.
- Проекция скорости в начале движения на ось ОХ составляет (V_{ox}=V_{0}cos alpha).
- Проекция начальной скорости на ось ОУ равна (V_{oy}=V_{0}sin alpha).
- Проекция мгновенной скорости на ось ОХ следующая: (V_{x}=V_{0}cos alpha).
- Проекция мгновенной скорости на ось ОУ обладает нулевым значением и рассчитывается следующим образом: (V_{x}=V_{0}sin alpha-gt).
- Ускорение свободного падения на ось ОХ обладает нулевой проекцией, или (g_{x}=0).
- Проекция ускорения свободного падения на ось ОУ равна (–g), или (g_{y}=-g).
К числу кинематических характеристик движения тела, которое подбросили под углом к горизонту, относят модуль мгновенной скорости в определенное время t. Данный показатель можно рассчитать с помощью теоремы Пифагора:
(V=sqrt{V^{2}_{x}+V^{2}_{y}})
Минимальная скорость тела будет замечена в самой верхней точке траектории, а максимальная величина данной характеристики будет достигнута, когда объект только начинает перемещаться, а также в точке падения на поверхность земли. Время подъема представляет собой время, необходимое для достижения телом верхней точки траектории. За полное время объект совершает полет, то есть перемещается от начальной точки к точке приземления.
Дальность полета является перемещением объекта по отношению к оси ОХ. Такую кинематическую характеристику обозначают буквой l. По отношению к оси ОХ тело перемещается, сохраняя постоянство скорости.
Определение
Горизонтальным смещением тела называют смещение данного объекта, относительно оси ОХ.
Расчет горизонтального смещения тела в какой-либо момент времени t выполняют с помощью уравнения координаты х:
(x=x_{0}+V_{0x}t+frac{gxt^{2}}{2})
Зная следующие условия:
- (x_{0}=0);
- проекция ускорения свободного падения, относительно оси ОХ, также имеет нулевое значение;
- проекция начальной скорости на ось ОХ составляет (V_{0}cos alpha).
Записанная формула приобретает следующий вид:
(x=V_{0}cos alpha t)
Мгновенной высотой принято считать высоту, на которой находится объект в определенный момент времени t. Наибольшей высотой подъема является расстояние от поверхности земли до верхней точки траектории движения тела под углом к горизонту.
Вывод формулы, как найти угол и дальность полета
Перемещение объекта, который был брошен под углом к горизонту, необходимо изобразить с помощью суперпозиций, характерных для двух типов движений:
- равномерное горизонтальное движение;
- равноускоренное перемещение в вертикальном направлении с ускорением свободного падения.
Скорость тела будет рассчитываться таким образом:
(v_{0x}=v_{x}=v_{0} cos alpha =const)
(v_{0y}=v_{0}sin alpha)
(v_{y}=v_{0}sin alpha-gt)
Уравнение координаты записывают в следующем виде:
(x=v_{0}cos alpha times t)
(y=v_{0}sin alpha times t-frac{gt^{2}}{2})
В любое время значения скорости тела будут равны:
(v=sqrt{v_{x}^{2}+v_{y}^{2}})
Определить угол между вектором скорости и осью ОХ можно таким образом:
(tan beta =frac{v_{y}}{v_{x}}=frac{v_{0}sin alpha -gt}{v_{0}cos alpha })
Время подъема на максимальную высоту составляет:
(t=frac{v_{0}sin alpha }{g})
Максимальная высота подъема будет рассчитана следующим образом:
(h_{max}=frac{v_{0}^{2}sin ^{2}alpha}{2g})
Полет тела будет длиться определенное время, которое можно рассчитать с помощью формулы:
(t=frac{2v_{0}sin alpha }{g})
Максимальная дальность полета составит:
(L_{max}=frac{v_{0}^{2}sin 2alpha }{g})
Примеры решения задач
В примерах, описывающих движение тела, на которое действует сила тяжести, следует учитывать, что а=g=9,8 м/с2.
Задача 1
Небольшой камень был брошен с ровной горизонтальной поверхности под углом к горизонту. Необходимо определить, какова максимальная высота подъема камня при условии, что, спустя 1 секунду после его начала движения, скорость тела обладала горизонтальным направлением.
Решение
Направление скорости будет горизонтальным в верхней точке перемещения камня. Таким образом, время, за которое он поднимется, составляет 1 секунду. С помощью уравнения времени подъема можно представить формулу произведения скорости в начале полета на синус угла, под которым бросили камень:
(V_{0}sin alpha =gt)
Данное равенство следует подставить в уравнение для расчета максимальной высоты, на которую поднимется камень, и выполнить вычисления:
(h=frac{V_{0}sin ^{2}alpha }{2g}=frac{(gt)^{2}}{2g}=frac{gt^{2}}{2}=frac{10times 1}{2}=5)
Ответ: максимальная высота подъема камня, который бросили под углом к горизонту, составляет 5 метров.
Задача 2
Из орудия выпустили снаряд, начальная скорость которого составляет 490 м/с, под углом 30 градусов к горизонту. Нужно рассчитать, какова высота, дальность и время полета снаряда без учета его вращения и сопротивления воздуха.
Решение
Систему координат и движение тела можно представить схематично:
Составляющие скорости, относительно осей ОХ и ОУ, будут совпадать во время начала движения снаряда:
(V_{0x}=V_{0} cos alpha) сохраняет стабильность значения в любой промежуток времени во время всего перемещения тела.
(V_{0y}=V_{0}sin alpha) будет меняться, согласно формуле равнопеременного движения (V_{y}=V_{0}sin alpha-gt).
В максимальной точке, на которую поднимется снаряд:
(V_{y}=V_{0}sin alpha-gt_{1}=0)
Из этого равенства следует:
(t=frac{V_{0sin alpha }}{g})
Полное время полета тела будет рассчитано по формуле:
(t=2t_{1}=frac{2V_{0}sin alpha }{g}=50)
Высота, на которую поднимется снаряд, определяется с помощью уравнения равнозамедленного перемещения тела:
(h=V_{0y}t_{1}-frac{gt_{1}^{2}}{2}=frac{V_{0}^{2}sin ^{2}alpha }{2g}=3060)
Дальность полета снаряда будет рассчитана таким образом:
(S=V_{0x}t=frac{V_{0}^{2}sin 2alpha }{g}=21000)
Ответ: высота составляет 3060 метров, дальность полета равна 21000 метров, время движения составит 50 секунд.
- Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
- Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория — парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
— максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
— на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя способами – т.н. навесная и настильная баллистические траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна
Угол, под которым направлен вектор скорости в любой момент времени:
Движение тела, брошенного под углом к горизонту:
Если рассмотреть движение тела, брошенного под углом относительно горизонта, можно увидеть, что тело отдаляется горизонтально от точки броска и одновременно поднимается в вертикальном направлении. Значит, тело, брошенное под углом к горизонту, участвует в двух (горизонтальном и вертикальном) видах движения. В горизонтальном направлении тело движется равномерно. В вертикальном направлении до точки максимальной высоты тело будет двигаться равнозамедленно, затем вниз будет двигаться равноускоренно (рис. 1.11).
Траектория движения тела, брошенного под углом к горизонту, имеет вид параболы. Учитывая, что в процессе полета тело одновременно двигается в горизонтальном и вертикальном направлениях, разделим начальную скорость
Для упрощения расчетов пренебрежем сопротивлением воздуха. В произвольный момент времени перемещение тела в горизонтальном направлении находим из следующего уравнения:
В произвольный момент времени t скорость тела в горизонтальном и вертикальном направлениях можно найти из следующих уравнений:
На протяжении движения тела, брошенного под углом к горизонту, горизонтальная составляющая скорости не меняется, вертикальная составляющая при подъеме является равнозамедленной и на максимальной высоте подъема равняется нулю. Значит, тело, брошенное под углом к горизонту, имеет минимальную скорость в высшей точке траектории:
Затем из этой точки тело движется как тело, брошенное горизонтально со скоростью .
Из соотношения или на максимальной высоте траектории находим время подъема:
Максимальная высота подъема тела определяется следующим соотношением:
Время движения тела вниз (падение) равно времени подъема, т.е. . Отсюда, общее время полета:
Тело, брошенное под углом к горизонту, в горизонтальном направлении движется равномерно. По этой причине длина полета тела зависит только от горизонтальной составляющей скорости. Для определения дальности полета подставим выражение времени полета в выражение и получим:
или
Из этого выражения видно, что длина полета тела, брошенного под углом к горизонту, зависит от угла броска. На рис. 1.12 приведена зависимость длины полета и высоты подъема от угла броска. Из рисунка видно, что с увеличением угла броска увеличивается высота подъема.
Длина полета тела вначале растет с ростом угла броска и достигает максимального значения при 450. Затем с дальнейшим увеличением угла броска длина полета уменьшается.
Выведем уравнение траектории движения тела, брошенного под углом к горизонту. Для этого в уравнение:
подставляем выражение для времени полета из уравнения (1.29) и получаем уравнение траектории в следующем виде:
Таким образом, тело, брошенное под углом к горизонту, движется по параболе, проходящей через начало координат при . В этом уравнении коэффициент перед отрицательный, значит, ветви параболы направлены вниз.
В реальных условиях сопротивление воздуха сильно влияет на дальность полета. К примеру, снаряд, пущенный со скоростью 100 км/ч, в вакууме пролетает расстояние в 1000 м, а в воздухе 700 м. Из экспериментов следует, что при угле броска 30-400 тело пролетает наибольшее расстояние.
Образец решения задачи:
Мяч брошен со скоростью 10 м/с под углом 30° к горизонту. На какую высоту поднимется мяч?
Дано:
Найти:
Формула:
Решение:
Ответ: 1,27 м.
Основные понятия, правила и законы
Научное наблюдение | Метод научного исследования системный, активный, направленный на цель. |
Гипотеза | Предположение о каком-либо процессе, явлении. |
Опыт (эксперимент) | Проводится для проверки гипотезы в специальных условиях. |
Модель | Упрощенная версия физического процесса, сохраняющая его главные черты. |
Научная идеализация | Предсказание получаемого результата в идеальных условиях по ранее полученным результатам. |
Научная теория | Набор законов, объясняющий широкую область явлений. |
Принцип соответствия | В определенных рамках соответствие новой и старой теорий. |
Криволинейное равномерное движение |
Движение, траектория которого представляет собой кривую линию, величина скорости не меняется, а направление изменяется по касательной к траектории. |
Принцип независимости или суперпозиция движения |
Движения, в которых участвует тело, независимы друг от друга, и скорости (ускорение) их движения не зависят друг от друга. |
Вертикальное движение вверх |
Движение, противоположное силе притяжения Земли. Уравнение движения: . |
Вертикальное движение вниз |
Движение в направлении силы притяжения Земли. Уравнение движения: . |
Переменное вращательное движение |
Вращательное движение, при котором с течением времени меняется угловая скорость. |
Угловое ускорение | Величина, определяемая отношением изменения угловой скорости ко времени этого изменения |
Формула определения угловой скорости в произвольный момент времени при вращательном равнопеременном движении |
|
Тангенциальное ускорение | Ускорение, получаемое в связи с изменением величины скорости . |
Полное ускорение при криволинейном движении |
|
Передача движения фрикционным способом |
Движение, передаваемое с помощью действующих поверхностей двух колес с разными радиусами. |
Ременная передача движения | Движение передается от одного колеса к другому через туго натянутый ремень. |
Передача движения через зубчатые колеса |
Передача вращательного движения путем объединения двух зубчатых колес с разными диаметрами. |
Дальность полета и скорость при падении горизонтально брошенного тела. |
|
Минимальная скорость тела, брошенного под углом к горизонту |
|
Высота подъема тела, брошенного под углом к горизонту |
|
Время полета тела, брошенного под углом к горизонту |
|
Дальность полета тела, брошенного под углом к горизонту |
|
Уравнение траектории движения тела, брошенного горизонтально |
|
Уравнение траектории движения тела, брошенного под углом к горизонту |
- Принцип относительности Галилея
- Движение в гравитационном поле
- Зависимость веса тела от вида движения
- Движение тел под воздействием нескольких сил
- Неравномерное движение по окружности
- Равномерное движение по окружности
- Взаимная передача вращательного и поступательного движения
- Движение горизонтально брошенного тела