Как найти уравнения прямой через три точки

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1 = y — y 1
x 2 — x 1 y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >- координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1 = y — y 1 = z — z 1
x 2 — x 1 y 2 — y 1 z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0 = y — y 0 = z — z 0
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/

http://www.calc.ru/Uravneniye-Pryamoy.html

2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой

1. Пусть даны три точки А1 (х1, у1), А2 (х2, у2), А3 (х3, у3), тогда условие нахождения их на одной прямой:

либо (х2х1) (у3у1) — (х3x1) (у2у1) = 0.

2. Пусть даны две точки А1 (х1, у1), А2 (х2, у2), тогда уравнение прямой, проходящей через эти две точки:

(х2х1)(у — у1) — (х — х1)(у2у1) = 0 или (х — х1) / (х2х1) = (у — у1) / (у2у1).

3. Пусть имеются точка М (х1, у1) и некоторая прямая L, представленная уравнением у = ах + с. Уравнение прямой, проходящей параллельно данной прямой L через данную точку М:

у — у1 = а(х — х1).

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М, описывается уравнением А(х — х1) + В(у — у1) = 0.

Уравнение прямой, проходящей перпендикулярно данной прямой L через данную точку М:

у — у1 = — (х — х1) / а

или

а(у — у1) = х1х.

Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М(х1, у1), описывается уравнением А (у — у1) — В(х — х1) = 0.

4. Пусть даны две точки А1 (х1, у1), А2 (х2, у2) и прямая, заданная уравнением Ах + Ву + С = 0. Взаимное расположение точек относительно этой прямой:

1) точки А1, А2 лежат по одну сторону от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют одинаковые знаки;

2) точки А1, А2 лежат по разные стороны от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют разные знаки;

3) одна или обе точки А1, А2 лежат на данной прямой, если одно или оба выражения соответственно (Ах1 + + Ву1 + С) и (Ах2 + Ву2 + С) принимают нулевое значение.

5. Центральный пучок — это множество прямых, проходящих через одну точку М (х1, у1), называемую центром пучка. Каждая из прямых пучка описывается уравнением пучка у — у1 = к (х — х1) (параметр пучка к для каждой прямой свой).

Все прямые пучка можно представить уравнением: l(y — y1) = m(x — x1), где l, m — не равные одновременно нулю произвольные числа.

Если две прямые пучка L1 и L2 соответственно имеют вид (А1х + В1у + С1) = 0 и (А2х + В2у + С2) = 0, то уравнение пучка: m1(А1х + В1у + С1) + m2(А2х + В2у + С2) = 0. Если прямые L1 и L2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

6. Пусть даны точка М (х1, у1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояние d от этой точки М до прямой:

Прямая имеет несколько видов задающих ее уравнений. Рассмотрим некоторые из них и разберем примеры.

Здесь будет калькулятор

Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом

y=kx+by=kx+b,

где kk — угловой коэффициент, а bb — свободный коэффициент.

Уравнения данного вида составляются следующим образом по формуле:

y−y0=k(x−x0)y-y_0=k(x-x_0),

где (x0;y0)(x_0; y_0) — координаты любой точки, лежащей на данной прямой.

Задача 1

Составить уравнение прямой, если координаты точки, принадлежащей данной прямой, таковы: x0=1,y0=2x_0=1, y_0=2. Угловой коэффициент принять равным 11.

Решение

Подставляем значения в формулу:

y−y0=k(x−x0)y-y_0=k(x-x_0)

y−2=1⋅(x−1)y-2=1cdot(x-1)

Приводим подобные слагаемые:

y=x+1y=x+1

Ответ

y=x+1y=x+1

Общее уравнение прямой

Для приведения прямой к такому виду из предыдущего вида достаточно просто перенести все слагаемые в одну часть. Возьмем уравнение прямой из предыдущей задачи y=x+1y=x+1. Тогда общее уравнение этой прямой запишется в виде:

y−x−1=0y-x-1=0

Уравнение прямой по двум точкам

Если в задаче даны координаты двух точек и необходимо составить уравнение прямой, то это делается при помощи такой формулы:

Уравнение прямой по двум точкам

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2},

где (x1;y1),(x2;y2)(x_1; y_1), (x_2; y_2) — координаты двух точек, через которые проходит данная прямая.

Задача 2

Найти уравнение прямой, если координаты точек имеют значения: (2;3)(2;3) и (4;−1)(4;-1).

Решение

x1=2x_1=2
y1=3y_1=3
x2=4x_2=4
y2=−1y_2=-1

x−x2x1−x2=y−y2y1−y2frac{x-x_2}{x_1-x_2}=frac{y-y_2}{y_1-y_2}

x−42−4=y−(−1)3−(−1)frac{x-4}{2-4}=frac{y-(-1)}{3-(-1)}

x−4−2=y+14frac{x-4}{-2}=frac{y+1}{4}

x−4=−y−12x-4=frac{-y-1}{2}

y+1=2⋅(4−x)y+1=2cdot(4-x)

y=8−2x−1y=8-2x-1

y=−2x+7y=-2x+7

Ответ

y=−2x+7y=-2x+7

Уравнение прямой при помощи точки и вектора нормали

Уравнение прямой по точке и нормали

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

где (x0;y0)(x_0; y_0) — координаты точки, лежащей на данной прямой, а (n1;n2)(n_1; n_2) — координаты вектора нормали к этой прямой.

Задача 3

Составить уравнение прямой, если координаты нормального вектора — (1;−5)(1;-5), а точка, через которую проходит данная прямая имеет координаты (7;8)(7;8).

Решение

x0=7x_0=7
y0=8y_0=8
n1=1n_1=1
n2=−5n_2=-5

(x−x0)⋅n1+(y−y0)⋅n2=0(x-x_0)cdot n_1+(y-y_0)cdot n_2=0,

(x−7)⋅1+(y−8)⋅(−5)=0(x-7)cdot 1+(y-8)cdot (-5)=0,

x−7+40−5y=0x-7+40-5y=0

x−5y=−40+7x-5y=-40+7

x−5y=−33x-5y=-33

5y=x+335y=x+33

y=x5+335y=frac{x}{5}+frac{33}{5}

Проверка

Чтобы проверить правильность решения, достаточно подставить координаты точки в данное уравнение и, если оно будет верным, то задача решена верно.

8=75+3358=frac{7}{5}+frac{33}{5}

8=88=8 — верно, ответ правильный.

Ответ

y=x5+335y=frac{x}{5}+frac{33}{5}

Прямая в пространстве

Уравнение прямой, заданной в пространстве имеет такой вид:

Уравнение прямой в пространстве

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3},

где (x0;y0;z0)(x_0;y_0;z_0) — координаты точки, через которую проходит прямая, а (ν1,ν2,ν3)(nu_1,nu_2,nu_3) — координаты напрявляющего вектора данной прямой.

Задача 4

Написать уравнение прямой по заданной точке (1;5;−23)(1;5;-23) и вектору направления (3;11;7)(3;11;7).

Решение

x0=1x_0=1
y0=5y_0=5
z0=−23z_0=-23
ν1=3nu_1=3
ν2=11nu_2=11
ν3=7nu_3=7

x−x0ν1=y−y0ν2=z−z0ν3frac{x-x_0}{nu_1}=frac{y-y_0}{nu_2}=frac{z-z_0}{nu_3}

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Проверка

Проверим, удовлетворяет ли это уравнение прямой точке (x0;y0;z0)(x_0;y_0;z_0). Для этого подставим в него координаты этой точки:

1−13=5−511=−23−(−23)7frac{1-1}{3}=frac{5-5}{11}=frac{-23-(-23)}{7} — верно, значит ответ правильный.

Такой вид уравнения прямой называется каноническим.

Ответ

x−13=y−511=z−(−23)7frac{x-1}{3}=frac{y-5}{11}=frac{z-(-23)}{7}

Тест по теме “Составление уравнения прямой”

Содержание:

Аналитическая геометрия

В этой главе все геометрические объекты мы будем определять и изучать с помощью соответствующих уравнений этих объектов и, следовательно, в принципе геометрия может быть изложена без единого чертежа. И, действительно, все чертежи, которые мы будем использовать, будут служить лишь для визуальной иллюстрации наших рассуждений.

Уравнение поверхности в выбранной декартовой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т. е. в виде связи или зависимости между координатами х, у, z произвольной точки поверхно-аналогично, уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

определяет некоторую линию (кривую) в системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач на плоскости.

Кривая в пространстве может быть задана как пересечение двух поверхностей и, следовательно, она определяется системой из уравнений этих поверхностей:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Кроме того, кривую на плоскости или в пространстве можно также задать с помощью зависимостей координат произвольной то’жи этой кривой от некоторого параметра, т. е. с помощью параметрических уравнений:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где t — действительный параметр.

Плоскость в пространстве. Различные виды уравнения плоскости

Найдем уравнение плоскости в пространстве с выбранной в нем декартовой системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач. Будем исходить из того, что положение этой плоскости полностью определяется точкой Аналитическая геометрия - примеры с решением заданий и выполнением задач. через которую проходит плоскость и ненулевым вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач. ей перпендикулярным. Вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач называется нормальным вектором плоскости.Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач— произвольная точка плоскости П. Тогда вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач ортогонален вектору Аналитическая геометрия - примеры с решением заданий и выполнением задачи, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

или, учитывая, что Аналитическая геометрия - примеры с решением заданий и выполнением задач запишем в координатах уравнение плоскости П :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Преобразовав полученное уравнение к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

мы получим тем самым общее уравнение плоскости.

Рассмотрим теперь некоторые частные случаи общего уравнения плоскости. Если в общем уравнении плоскости отсутствует, одна из координат, то нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задачэтой плоскости перпендикулярен соответствующей координатной оси и, следовательно, плоскость расположена параллельно этой координатной оси.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, если в общем уравнении плоскости отсутствуют две координаты, то нормальный вектор данной плоскости перпендикулярен соответствующей координатной плоскости и, значит, плоскость расположена параллельно этой координатной плоскости.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Научимся теперь находить уравнение плоскости по трем элементам.

1) Плоскость, проходящая через точку, параллельно двум векторам.

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно неколлинеарным векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач произвольную точку плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач Для точек данной плоскости и только для них три вектора Аналитическая геометрия - примеры с решением заданий и выполнением задач компланарны и, следовательно (глава II, §5, теорема), их смешанное произведение равно нулю, т. е.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Раскрыв определитель (проще всего, разлагая его по первой строке), получим общее уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

2)Плоскость, проходящая через две точки, параллельно вектору.

Найдем уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящей через две точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, параллельно ненулевому вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач. Задача сводится к предыдущей, если положить, например, Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда

Аналитическая геометрия - примеры с решением заданий и выполнением задач

— искомое уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

3)Плоскость, проходящая через три точки.

Если плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через три точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, не лежащие на одной прямой, то ее уравнение можно найти, как и в случае 1). положив например, Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач записать в виде:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Замечание. Во всех трех случаях уравнение плоскости можно найти, вычислив предварительно ее нормальный вектор. Например, в первом случае в качестве нормального вектора можно взять векторное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач — уравнение плоскости.

Пример №1

Найти уравнение плоскости 11 ^ — перпендикулярной плоскости

Аналитическая геометрия - примеры с решением заданий и выполнением задач

параллельной вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач и проходящей через точку пересечения плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач с координатного осью Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Из уравнения плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач находим у = — 2. Следовательно, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач Кроме того, Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задачплоскости Аналитическая геометрия - примеры с решением заданий и выполнением задачпараллелен плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Осталось записать искомое уравнение по трем элементам: точке Аналитическая геометрия - примеры с решением заданий и выполнением задачи векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач. Имеем:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, общее уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач не проходит через начало координат и не параллельна ни одной из координатных осей. Тогда, очевидно, все числа A, В, С, D отличны от нуля.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Разделив обе части уравнения плоскости на число D. мы можем записать его в виде:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Числа а, b, с представляют собой величины отрезков, которые плоскость П отсекает на координатных осях. Полученное уравнение называется уравнением плоскости в отрезках.

Найдем теперь формулу для вычисления расстояния от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач до плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначим искомое расстояние черезАналитическая геометрия - примеры с решением заданий и выполнением задач. Очевидно.Аналитическая геометрия - примеры с решением заданий и выполнением задач, где точка Аналитическая геометрия - примеры с решением заданий и выполнением задач — основание перпендикуляра, опущенного из точки Аналитическая геометрия - примеры с решением заданий и выполнением задач на плоскость П. Вычислим скалярное произведение коллинеарных векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач. С одной стороны,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

С другой,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

так как Аналитическая геометрия - примеры с решением заданий и выполнением задач и поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, расстояние от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач до плоскости П вычисляется по формуле:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В заключение этого параграфа выясним характер взаимного расположения двух плоскостей. Пусть плоскости заданы своими общими уравнениями:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что угол Аналитическая геометрия - примеры с решением заданий и выполнением задачмежду этими плоскостями равен углу между их нормальными векторами Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В частности,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №2

Убедиться в том, что плоскостьАналитическая геометрия - примеры с решением заданий и выполнением задач отсекающая на координатных осях Аналитическая геометрия - примеры с решением заданий и выполнением задачотрезки величиной 2, —1, 2 соответственно и плоскость

Аналитическая геометрия - примеры с решением заданий и выполнением задач

параллельны и найти расстояние между ними.

Решение. Запишем уравнение плоскости II| в отрезках:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Преобразовав его к общему виду, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как нормальные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарны. то эти плоскости параллельны. Возьмем какую-нибудь точку в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач например, Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнения прямой в пространстве

Пусть прямая L в пространстве с декартовой системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач и параллельна ненулевому векторуАналитическая геометрия - примеры с решением заданий и выполнением задач, который называется направляющим вектором прямой.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач произвольную точку прямой L. Вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарен вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, их координаты пропорциональны, т. е.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Эта двойная пропорция представляет собой канонические уравнения прямой в пространстве.

Заметим, что в канонических уравнениях прямой формально допускается запись нулей в знаменателях, это означает лишь то, что прямая перпендикулярна соответствующей координатной оси или координатной плоскости.

Если прямая проходит через две точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, то в качестве ее направляющего вектора можно взять вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, канонические уравнения этой прямой имеют вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Коллинеарные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задачлинейно связаны (глава II. §1), т.е. существует действительный параметр t такой, что

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если точка М перемещается вдоль прямой, параметр t изменяется в пределах от Аналитическая геометрия - примеры с решением заданий и выполнением задач до Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач — радиусы-векторы точек Аналитическая геометрия - примеры с решением заданий и выполнением задач и М соответственно, то последнее уравнение мы можем переписать в виде

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Это уравнение называется векторным уравнением прямой.

Переходя в полученном векторном уравнении к координатам, запишем параметрические уравнения прямой:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямую в пространстве можно задать также как пересечение двух плоскостей.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Система

Аналитическая геометрия - примеры с решением заданий и выполнением задач

составленная из уравнений этих плоскостей, дает нам общие уравнения прямой в пространстве. Для перехода от общих к каноническим уравнениям прямой, достаточно найти какую-нибудь точку на ней, решив при фиксированном значении одной из координат систему уравнений плоскостей, а также определить направляющий вектор прямой, которым может служить векторное произведение нормальных векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскостей. т. е. вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №3

Найти канонические уравнения прямой

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Полагая в данной системе z = 0, получим

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решив эту систему, найдем х = 1, у = —2. Таким образом, мы получили точку Аналитическая геометрия - примеры с решением заданий и выполнением задач на прямой. Найдем ее направляющий вектор:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Осталось записать канонические уравнения данной прямой:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Научимся теперь вычислять расстояние от точки до прямой в пространстве. Пусть задана точка Аналитическая геометрия - примеры с решением заданий и выполнением задач и прямая L своими каноническими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Искомое расстояние Аналитическая геометрия - примеры с решением заданий и выполнением задач равно, очевидно, высоте треугольника, построенного, на векторах Аналитическая геометрия - примеры с решением заданий и выполнением задач Воспользовавшись геометрическим смыслом длины векторного произведения (глава II. §4), найдем:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть нам известны канонические уравнения двух прямых в пространстве:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач

Один из углов между этими прямыми равен углу между их направляющими векторами Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Изучим взаимное расположение прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач. Если направляющие векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач коллинеарны, то данные прямые параллельны или совпадают. Совпадать они будут в том случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач

В случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач, прямые пересекаются или являются скрещивающимися.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямые пересекаются, очевидно, тогда и только тогда, когда векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач компланарны. В противном случае данные прямые являются скрещивающимися. Таким образом, для того, чтобы выяснить, являются ли две данные непараллельные прямые пересекающимися или скрещивающимися, достаточно вычислить смешанное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач и, если оно окажется равным нулю, то прямые пересекаются, иначе — скрещиваются.

Расстояние Аналитическая геометрия - примеры с решением заданий и выполнением задач между двумя скрещивающимися прямыми равно, очевидно, расстоянию между параллельными плоскостями, в которых расположены эти прямые и, следовательно, равно высоте параллелепипеда, построенного на векторах Аналитическая геометрия - примеры с решением заданий и выполнением задач Отсюда, использовав геометрический смысл смешанного произведения (глава II. §5), мы и найдем искомое расстояние:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №4

Убедиться в том, что прямые

Аналитическая геометрия - примеры с решением заданий и выполнением задач

являются скрещивающимися. Найти расстояние между ними и уравнение общего перпендикуляра к ним.

Решение. Первая прямая проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задачпараллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач. а вторая — через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач Вычислим смешанное произведение векторов Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
следовательно, прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач являются скрещивающимися. Для вычисления расстояния между ними иенолтьзуем приведенную выше формулу. Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Осталось найти уравнение общего перпендикуляра к данным прямым. Заметим, прежде всего, что его направляющим вектором является уже вычисленный нами вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач. Очевидно, указанный перпендикуляр расположен в пересечении двух плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящих через данные прямые параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач Найдем уравнения этих плоскостей по трем элементам. Первая из них проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно векторам Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно (§1),

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач Аналогично, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач содержит точку Аналитическая геометрия - примеры с решением заданий и выполнением задачи расположена параллельно векторам Аналитическая геометрия - примеры с решением заданий и выполнением задачпоэтому
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и, стало быть, Аналитическая геометрия - примеры с решением заданий и выполнением задач — уравнение плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Система из уравнений плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач и даст нам общие уравнения перпендикуляра к прямым Аналитическая геометрия - примеры с решением заданий и выполнением задач :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В заключение этого параграфа вычислим угол между прямой L, заданной каноническими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и плоскостью П, для которой известно ее общее уравнение 

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, искомый угол Аналитическая геометрия - примеры с решением заданий и выполнением задач связан с углом Аналитическая геометрия - примеры с решением заданий и выполнением задач между направляющим вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач прямой и нормальным вектором Аналитическая геометрия - примеры с решением заданий и выполнением задачплоскости соотношением Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно, Аналитическая геометрия - примеры с решением заданий и выполнением задач откуда,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В частности, если  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямая на плоскости

Для прямой на плоскости наблюдается большее разнообразие ее уравнений, так как на плоскости прямая фиксируется точкой, через которую она проходит и, либо вектором ей перпендикулярным (нормальным вектором), либо вектором ей параллельным (направляющим вектором) и, следовательно, для прямой на плоскости можно записывать как уравнения, характерные для плоскости в пространстве (§1), так и аналоги уравнений прямой в пространстве (§2). Перечислим, не повторяя деталей, изложенных в предыдущих двух параграфах, основные уравнения прямой на плоскости и связанные с ними формулы.

Пусть прямая L на плоскости с выбранной в ней системой координат Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задачперпендикулярно ненулевому вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнение такой прямой имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда после очевидных преобразований получим уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

которое представляет собой общее уравнение прямой на плоскости.

Пусть прямая L отсекает на координатных осях Аналитическая геометрия - примеры с решением заданий и выполнением задач отрезки величиной а и Ь соответственно.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Тогда, как и для плоскости, мы можем записать уравнение прямой в отрезках:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если прямая L содержит точку Аналитическая геометрия - примеры с решением заданий и выполнением задач и расположена параллельно ненулевому векторуАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
то ее каноническое уравнение имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

По аналогии с прямой в пространстве, прямая на плоскости может быть задана также векторным уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и параметрическими уравнениями

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Расстояние от точки Аналитическая геометрия - примеры с решением заданий и выполнением задач прямой L на плоскости, заданной общим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач, может быть вычислено по формуле:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем еще одно уравнение прямой на плоскости, характерное для этого геометрического объекта. Пусть прямая L, заданная своим каноническим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач , непараллельна оси Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

ТогдаАналитическая геометрия - примеры с решением заданий и выполнением задачи мы можем записать уравнение прямой L с угловым коэффициентом:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где Аналитическая геометрия - примеры с решением заданий и выполнением задач — угловой коэффициент прямой, b — величина отрезка, который отсекает эта прямая на оси Аналитическая геометрия - примеры с решением заданий и выполнением задач. В частности,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

представляет собой уравнение прямой с угловым коэффициентом, которая проходит через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если две прямые на плоскости заданы общими или каноническими уравнениями, то их взаимное расположение исследуется по аналогии с плоскостями или прямыми, заданными такими же уравнениями (§1 или §2). Изучим поэтому взаимное расположение двух прямых, которые заданы уравнениями с угловым коэффициентом. Итак, рассмотрим две прямые

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Предположим сначала, что прямые не являются перпендикулярными, обозначим черезАналитическая геометрия - примеры с решением заданий и выполнением задачострый угол между ними. Тогда, очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если жеАналитическая геометрия - примеры с решением заданий и выполнением задач, то нормальные векторы Аналитическая геометрия - примеры с решением заданий и выполнением задач этих прямых ортогональны, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, для перпендикулярности прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач необходимо и достаточно, чтобы Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно. прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельны в том и только в том случае, когда равны углы, которые они образуют с осью Ох. Следовательно, для параллельности прямых Аналитическая геометрия - примеры с решением заданий и выполнением задачнеобходимо и достаточно, чтобы совпадали их угловые коэффициенты, т. е. Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №5

Даны прямая Аналитическая геометрия - примеры с решением заданий и выполнением задачи точка А(—2, 1). Найти уравнения прямыхАналитическая геометрия - примеры с решением заданий и выполнением задачпроходящих через точку А и таких, что Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. ПрямыеАналитическая геометрия - примеры с решением заданий и выполнением задач имеют общий нормальный вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач — общее уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач то направляющим вектором прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач является нормальный вектор прямой L, следовательно,

Аналитическая геометрия - примеры с решением заданий и выполнением задач каноническое уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из уравнения прямой L находим Аналитическая геометрия - примеры с решением заданий и выполнением задач следовательно, Аналитическая геометрия - примеры с решением заданий и выполнением задачТогда угловые коэффициенты прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач удовлетворяют уравнению

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда, Аналитическая геометрия - примеры с решением заданий и выполнением задач Осталось записать уравнения прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Кривые второго порядка на плоскости

В предыдущих трех параграфах нами были изучены линейные геометрические объекты -плоскость и прямая в пространстве и на плоскости. Мы показали, что в декартовой системе координат они определяются алгебраическими уравнениями первой степени, т. е. линейными уравнениями. Предметом нашего исследования в этом параграфе будут являться кривые второго порядка, т. е. линии на плоскости, уравнения которых в декартовой системе координат Оху имеют вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где А, В, С, D, Е, F — действительные числа. Мы убедимся в том, что, за исключением случаев вырождения данное уравнение определяет одну из трех замечательных линий — эллипс, гиперболу или параболу. Приведем сначала геометрическое определение каждой из этих линий и найдем их канонические уравнения.

Эллипс

Определение: Эллипсом называется множество точек на плоскости, для каждой из которых сумма расстояний до двух фиксированных точек (фокусов эллипса) есть величина постоянная.

Найдем каноническое уравнение эллипса. Обозначим через 2с фокусное расстояние, т. е. расстояние между фокусами, а через 2а — постоянную сумму расстояний от точек эллипса до фокусов. Из неравенства треугольника следует, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Выберем декартову систему координат на плоскости следующим образом: ось Ох направим через фокусы, а начало координат выберем посередине между ними.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть М(х, у) — произвольная точка эллипса. По определению этой линии,

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Упростим последнее уравнение:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

откуда, использовав обозначение Аналитическая геометрия - примеры с решением заданий и выполнением задач   , мы и получим каноническое уравнение эллипса :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Построим эту линию. Для этого прежде всего заметим, что она симметрична относительно координатных осей и начала координат, так как переменные x и у входят в каноническое уравнение в квадратах. Отсюда следует, что эллипс достаточно построить в первой координатной четверти и затем отразить его относительно координатных осей. Из канонического уравнения эллипса находим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, эта функция определена и убывает при Аналитическая геометрия - примеры с решением заданий и выполнением задач Кроме того, ее график располагается выше прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач Из приведенных рассуждений следует, что эллипс представляет собой следующую замкнутую линию на плоскости:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Числа а и b называются соответственно большой и малой полуосями эллипса. Точка O(0,0) -центр эллипса, точки Аналитическая геометрия - примеры с решением заданий и выполнением задачвершины эллипса, отрезок Аналитическая геометрия - примеры с решением заданий и выполнением задач — большая, Аналитическая геометрия - примеры с решением заданий и выполнением задачмалая оси эллипса.

Форму эллипса характеризует величина Аналитическая геометрия - примеры с решением заданий и выполнением задач. равная отношению фокусного расстояния к длине большой оси. Это число называется эксцентриситетом эллипса. Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то при Аналитическая геометрия - примеры с решением заданий и выполнением задач мы имеем Аналитическая геометрия - примеры с решением заданий и выполнением задач, и, следовательно, эллипс по форме мало отличается от окружности. В предельном случае, когда Аналитическая геометрия - примеры с решением заданий и выполнением задач. полуоси совпадают и эллипс превращается в окружность. Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач и эллипс является вытянутым вдоль оси Ох.

Замечание. В уравнении эллипса может оказаться, что Аналитическая геометрия - примеры с решением заданий и выполнением задач Тогда фокусы эллипса находятся на оси Аналитическая геометрия - примеры с решением заданий и выполнением задач — большая, Аналитическая геометрия - примеры с решением заданий и выполнением задач — малая полуоси эллипса.
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
 

Гипербола

Определение: Гипербола представляет собой линию на плоскости, для каждой точки которой абсолютная величина разности расстояний до двух фиксированных точек (фокусов гиперболы) есть величина постоянная.

Обозначим и здесь фокусное расстояние через 2с. а через 2а — постоянную абсолютную величину разности расстояний от точек гиперболы до фокусов. Для гиперболы а < с, что следует из неравенства треугольника. Выберем декартову систему координат на плоскости точно также, как и при выводе канонического уравнения эллипса.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

По определению гиперболы для произвольной точки М(х, у) этой линии

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Избавляясь от корней в этом уравнении, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Обозначая здесь Аналитическая геометрия - примеры с решением заданий и выполнением задач, получим каноническое уравнение гиперболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Как видно из ее уравнения, гипербола симметрична относительно координатных осей и начала координат. Из канонического уравнения гиперболы следует, что в первой четверти

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Эта функция возрастает, Аналитическая геометрия - примеры с решением заданий и выполнением задач при всех Аналитическая геометрия - примеры с решением заданий и выполнением задач при больших х.

а    а    а    а

Это означает, что в первой четверти гипербола, выходя из точки (а, 0) на оси Ох, приближается

затем при больших значениях х к прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач Следовательно, гипербола выглядит следующим образом:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямые Аналитическая геометрия - примеры с решением заданий и выполнением задач называются асимптотами гиперболы. Точка O(0,0) — центр гиперболы. Точки Аналитическая геометрия - примеры с решением заданий и выполнением задач называются вершинами гиперболы. Ось симметрии гиперболы, пересекающая ее в вершинах, называется действительной осью. Вторая ось симметрии, не имеющая с гиперболой общих точек, называется мнимой осью гиперболы. Числа а и Ь называются соответственно действительной и мнимой полуосями гиперболы. Если полуоси равны, то гипербола называется равносторонней (равнобочной).

Как и для эллипса, определим эксцентриситет гиперболы как отношение половины фокусного расстояния к действительной полуоси:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то эксцентриситет гиперболы характеризует величину угла, в котором она располагается. ПриАналитическая геометрия - примеры с решением заданий и выполнением задач угол мал и, наоборот, если эксцентриситет велик, то и угол. в котором находится гипербола, близок к развернутому.

Замечание. В каноническом уравнении гиперболы знаки перед квадратами могут располагаться и в обратном порядке:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

В этом случае фокусы и вершины находятся на осиАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Парабола

Определение: Параболой называется множество точек плоскости, равноудаленных от. фиксированной точки (фокуса параболы) и фиксированной прямой (директрисы параболы).

Обозначим расстояние от фокуса до директрисы через р. Число р > 0 называется параметром параболы. Выберем удобную систему координат на плоскости: ось Ох направим через фокус F перпендикулярно директрисе D, а начало координат возьмем посередине между директрисой и фокусом.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если М(х,у) — произвольная точка параболы, то по определению этой кривой

Аналитическая геометрия - примеры с решением заданий и выполнением задач

После возведения в квадрат и очевидных преобразований, получим каноническое уравнение параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, парабола проходит через начало координат и симметрична относительно оси Ох. Точка O(0,0) называется вершиной параболы, ось Ох — осью параболы.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Замечание. Если бы при выборе системы координат мы направили ее оси в противоположные стороны, то каноническое уравнение параболы приняло бы вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, уравнения

Аналитическая геометрия - примеры с решением заданий и выполнением задач

также определяют параболы, фокусы которых расположены на оси Оу. а директрисы параллельны оси Ох.

Приведение уравнения кривой второго порядка к каноническому виду

Покажем, что общее уравнение кривой второго порядка на плоскости, кроме случаев вырождения, определяет одну из линий — эллипс, гиперболу или параболу.

Выясним сначала, как преобразуются координаты точки на плоскости при параллельном переносе системы координат. Предположим, что осуществлен параллельный перенос системы координат Оху в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач. Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач — координаты точки М в старой Оху, а Аналитическая геометрия - примеры с решением заданий и выполнением задач — координаты той же точки в новой Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задачто новые и старые точки координаты на плоскости связаны линейными соотношениями:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Рассмотрим теперь уравнение второго порядка на плоскости в частном случае, когда оно не содержит произведения координат ху :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

причем коэффициенты А и С не равны одновременно нулю. Здесь возможны три случая.

а) АС > 0. Очевидно, всегда можно считать, тгго А > 0, С > 0. Выделяя в уравнении второго порядка полные квадраты по переменным х и у, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где Аналитическая геометрия - примеры с решением заданий и выполнением задач — некоторые действительные числа. Ясно, что при Аналитическая геометрия - примеры с решением заданий и выполнением задач > 0 ни одна из точек плоскости не удовлетворяет этому уравнению. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач = 0, то единственным решением полученного уравнения является точка Аналитическая геометрия - примеры с решением заданий и выполнением задач. Наконец, при Аналитическая геометрия - примеры с решением заданий и выполнением задач < 0 уравнение приводится к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, следовательно, в смещенной с помощью параллельного переноса в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат оно является каноническим уравнением эллипса:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

b)    АС < 0. Будем считать для определенности, что А > 0. С < 0.

В этом случае исходное уравнение второго порядка также приводится к виду (1). При F = 0 оно определяет пару прямых, проходящих, через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач, то полученное уравнение мы можем преобразовать к виду

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, стало быть, после параллельного переноса системы координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач последнее уравнение является каноническим уравнением гиперболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

c)    АС = 0. Предположим, например, что Аналитическая геометрия - примеры с решением заданий и выполнением задач

Выделяя в данном уравнении второго порядка полный квадрат по переменной у, получим:

С {у ~ Уо)2 + Dx + F1=0.

Если в этом уравнении D = 0, то при Аналитическая геометрия - примеры с решением заданий и выполнением задач > 0 множество решений этого уравнения пусто, а при Аналитическая геометрия - примеры с решением заданий и выполнением задач < 0 полученное уравнение определяет пару прямых, параллельных оси Ох :

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач, то мы можем привести уравнение к виду:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т.е. после параллельного переноса системы координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач, мы получим тем самым каноническое уравнение параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично. если в исходном уравнении второго порядка Аналитическая геометрия - примеры с решением заданий и выполнением задач то, не принимая во внимание вырожденные случаи, это уравнение мы также можем привести к каноническому уравнению параболы:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №6

Привести уравнение второго порядка к каноническому виду, назвать и построить кривую:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение. Выделяя полные квадраты по обеим переменным, получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

что представляет собой каноническое уравнение эллипса в смещенной в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач системе координат. Для этого эллипса Аналитическая геометрия - примеры с решением заданий и выполнением задач и, следовательно, фокусы находятся в точках Аналитическая геометрия - примеры с решением заданий и выполнением задач. Эксцентриситет эллипса равен Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №7

Найти каноническое уравнение параболы с вершиной в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, осью симметрии, параллельной координатной оси Ох и фокусом на оси Оу. Построить параболу.

Решение. Фокус параболы находится в точке F(0 , 2), следовательно, уравнение параболы с учетом смещения имеет вид:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
ЗдесьАналитическая геометрия - примеры с решением заданий и выполнением задач и, стало быть.
Аналитическая геометрия - примеры с решением заданий и выполнением задач
каноническое уравнение параболы.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Замечание. Для приведения к каноническому виду уравнения второго порядка, содержащего произведение координат ху, необходимо кроме параллельного переноса выполнить еще и поворот системы координат на определенный угол. Например, для равносторонней гиперболы ху = 1 следует повернуть систему координат Оху вокруг ее начала на угол 45° против часовой стрелки. Поскольку вершины гиперболы находятся на расстоянии Аналитическая геометрия - примеры с решением заданий и выполнением задач от начала координат. то в новой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач каноническое уравнение гиперболы имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Поверхности второго порядка в пространстве

В заключение этой главы мы изучим поверхности в пространстве, которые в декартовой системе координат задаются алгебраическими уравнениями второй степени. Существуют пять видов таких поверхностей: эллипсоид, гиперболоиды, параболоиды, цилиндры второго порядка и конус второго порядка.

Поверхность вращения

Найдем уравнение поверхности, которая получается вращением некоторой линии вокруг одной из координатных осей. Пусть линия L, которая в координатной плоскости Oyz задается уравнением F(y, z) = 0. вращается вокруг оси Oz.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть M(x,y,z) — произвольная точка на поверхности вращения. Перегоним ее по окружности, расположенной в сечении поверхности плоскостью, проходящей через данную точку перпендикулярно оси Oz, в точку N на линии L. Поскольку расстояние от точки М до оси Oz равно Аналитическая геометрия - примеры с решением заданий и выполнением задачто точка N имеет координаты Аналитическая геометрия - примеры с решением заданий и выполнением задач . Подставив координаты точки N в уравнение линии L. мы и получим тем самым уравнение поверхности вращения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем теперь уравнения поверхностей, которые получаются вращением кривых второго порядка с последующей линейной деформацией этих поверхностей.

Эллипсоид

Возьмем в плоскости Oyz эллипс

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и будем вращать его вокруг оси Oz. В результате, как следует из предыдущего пункта, мы получим поверхность с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

которая называется эллипсоидом вращения. Заменив в найденном уравнении координату х на —Аналитическая геометрия - примеры с решением заданий и выполнением задач, т. е. линейно деформируя поверхность вдоль оси Ох с коэффициентомАналитическая геометрия - примеры с решением заданий и выполнением задач —, мы получим тем самым уравнение эллипсоида общего вида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Положительные числа а, b, с называются полуосями эллипсоида.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, сечениями эллипсоида плоскостями параллельными координатным, являются эллипсы.

Замечание. В частном случае, когда а = b = с = R эллипсоид превращается в сферу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

радиуса R с центром в начале координат.

Гиперболоиды

а) Однополостный гиперболоид.

Вращая гиперболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

вокруг оси Oz, получим однополостный гиперболоид вращения с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

После линейной деформации вдоль оси Ох эта поверхность превращается в однополостный гиперболоид общего вида с осью Oz :

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналогично, уравнения однополостных гиперболоидов с осями Ох и Оу имеют, соответственно, вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Сечениями однополостного гиперболоида плоскостями, перпендикулярными его оси, являются эллипсы, а в сечениях плоскостями, перпендикулярными другим координатным осям, располагаются гиперболы.

Двухполостный гиперболоид

Поверхность, полученная вращением вокруг оси Оz гиперболы

Аналитическая геометрия - примеры с решением заданий и выполнением задач

вершины которой расположены на оси вращения, называется двухполостным гиперболоидом вращения. Запишем уравнение двухполостного гиперболоида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Линейная деформация двухполостного гиперболоида вращения вдоль оси Ох прообразует его в двухполостный гиперболоид общего вида с осью Oz. Уравнение этой поверхности имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Двухполостные гиперболоиды с осями Ох и Оу имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Как и в случае однополостного гиперболоида, сечениями двухполостного гиперболоида плоскостями, параллельными координатным, являются эллипсы и гиперболы.

Параболоиды

а) Эллиптический параболоид

Вращение параболы вокруг ее оси приводит к поверхности, которая называется параболоидом вращения. В частности, если параболу с каноническим уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач вращать вокруг оси Oz, то, как следует из пункта 0, уравнение полученного параболоида вращения имеет вид:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Линейная деформация параболоида вращения вдоль оси Оу превращает его в эллиптический параболоид с уравнением:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Положительные числа p, q называются параметрами параболоида, точка O(0,0) — вершина, ось Oz — ось эллиптического параболоида.

Уравнения эллиптических параболоидов с осями Ох и Оу имеют, соответственно, вид:
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Как следует из уравнения эллиптического параболоида, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, а в сечениях плоскостями, параллельными другим координатным, находятся параболы.

Замечание. Изменение знака в правой части уравнения эллиптического параболоида приводит к отражению этой поверхности относительно координатной плоскости, перпендикулярной оси параболоида.

b) Гиперболический параболоид.

Будем поступательно перемещать образующую параболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

расположенную в плоскости Oyz, параллельно самой себе вдоль направляющей параболы

Аналитическая геометрия - примеры с решением заданий и выполнением задач

находящейся в плоскости Oxz. Полученная таким образом поверхность называется гиперболическим параболоидом или седловидной поверхностью.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Найдем уравнение этой поверхности. Пусть М(х. у, z) — произвольная точка гиперболического параболоида. По его построению точка М принадлежит параболе с вершиной в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, параллельной параболе Аналитическая геометрия - примеры с решением заданий и выполнением задач Так как координаты произвольной точки Аналитическая геометрия - примеры с решением заданий и выполнением задач этой параболы удовлетворяют уравнению

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то, подставив в него координаты точки М, мы и получим после несложных преобразований уравнение гиперболического параболоида:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Здесь, как и для эллиптического параболоида, числа р, q — параметры гиперболического параболоида, точка O(0,0) и ось Oz — соответственно вершина и ось гиперболического параболоида.

Замечание 1. Седловидная поверхность может быть также получена перемещением параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно самой себе вдоль параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач

Судя по уравнению гиперболического параболоида, в сечениях этой поверхности плоскостями z = h > 0 находятся гиперболы, действительные оси которых параллельны координатной оси Ох. Аналогично, плоскости z = h < 0 пересекают данную поверхность по гиперболам с действительными осями, параллельными оси Оу. Наконец, плоскость Оху пересекает гиперболический параболоид по двум прямым Аналитическая геометрия - примеры с решением заданий и выполнением задач

Гиперболические параболоиды, осями которых служат координатные оси Ох и Оу, имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Замечание 2. Отразив седловидную поверхность относительно координатной плоскости, перпендикулярной ее оси, получим гиперболический параболоид, уравнение которого отличается знаком правой части от уравнения исходной поверхности.

Цилиндры второго порядка

Цилиндром второго порядка называется поверхность, полученная перемещением некоторой прямой (образующей) вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей образующую, параллельно фиксированному ненулевому вектору в пространстве.

Ограничимся случаем, когда направляющая расположена в одной из координатных плоскостей, а образующая перпендикулярна этой плоскости. Возьмем для определенности в плоскости Оху кривую второго порядка и будем перемещать прямую, параллельную оси Oz, вдоль этой кривой. Так как проекцией любой точки M(x,y,z) полученного таким образом цилиндра на плоскость Оху является точка N(x,y), принадлежащая кривой второго порядка, то координаты точки М удовлетворяют уравнению этой кривой. Следовательно, уравнением построенного цилиндра является уравнение его направляющей.

Перечислим теперь цилиндры второго порядка.

1) Аналитическая геометрия - примеры с решением заданий и выполнением задачэллиптический цилиндр

Аналитическая геометрия - примеры с решением заданий и выполнением задач
В частности, при а = b мы получим круговой цилиндр.

2 2 X у

2) Аналитическая геометрия - примеры с решением заданий и выполнением задачгиперболический цилиндр.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
3) Аналитическая геометрия - примеры с решением заданий и выполнением задач — параболический цилиндр.

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналогичные уравнения имеют цилиндры второго порядка, образующие которых параллельны осям Ох и Оу, а направляющие расположены в координатных плоскостях Oyz и Oxz, соответственно.

Конус второго порядка

Конус второго порядка представляет собой поверхность, которая может быть получена перемещением прямой (образующей), имеющей неподвижную точку, которая называется вершиной конуса, вдоль кривой второго порядка (направляющей), расположенной в плоскости, не содержащей вершину.

Найдем уравнение конуса, вершина которого совпадает с началом координат, а направляющей служит эллипс с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

расположенный в плоскости z = с, с > 0.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть M(x,y,z) — произвольная точка конуса. Обозначим через Аналитическая геометрия - примеры с решением заданий и выполнением задач точку перс-сечения образующей, проходящей через точку М, с направляющей. Координаты точки Аналитическая геометрия - примеры с решением заданий и выполнением задач удовлетворяют уравнениям

Аналитическая геометрия - примеры с решением заданий и выполнением задач

а точки M — уравнениям 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из последних уравнений мы находим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Подставив найденные выражения дляАналитическая геометрия - примеры с решением заданий и выполнением задач в уравнение эллипса, получим после несложных преобразований уравнение конуса второго порядка:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Координатная ось Oz называется осью конуса. Если а = b, то конус является круговым.

Конусы второго порядка с осями Ох и Оу имеют, соответственно, уравнения:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Покажем, что вид конуса второго порядка не зависит от выбора направляющей. Действительно, если в качестве направляющей взять гиперболу

Аналитическая геометрия - примеры с решением заданий и выполнением задач

находящегося в плоскости 2 = с, то после рассуждений, аналогичных предыдущим, получим поверхность с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

т. е. конус с осью Ох. Если же за направляющую мы выберем в плоскости z = с параболу с уравнением

Аналитическая геометрия - примеры с решением заданий и выполнением задач

то построенный таким образом конус имеет уравнение

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Наблюдая со стороны положительной полуоси Оу, повернем систему координат Oxz вокруг оси Оу на угол 45° против часовой стрелки. Тогда произведение xz в системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

запишется как Аналитическая геометрия - примеры с решением заданий и выполнением задач (§4, пункт 4, замечание). Следовательно, в новой системе координат Oxyz найденное уравнение поверхности приобретает вид

Аналитическая геометрия - примеры с решением заданий и выполнением задач

и, стало быть, эта поверхность является конусом с осью Аналитическая геометрия - примеры с решением заданий и выполнением задач

Как следует из уравнения конуса и его построения, плоскости, перпендикулярные его оси, пересекают эту поверхность по эллипсам, сечениями конуса плоскостями, параллельными его оси, являются гиперболы, и, наконец, в сечениях конуса плоскостями, параллельными образующей, располагаются параболы.

Приведение уравнения поверхности второго порядка к каноническому виду

По аналогии с уравнением кривой второго порядка (§4, пункт 4), уравнение поверхности второго порядка, не содержащее произведений координат, мы можем за счет выделения полных квадратов привести к уравнению одной из рассмотренных в пунктах 1—5 поверхностей. Следовательно, мы получим одну из поверхностей второго порядка в смещенной с помощью параллельного переноса системе координат. Исключение, правда, составляет случай, когда уравнение поверхности содержит полный квадрат и два линейных слагаемых относительно других координат. Такая поверхность представляет собой параболический цилиндр в смещенной с помощью параллельного переноса и повернутой затем вокруг одной из координатных осей системе координат.

Пример №8

Привести уравнение второго порядка

Аналитическая геометрия - примеры с решением заданий и выполнением задач

к каноническому виду, назвать и построить поверхность.

Решение. После выделения полных квадратов по переменным у, z получим:

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Переписав это уравнение в виде

Аналитическая геометрия - примеры с решением заданий и выполнением задач

мы замечаем, что в смещенной с помощью параллельного переноса в точку Аналитическая геометрия - примеры с решением заданий и выполнением задачсистеме координат, эта поверхность представляет собой гиперболический параболоид с параметрами р = 1, q = 4.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Прямая на плоскости. Общее уравнение прямой на плоскости

Докажем, что всякая прямая на плоскости задается в любой пдск  уравнением первой степени относительно двух переменных. 
Если  A  – некоторая точка на прямой  Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вектор, перпендикулярный ей, то, во-первых, через  A  перпендикулярно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная прямая на  плоскости,  а,  во-вторых,    для любой  точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач  вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач .  Таким свойством обладают только точки, лежащие наАналитическая геометрия - примеры с решением заданий и выполнением задач.  

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Чтобы вывести уравнение прямой, зададим на плоскости пдск  XOY .  
В этой системе координат  Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть M (x, y)  – произвольная точка 
на Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда (рис. 22 ) Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как  Аналитическая геометрия - примеры с решением заданий и выполнением задач , то по свойству 5 скалярного произведения Аналитическая геометрия - примеры с решением заданий и выполнением задач  – векторное уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач.   
Аналитическая геометрия - примеры с решением заданий и выполнением задач поэтому по формуле (2.5) получим  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Координаты точек, лежащих на прямойАналитическая геометрия - примеры с решением заданий и выполнением задач, связаны соотношением (3.1). Если же  Аналитическая геометрия - примеры с решением заданий и выполнением задач  не перпендикулярен Аналитическая геометрия - примеры с решением заданий и выполнением задач значит, координаты  M  не  будут  удовлетворять полученному  уравнению.  Поэтому  (3.1)  –  уравнение прямой, проходящей через заданную точку, перпендикулярно заданному вектору. Заметим, что это уравнение линейно относительно переменных   x  и  y . 
 

Определение: Любой ненулевой вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач , перпендикулярный прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, называется ее нормальным вектором, или нормалью. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач. Обозначая  Аналитическая геометрия - примеры с решением заданий и выполнением задач , получим 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.2) – общее уравнение прямой на плоскости, Аналитическая геометрия - примеры с решением заданий и выполнением задач

Уравнение прямой с направляющим вектором

Определение:  Любой  ненулевой  вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач ,  параллельный  прямой, называется ее направляющим вектором. 
Если  A  – некоторая точка на прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вектор, параллельный ей, то, во-первых, через  A  параллельно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная прямая, а, во-вторых,  для любой точки Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач Таким свойством обладают только точки, лежащие на Аналитическая геометрия - примеры с решением заданий и выполнением задач.  

Чтобы  вывести  уравнение  прямой,  зададим  на  плоскости  пдск  XOY .  В этой системе координат  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M (x, y) – произвольная точка на  . Тогда  Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач. Запишем условие коллинеарности векторов: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.3) – уравнение прямой на плоскости с направляющим вектором.                    
Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямой   , поэтому уравнение прямой, проходящей через две точки имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Уравнение прямой с угловым коэффициентом

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямойАналитическая геометрия - примеры с решением заданий и выполнением задач  не параллельна оси OY , тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение: Угловым коэффициентом прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач называется число 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что если Аналитическая геометрия - примеры с решением заданий и выполнением задач – угол между прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач и положительным направлением оси ОХ, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Рассмотрим уравнение (3.3)  прямой с направляющим вектором Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
Отсюда следует  (3.5) – уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Из (3.5) получим Аналитическая геометрия - примеры с решением заданий и выполнением задач . Обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач , тогда  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.6) – уравнение прямой с угловым коэффициентом.

Угол между прямыми на плоскости

Определение: Углом между двумя прямыми на плоскости называется  любой  из  двух  смежных  углов,  образованных  ими  при  пересечении.  Если прямые параллельны, то угол между ними равен  0  илиАналитическая геометрия - примеры с решением заданий и выполнением задач  радиан. 
Пусть прямые заданы общими уравнениями. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие параллельности прямых: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие перпендикулярности прямых:   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Рассмотрим случай, когда прямые заданы уравнениями с угловым коэффициентом. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач                                                                      
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как  Аналитическая геометрия - примеры с решением заданий и выполнением задач  (рис. 24  ), то 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие параллельности прямых:    
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Условие перпендикулярности:     
Аналитическая геометрия - примеры с решением заданий и выполнением задачТак как Аналитическая геометрия - примеры с решением заданий и выполнением задач
не существует, то Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пример №9

Даны  вершины  треугольника: Аналитическая геометрия - примеры с решением заданий и выполнением задач
Написать: 
 а) уравнение медианы  AM , б) высоты  AH , в) найти угол между   AM  и  AH  
(рис. 25).      
Аналитическая геометрия - примеры с решением заданий и выполнением задач                      
Перепишем уравнение  медианы в общем виде:   
Аналитическая геометрия - примеры с решением заданий и выполнением задач  – нормаль АМ. 
б)Аналитическая геометрия - примеры с решением заданий и выполнением задач – нормаль  AH . Уравнение прямой (3.1), проходящей через точку  A  перпендикулярно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач :  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
в)Аналитическая геометрия - примеры с решением заданий и выполнением задач. По формуле (3.7) Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Расстояние от точки до прямой на плоскости

Пусть  в некоторой пдск  XOY  задана прямая  Аналитическая геометрия - примеры с решением заданий и выполнением задач  и точка Аналитическая геометрия - примеры с решением заданий и выполнением задач  Найдем расстояние от точки M  до прямой  . 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Пусть  Аналитическая геометрия - примеры с решением заданий и выполнением задач – проекция точки  M  на Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис.  26),  тогда  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Нормаль 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где   d  – искомое расстояние, Аналитическая геометрия - примеры с решением заданий и выполнением задач – скалярное произведение.  
Следовательно,        
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач. Поэтому    
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Отсюда    Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.8) – формула для вычисления расстояния от точки до прямой на плоскости. 
 

Пример №10

Найти длину высоты  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение  Аналитическая геометрия - примеры с решением заданий и выполнением задач —
искомая длина высоты АН. 
 

Кривые второго порядка

Окружность

Определение: Кривые второго порядка – плоские линии, которые в пдск   XOY  задаются уравнениями второй степени относительно двух переменных x,y. 
 

Определение: Окружностью называется совокупность точек  плоскости, равноудаленных от фиксированной точки, называемой ее центром. 

Выведем уравнение окружности. Зададим пдск  XOY . Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – фиксированная точка (центр окружности), а  R  – расстояние от точек окружности до ее центра (радиус окружности). Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач  – произвольная точка окружности, то длина Аналитическая геометрия - примеры с решением заданий и выполнением задач равна R . Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если точка  M (x, y)   не лежит на окружности, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач  и ее координаты уравнению (3.9) не удовлетворяют, поэтому, (3.9) – уравнение окружности с центром  Аналитическая геометрия - примеры с решением заданий и выполнением задач радиуса  R . 
Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач , то уравнение окружности примет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.10) – каноническое уравнение окружности.

Пример №11

Показать, что уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задачзадает окружность (то есть найти  ее центр и радиус). 
Приведем  данное  уравнение  к  виду (3.9), выделив  полный квадрат по переменной   x : 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №12

Написать уравнение линии центров окружностей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Найдем центр второй окружности:         
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение прямой (3.4), проходящей через две точки: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Эллипс

Определение:  Эллипс  –  совокупность  точек  плоскости,  сумма  расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами. 

Чтобы вывести уравнение эллипса, выберем пдск следующим образом: ось абсцисс проведем через фокусы  Аналитическая геометрия - примеры с решением заданий и выполнением задач , а ось ординат – посередине отрезка Аналитическая геометрия - примеры с решением заданий и выполнением задач перпендикулярно  оси  абсцисс.    Обозначим  расстояние  между  фокусами Аналитическая геометрия - примеры с решением заданий и выполнением задач тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Пусть  M(x, y)  – произвольная точка, лежащая на эллипсе, а  2a  – сумма расстояний от точек на эллипсе до Аналитическая геометрия - примеры с решением заданий и выполнением задач ,     
Аналитическая геометрия - примеры с решением заданий и выполнением задач                     
2a>2c определению эллипса. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 27). 
Запишем  в  виде  уравнения  свойство  точек, принадлежащих эллипсу, сформулированное в определении: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

(3.11) – уравнение эллипса в выбранной системе координат. Преобразуем его к 
более простому (каноническому) виду. Для этого умножим (3.11)  на сопряженное выражение: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Сложим (3.11) и (3.12) и результат возведем в квадрат: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Так как по определению  a>c, то есть  Аналитическая геометрия - примеры с решением заданий и выполнением задач, то обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда из (3.13) получим:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.14) – каноническое уравнение эллипса. 
 

Исследуем форму эллипса по его каноническому уравнению. Найдем точки пересечения с осями координат:
Аналитическая геометрия - примеры с решением заданий и выполнением задач  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Из (3.14) следует, что 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Значит, эллипс расположен в прямоугольнике со сторонами  Аналитическая геометрия - примеры с решением заданий и выполнением задач .  
Кроме того, из уравнения следует, что он симметричен относительно OX  и OY . O(0,0)  – точка пересечения осей симметрии – центр симметрии  эллипса. 
Ось, на которой лежат фокусы, называется фокальной осью эллипса. Точки  пересечения  эллипса  с  осями  симметрии  называются  его  вершинами.  

Аналитическая геометрия - примеры с решением заданий и выполнением задач – полуфокусное расстояние, Аналитическая геометрия - примеры с решением заданий и выполнением задач – малая полуось,  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – большая полуось эллипса и Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 28). 

Отношение полуфокусного расстояния к длине большой полуоси Аналитическая геометрия - примеры с решением заданий и выполнением задач называется эсцентриситетом  эллипса. Он характеризует форму эллипса.

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, и чем меньше Аналитическая геометрия - примеры с решением заданий и выполнением задач, тем больше эллипс похож на окружность. Для окружности Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ  1.  Уравнение  эллипса,  центр  которого  Аналитическая геометрия - примеры с решением заданий и выполнением задач,  а  оси симметрии параллельны координатным осям, имеет вид:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 2. К кривым второго порядка эллиптического типа относятся также мнимый эллипс 
Аналитическая геометрия - примеры с решением заданий и выполнением задач  и точка Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №13

Найти эксцентриситет эллипса   Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 29).    
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то фокусы лежат на оси  OY  и поэтому  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Гипербола

Определение:  Гипербола  –  совокупность  точек  плоскости,  модуль разности расстояний от которых до двух фиксированных точек этой плоскости, называемых фокусами,  есть величина постоянная, не равная  нулю и меньшая, чем расстояние между фокусами. 

Чтобы вывести уравнение гиперболы, выберем пдск следующим образом: 

ось абсцисс проведем через фокусы Аналитическая геометрия - примеры с решением заданий и выполнением задач, а ось ординат – посередине отрез-
ка Аналитическая геометрия - примеры с решением заданий и выполнением задач перпендикулярно оси абсцисс. Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – фокусы гиперболы (рис. 30). Пусть  M(x, y)  – произвольная точка, лежащая на гиперболе.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач – расстояние между фокусами, 2a  – модуль разности  расстояний от точек на гиперболе до Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 30). 

Запишем свойство точек, принадлежащих гиперболе, сформулированное в определении: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.16) – уравнение гиперболы в выбранной системе координат ( «+» – если разность расстояний  положительна, и «–»  – если отрицательна). Чтобы привести это уравнение к более простому виду, умножим (3.16) на сопряженное выражение и выполним такие  же действия, как при упрощении уравнения эллипса, после чего получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

По определению Аналитическая геометрия - примеры с решением заданий и выполнением задач. Обозначим  Аналитическая геометрия - примеры с решением заданий и выполнением задач, тогда (3.17) перепишется в виде:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.18) – каноническое уравнение гиперболы. 

Исследуем форму гиперболы по ее каноническому уравнению.  
Из (3.18) следует, что гипербола симметрична относительно осей координат. Если x=0, Аналитическая геометрия - примеры с решением заданий и выполнением задач , значит, точек пересечения с  OY  нет; если  y = 0 , то Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точки пересечения с осями симметрии называются вершинами гиперболы.  Кроме  того,  из  (3.18)  следует,  что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точка  пересечения осей  симметрии  называется  центром  гиперболы.  Ось  симметрии,  на  которой расположены  фокусы,  называется  фокальной  осью.  При  этом  фокальная  ось также называется действительной (с ней гипербола пересекается), а ось симметрии, с которой гипербола не пересекается, называется ее мнимой осью. 

c  – полуфокусное расстояние,   a  – действительная полуось, b  – мнимая полуось.  Отношение  полуфокусного  расстояния  к  длине  действительной  полуоси называется эксцентриситетом  гиперболы: Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Так  как  по  определению Аналитическая геометрия - примеры с решением заданий и выполнением задач

Считая, что Аналитическая геометрия - примеры с решением заданий и выполнением задач из (3.18) получим, что Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнение части гиперболы, расположенной в первой четверти. Заметим, что при неограниченном  возрастании Аналитическая геометрия - примеры с решением заданий и выполнением задач  разность Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть при достаточно больших   x  гипербола приближается к прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач
причем ординаты точек на ней меньше соответствующих ординат точек на этой 
прямой:Аналитическая геометрия - примеры с решением заданий и выполнением задач. Прямая Аналитическая геометрия - примеры с решением заданий и выполнением задачназывается асимптотой гиперболы.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Из симметрии гиперболы следует, что то же самое происходит во второй, третьей и четвертой  четвертях. Поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач  – также асимптота. 
Итак, прямыеАналитическая геометрия - примеры с решением заданий и выполнением задач  – асимптоты гиперболы (3.18), а гипербола – кривая, состоящая из двух ветвей (рис. 31). 
Если фокусы гиперболы лежат на OY , то ее уравнение имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Гиперболы  (3.18)  и  (3.19)  называются  сопряженными  (рис.  31).  Уравнения асимптот  (3.19) такие же, как и для (3.18), но действительной является ось OY . 
Если  a = b, то гипербола называется равносторонней: Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнения ее асимптот (рис. 32 ).     
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Очевидно, в этом случае асимптоты перпендикулярны. После поворота осей координат на Аналитическая геометрия - примеры с решением заданий и выполнением задач против часовой стрелки, получим  гиперболу, задаваемую уравнениемАналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 1. Если центр гиперболы  в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач, а оси симметрии параллельны координатным осям, то уравнение гиперболы имеет вид         
Аналитическая геометрия - примеры с решением заданий и выполнением задач

 ЗАМЕЧАНИЕ 2. К кривым второго порядка гиперболического типа относится также  пара пересекающихся прямых:  Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №14

Найти координаты центра и написать уравнения асимптот гиперболы Аналитическая геометрия - примеры с решением заданий и выполнением задач
Приведем данное уравнение к виду (3.20): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, Аналитическая геометрия - примеры с решением заданий и выполнением задач – центр, Аналитическая геометрия - примеры с решением заданий и выполнением задач  – уравнения асимптот данной гиперболы. 
 

Парабола

Определение: Парабола – совокупность точек плоскости, равноудаленных от фиксированной точки этой плоскости, называемой фокусом, и фиксированной прямой, не проходящей через эту точку, называемой директрисой.   Чтобы вывести уравнение параболы, выберем пдск следующим образом: ось абсцисс проведем через фокус перпендикулярно директрисе, а ось ординат посередине между фокусом и директрисой (рис. 33). 

Пусть расстояние между фокусом  F  и директрисой  DK  равно  p . Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Если  M(x, y)   –  произвольная  точка  на  параболе,  то  по определению 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.21) – уравнение параболы в выбранной системе координат. 

Упростим его:                                 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.22) – каноническое уравнение параболы;  p  называется ее параметром. 
Из уравнения следует, что парабола симметрична относительно   OX  и проходит через начало координат. Кроме того,  если Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому кривая лежит в правой полуплоскости и с ростом величины Аналитическая геометрия - примеры с решением заданий и выполнением задач также растет. Точка пересечения параболы с осью симметрии называется ее вершиной (рис. 34). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если фокус параболы на оси ОУ (рис. 35), то ее каноническое уравнение имеет вид Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ЗАМЕЧАНИЕ 1. Если вершина параболы в точке Аналитическая геометрия - примеры с решением заданий и выполнением задач и ось симметрии параллельна OX , то ее уравнение имеет вид Аналитическая геометрия - примеры с решением заданий и выполнением задач

ЗАМЕЧАНИЕ 2.  К кривым второго порядка параболического типа относятся также Аналитическая геометрия - примеры с решением заданий и выполнением задач  – пара совпадающих прямых;  
Аналитическая геометрия - примеры с решением заданий и выполнением задач– пара параллельных прямых; Аналитическая геометрия - примеры с решением заданий и выполнением задач пара мнимых параллельных прямых.  
 

Пример №15

Написать уравнение геометрического места точек, равноудаленных от прямой  x + y — 1 = 0 и точки F(-3,2). 
По определению множество точек, равноудаленных от данных точки и прямой, является  параболой.  Пусть  M (x, y)   –  произвольная  точка  искомой  параболы, тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Расстояние от точки M  до прямой x + y — 1 = 0 вычисляется по формуле (3.8): Аналитическая геометрия - примеры с решением заданий и выполнением задач . Из условия следует, что  
Аналитическая геометрия - примеры с решением заданий и выполнением задач  – уравнение искомого геометрического места точек. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если  оси  координат  системы XOY   повернуть на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач так, чтобы  одна  из  них  стала  параллельна директрисе, а затем перенести  начало координат в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач  – вершину параболы, то в новой  системе Аналитическая геометрия - примеры с решением заданий и выполнением задач  уравнение  параболы  будет  каноническим Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 36).  
 

ЗАМЕЧАНИЕ. Можно показать, что, кроме окружности, эллипса, гиперболы, параболы и вырожденных случаев, указанных в замечаниях, других кривых второго порядка не существует.  
 

Преобразования координат на плоскости

Преобразование координат — замена системы координат на плоскости, в пространстве или, в самом общем случае, на заданном n-мерном многообразии.

Параллельный перенос координатных осей

Пусть на плоскости задана пдск ХОУ. Будем называть ее “старой”. “Новая” система координат Аналитическая геометрия - примеры с решением заданий и выполнением задач получена из “старой” параллельным переносом осей в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Выясним, как связаны координаты Аналитическая геометрия - примеры с решением заданий и выполнением задач одной и той же точки М  в этих системах координат.

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – орты координатных осей системы ХОУ, а  Аналитическая геометрия - примеры с решением заданий и выполнением задач– системы Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
так как Аналитическая геометрия - примеры с решением заданий и выполнением задач по определению  равенства  векторов (рис. 37). 
Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
или                                                  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.23) – формулы параллельного переноса осей пдск. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Поворот координатных осей на угол α

Поворот координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  “новая”  пдск   Аналитическая геометрия - примеры с решением заданий и выполнением задач получена из  “старой” системы координат XOY поворотом осей ОХ и ОУ на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 38) и М(х, у) – произвольная  точка  в  системе XOY . Выясним, какими станут ее координаты в “новой” пдск.  
Из рис. 38 очевидно, что 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.24) – формулы поворота координатных осей на угол  , выражающие старые координаты точки через новые. 
Если обозначить  Аналитическая геометрия - примеры с решением заданий и выполнением задач, то (3.24) можно переписать:  Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то существует  Аналитическая геометрия - примеры с решением заданий и выполнением задач и  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.25) – формулы поворота координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач, выражающие новые  координаты точки через старые. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №16

Каким  будет  уравнение  прямой  x + y — 1 = 0 после поворота координатных осей на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач
 новое уравнение прямой (рис. 39). 
 

Линейные  преобразования на плоскости

Рассмотрим систему линейных уравнений: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Каждой точке  плоскости  M(x, y)  по формулам (3.26) можно поставить в соответствие  единственную точку Аналитическая геометрия - примеры с решением заданий и выполнением задач той же плоскости. При этом точка  N  называется образом точки  M , а точка  M  – прообразом точки  N .  Кроме того,уравнения (3.26) линейны относительно  x  и  y , поэтому будем говорить, что (3.26) определяют линейное преобразование плоскости в себя. 
Преобразование (3.26) определяется матрицей Аналитическая геометрия - примеры с решением заданий и выполнением задач, которая называется  матрицей  линейного  преобразования.  Обозначая  ,Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.26)  можно  переписать  в  виде Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Можно  показать,  что  определитель Аналитическая геометрия - примеры с решением заданий и выполнением задач равен  коэффициенту  изменения  площадей  при  линейном  преобразовании (3.26). При этом Аналитическая геометрия - примеры с решением заданий и выполнением задач, если в результате преобразования направление обхода некоторого  контура  не  меняется,  и Аналитическая геометрия - примеры с решением заданий и выполнением задач,  если  оно  меняется  на  противоположное. Поясним это на примерах. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №17

 Аналитическая геометрия - примеры с решением заданий и выполнением задач– растяжение вдоль 
оси OX  в 2 раза.  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 40). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №18

Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
при этом направление обхода  Аналитическая геометрия - примеры с решением заданий и выполнением задач от O  к  A , затем к  B  – по часовой стрелке, а соответствующее направление обхода Аналитическая геометрия - примеры с решением заданий и выполнением задач – против часовой стрелки. Геометрически данное преобразование – растяжение вдоль  OX  и OY  в 2 раза и отражение симметрично относительно оси OY  (рис. 41). 
 

Определение:  Линейное  преобразование  (3.26)  называется  невырожденным, если Аналитическая геометрия - примеры с решением заданий и выполнением задач

В  этом  случае  существует  обратная  матрица Аналитическая геометрия - примеры с решением заданий и выполнением задач и  можно  найти Аналитическая геометрия - примеры с решением заданий и выполнением задач. То есть, если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то не только у каждого прообраза существует единственный образ, но и наоборот: для каждого образа существует единственный прообраз. В этом случае говорят, что (3.26) устанавливает взаимно однозначное соответствие между точками плоскости, или линейное преобразование плоскости на себя. 
Можно  показать,  что  невырожденное  линейное  преобразование  переводит прямую в прямую, а кривую второго порядка – в кривую второго порядка. 
 

Пример №19

Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач преобразование вырожденное. 
Какими будут образы точек, лежащих, например, на прямой  x + y — 1 = 0 
(рис. 42)?
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть у точки N(1,2) существует  бесконечное  множество  прообразов:  все  они  лежат  на  прямой x + y — 1 = 0.  Потому  данное  вырожденное  линейное  преобразование  не  устанавливает взаимно-однозначного соответствия между точками плоскости. 
 

Пример №20

Рассмотрим формулы (3.25):  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, что поворот осей пдск на угол Аналитическая геометрия - примеры с решением заданий и выполнением задач– линейное преобразование. 
Так как это линейное преобразование невырожденное, то существует  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Заметим, что в этом случае Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение: Матрица  A называется ортогональной, если Аналитическая геометрия - примеры с решением заданий и выполнением задач
Линейное  преобразование,  матрица  которого  ортогональна,  называется  ортогональным. 

Таким образом, поворот координатных осей – ортогональное линейное преобразование. 

Можно показать, что если  A  – ортогональная матрица, то Аналитическая геометрия - примеры с решением заданий и выполнением задач(доказать самостоятельно). Таким образом, в результате ортогональных линейных преобразований на плоскости площади фигур остаются неизменными.  
 

Произведение линейных преобразований

Рассмотрим  матрицы Аналитическая геометрия - примеры с решением заданий и выполнением задачКаждая  из  них определяет  линейное  преобразование  плоскости.  Если  M(x, y) –  некоторая точка плоскости, то под действием линейного преобразования Аналитическая геометрия - примеры с решением заданий и выполнением задач с матрицей  B   она перейдет в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

В свою очередь точка  N  под действием линейного преобразования Аналитическая геометрия - примеры с решением заданий и выполнением задач с матрицей C   перейдет в точку Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Такое последовательное выполнение линейных преобразований называется их произведением: Аналитическая геометрия - примеры с решением заданий и выполнением задач

Покажем, что произведение линейных преобразований также линейное преобразование, и найдем его матрицу. Подставим (3.27) в (3.28): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
То есть  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.29)  – система линейных уравнений, а потому произведение линейных преобразований линейно. Матрица (3.29)  имеет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, матрица произведения линейных преобразований равна произведению их матриц. Само же правило умножения матриц, сформулированное в гл.1, находит объяснение в этом выводе.  
 

Приведение квадратичной формы к каноническому виду

Определение: Квадратичной формой относительно двух переменных  x  и  y  называется однородный многочлен второй степени:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач задает на плоскости кривую второго порядка, причем, так как вместе с точкой  M(x, y) , лежащей на этой кривой,  ей  принадлежит  и  точка Аналитическая геометрия - примеры с решением заданий и выполнением задач,  кривая  симметрична  относительно 
начала  координат,  то  есть  является  центральной  кривой  (эллиптического  или гиперболического типа).

Предположим, что уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач задает в пдск ХОУ эллипс. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач, то это уравнение не является каноническим уравнением эллипса, а потому, хотя О(0, 0) – его центр, оси симметрии не совпадают с ОХ и ОУ (рис. 43). Тем не менее, заметим, что если оси системы  XOY  повернуть на 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
угол Аналитическая геометрия - примеры с решением заданий и выполнением задач , то в системе Аналитическая геометрия - примеры с решением заданий и выполнением задач эллипс будет  задаваться  каноническим  уравнением:  кривая  симметрична  относительно Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Найдем  линейное преобразование,  соответствующее этому повороту. 

Матрица Аналитическая геометрия - примеры с решением заданий и выполнением задач называется матрицей квадратичной формы (3.30).  
Пусть  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Вычислим Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, квадратичная форма может быть записана в матричном виде: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  x, y – координаты точек плоскости в системе  XOY , а  Аналитическая геометрия - примеры с решением заданий и выполнением задач– координаты точек  плоскости  в новой системе Аналитическая геометрия - примеры с решением заданий и выполнением задач , где  кривая задается каноническим уравнением. Переход от “старых” координат к “новым” будем искать в виде  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.32) – ортогональное линейное преобразование с матрицей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
По определению ортогональной матрицы  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(В  результате  ортогонального  преобразования  не  происходит  изменение  площадей фигур, то есть фигуры не деформируются.) 
Чтобы узнать, как изменится матрица квадратичной формы в результате линейного  преобразования  (3.32),  подставим  (3.32)  в  (3.31): Аналитическая геометрия - примеры с решением заданий и выполнением задач (свойство 5 умножения матриц)Аналитическая геометрия - примеры с решением заданий и выполнением задач
(свойство 2 умножения матриц и равенство (3.33)) – матрица новой квадратичной формы.  

Так как в “новой” системе координат кривая должна задаваться каноническим уравнением, то есть в нем должно отсутствовать произведение координат  xy, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид: Аналитическая геометрия - примеры с решением заданий и выполнением задач
, где Аналитическая геометрия - примеры с решением заданий и выполнением задач – неизвестные числа. Умножим равенство Аналитическая геометрия - примеры с решением заданий и выполнением задач  на матрицу T  слева. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
По определению равных матриц имеем: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Системы уравнений (3.34), (3.35) – линейные и однородные. Они имеют нетривиальное решение, если их определители равны 0. 

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Это означает, что Аналитическая геометрия - примеры с решением заданий и выполнением задач являются решениями уравнения 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Уравнение (3.36) называется характеристическим уравнением матрицы  A  (характеристическим  уравнением  квадратичной  формы).  Его  решения Аналитическая геометрия - примеры с решением заданий и выполнением задач  называются собственными значениями матрицы  A (квадратичной формы).  

Покажем, что дискриминант квадратного уравнения (3.36) положителен, то есть любая квадратичная форма двух переменных имеет 2 различных собственных значения. 
Вычислим определитель (3.36):      
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Дискриминант Аналитическая геометрия - примеры с решением заданий и выполнением задач
так как Аналитическая геометрия - примеры с решением заданий и выполнением задач  (иначе квадратичная форма будет канонической). 
 

Таким образом, коэффициентами при Аналитическая геометрия - примеры с решением заданий и выполнением задач в каноническом виде квадратичной формы являются ее собственные значения, то есть решения уравнения (3.36).  

Решим (3.36) и подставим Аналитическая геометрия - примеры с решением заданий и выполнением задач в (3.34). Система имеет бесконечное множество решений и пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач – одно их них. Так как система (3.34) однородная, то Аналитическая геометрия - примеры с решением заданий и выполнением задач – тоже решение. Подберем  k  так, чтобы вектор  
Аналитическая геометрия - примеры с решением заданий и выполнением задач был единичным:Аналитическая геометрия - примеры с решением заданий и выполнением задач

Векторы  Аналитическая геометрия - примеры с решением заданий и выполнением задач называется  собственными  векторами  квадратичной формы, соответствующими собственному значению  Аналитическая геометрия - примеры с решением заданий и выполнением задач , или первыми собственными  векторами.  Их направление называется  первым  главным  направлением квадратичной формы. Таким образом, первым собственным вектором квадратичной формы называется любое ненулевое решение системы (3.34). 

Аналогично  подставим  Аналитическая геометрия - примеры с решением заданий и выполнением задач в  (3.35)  и  найдем Аналитическая геометрия - примеры с решением заданий и выполнением задач –  второй  собственный вектор, соответствующий собственному значению  r2 . Его направление  называется  вторым  главным  направлением  квадратичной  формы. Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй единичный собственный вектор, то есть Аналитическая геометрия - примеры с решением заданий и выполнением задач

Можно показать, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Кроме того, Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый собственный вектор, а Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй собственный 
вектор, поэтому ортами “новой” системы координат  Аналитическая геометрия - примеры с решением заданий и выполнением задач, к которой мы перейдем в результате линейного преобразования с матрицей  T , являются единичные собственные векторы квадратичной формы, найденные как решения систем (3.34), (3.35). Направив оси “новой” системы координат вдоль собственных векторов  Аналитическая геометрия - примеры с решением заданий и выполнением задач, получим систему координат,  в которой квадратичная форма будет иметь канонический вид Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

ВЫВОД.  

Чтобы привести квадратичную форму к каноническому виду, надо: 

  1. Составить и решить характеристическое уравнение (3.36); его решения – собственные значения – являются коэффициентами при Аналитическая геометрия - примеры с решением заданий и выполнением задач в каноническом виде квадратичной формы. 
  2. Найти единичные собственные векторы, решив (3.34) и (3.35); они будут ортами новой системы координат Аналитическая геометрия - примеры с решением заданий и выполнением задач.При этом если осьАналитическая геометрия - примеры с решением заданий и выполнением задач сонаправлена с  Аналитическая геометрия - примеры с решением заданий и выполнением задач – канонический вид, который квадратичная форма имеет в системе Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Приведение общего уравнения кривой второго порядка к каноническому виду

Общее уравнение кривой второго порядка имеет вид:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

В результате невырожденного линейного преобразования с матрицей   T  квадратичная форма перейдет в квадратичную форму, линейная – в линейную, а свободный член  Аналитическая геометрия - примеры с решением заданий и выполнением задач не изменится. Каждую группу слагаемых будем преобразовывать отдельно, а именно: найдем ортогональное преобразование, приводящее  квадратичную  форму  к  каноническому  виду, затем  посмотрим, как  в результате этого преобразования изменится линейная форма (ортогональное преобразование в нашем случае – это поворот осей).

После поворота осей подберем параллельный перенос новой системы Аналитическая геометрия - примеры с решением заданий и выполнением задач так, чтобы после него уравнение кривой стало каноническим. 

Пример №21

Привести к каноническому виду ранее полученное уравнение параболы (стр. 58) и построить ее:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
1) Составим матрицу квадратичной формы: Аналитическая геометрия - примеры с решением заданий и выполнением задач
2) Составим и решим характеристическое уравнение (3.36):  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – собственные значения. 
3) Найдем первый единичный собственный вектор, то есть решим систему (3.34): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый собственный вектор.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – первый единичный  собственный вектор (орт оси Аналитическая геометрия - примеры с решением заданий и выполнением задач). 
4) Найдем второй единичный собственный вектор, то есть решим (3.35): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач –  второй    собственный вектор.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй  единичный  собственный вектор (орт оси Аналитическая геометрия - примеры с решением заданий и выполнением задач) . 
Заметим, что Аналитическая геометрия - примеры с решением заданий и выполнением задач,так как скалярное произведение Аналитическая геометрия - примеры с решением заданий и выполнением задач

В полученной таким образом системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач, взяв несколько контрольных точек, нарисуем параболу Аналитическая геометрия - примеры с решением заданий и выполнением задач(рxис. 44). 
Сравните  эскиз  (рис.  36)  и  данный  рисунок,  являющийся  результатом точных расчетов. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Плоскость

Покажем, что плоскость в пространстве задается в любой пдск линейным уравнением относительно трех переменных  x, y, z. 
Если  A  – некоторая точка на плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач – вектор, перпендикулярный ей, то, во-первых, через  A  перпендикулярно Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит единственная плоскость, а, во-вторых,  для любой точки Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор Аналитическая геометрия - примеры с решением заданий и выполнением задач. Таким свойством обладают только точки, лежащие на Аналитическая геометрия - примеры с решением заданий и выполнением задач.  
Чтобы  вывести  уравнение  плоскости,  зададим  в  пространстве  пдск  OXYZ .  В этой системе координат Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M(x,y,z) – произвольная точка на  плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач и Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 45). 

 
Вычислив скалярное произведение, получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Координаты точек, лежащих в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, связаны соотношением (3.38). Если же Аналитическая геометрия - примеры с решением заданий и выполнением задач не перпендикулярен Аналитическая геометрия - примеры с решением заданий и выполнением задач,значит, координаты  такой  точки не удовлетворяют полученному  уравнению.  Поэтому  (3.38) – уравнение плоскости, проходящей через заданную точку перпендикулярно заданному  вектору.    Заметим,  что  это  уравнение линейно относительно  x, y, z. 

Раскрыв скобки в (3.38), получим Аналитическая геометрия - примеры с решением заданий и выполнением задач  
Обозначим Аналитическая геометрия - примеры с решением заданий и выполнением задач, тогда уравнение (3.38) примет вид: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.39) – общее уравнение плоскости в пространстве,Аналитическая геометрия - примеры с решением заданий и выполнением задач – ее нормаль. 
 

Определение: Любой ненулевой вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач, перпендикулярный плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, называется ее нормальным вектором, или нормалью.  

Особые случаи расположения плоскости

Выясним, какие особенности в расположении плоскости влечет за собой равенство нулю одного или нескольких коэффициентов в уравнении (3.39). 

  1. Аналитическая геометрия - примеры с решением заданий и выполнением задач координаты точки O(0,0,0) удовлетворяют уравнению, значит, плоскость проходит через начало  координат. 
  2. Аналитическая геометрия - примеры с решением заданий и выполнением задач, так как Аналитическая геометрия - примеры с решением заданий и выполнением задач , значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач
  3. Аналитическая геометрия - примеры с решением заданий и выполнением задач,  так  как Аналитическая геометрия - примеры с решением заданий и выполнением задач.Значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач.
  4. Аналитическая геометрия - примеры с решением заданий и выполнением задачтак как Аналитическая геометрия - примеры с решением заданий и выполнением задач. Значит, плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач
  5. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OX . 
  6. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OY . 
  7. Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через OZ . 
  8.  Аналитическая геометрия - примеры с решением заданий и выполнением задачили Аналитическая геометрия - примеры с решением заданий и выполнением задач
  9. Аналитическая геометрия - примеры с решением заданий и выполнением задач или Аналитическая геометрия - примеры с решением заданий и выполнением задач
  10.  Аналитическая геометрия - примеры с решением заданий и выполнением задачили Аналитическая геометрия - примеры с решением заданий и выполнением задач
  11. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость YOZ . 
  12. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость XOZ . 
  13. Аналитическая геометрия - примеры с решением заданий и выполнением задач – плоскость XOY . 
     

Уравнение плоскости в отрезках

Пусть плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач не параллельна ни одной из координатных осей и не проходит  через  начало  координат.  Тогда  она  отсекает  на  координатных  осях отрезки a,b,c (рис. 46). Выведем уравнение  такой плоскости.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач   

Рассмотрим Аналитическая геометрия - примеры с решением заданий и выполнением задачобщее уравнение плоскости. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач, то  Аналитическая геометрия - примеры с решением заданий и выполнением задач .
Аналогично Аналитическая геометрия - примеры с решением заданий и выполнением задач 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Подставив А, В, С в общее уравнение, получим  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.40) – уравнение плоскости в отрезках. 
 

Пример №22

Вычислить объем тетраэдра, образованного плоскостями   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Перепишем уравнение плоскости в виде (3.40):   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
уравнение данной плоскости в отрезках. Поэтому (рис. 47) 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Уравнение плоскости, проходящей через три точки

Пусть в некоторой пдск заданы три точки, не лежащие на одной прямой: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Известно,  что  через  них  проходит  единственная плоскость  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Чтобы вывести  ее уравнение, рассмотрим произвольную точку этой плоскости  M(x,y,z) . Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – компланарные векторы, и их смешанное произведение равно нулю: Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда по формуле (2.9) получим 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.41) – уравнение плоскости, проходящей через три точки.

ЗАМЕЧАНИЕ. Если точки лежат на одной прямой, то векторы  Аналитическая геометрия - примеры с решением заданий и выполнением задач  коллинеарны и   их соответствующие координаты пропорциональны. Поэтому в определителе (3.41) две строки пропорциональны и по свойству 6 определителей он тождественно равен нулю, что означает, что  координаты любой точки   M(x,y,z) удовлетворяют уравнению (3.41). Это иллюстрация того факта, что через прямую и любую точку можно провести плоскость.  
 

Пример №23

Написать уравнение плоскости, проходящей через точки  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Угол между плоскостями

Определение: Углом между плоскостями называется любой из двух смежных  двугранных  углов,  образованных  плоскостями  при  их  пересечении. 

Если плоскости параллельны, то угол между ними равен 0  или Аналитическая геометрия - примеры с решением заданий и выполнением задач  радиан. 

Рассмотрим плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач и 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Очевидно, Аналитическая геометрия - примеры с решением заданий и выполнением задач
или  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Если  Аналитическая геометрия - примеры с решением заданий и выполнением задач  –0 условие перпендикулярности плоскостей.  

Если Аналитическая геометрия - примеры с решением заданий и выполнением задач – условие параллельности плоскостей.

Пример №24

Найти угол между плоскостями  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач плоскости перпендикулярны. 
 

Прямая линия в пространстве

Всякая линия в пространстве есть результат пересечения двух поверхностей. В частности прямую линию можно рассматривать  как результат пересечения  двух плоскостей  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Если Аналитическая геометрия - примеры с решением заданий и выполнением задач не  параллельна Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то естьАналитическая геометрия - примеры с решением заданий и выполнением задач не  коллинеарен Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то  система уравнений  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
определяет прямую линию в пространстве. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач  

Уравнения (3.42) называются общими уравнениями прямой в пространстве. 
Очевидно,  одна  и  та  же  прямая  может  быть результатом пересечения разных  пар плоскостей  (рис.  48),  поэтому  прямую  в  пространстве  можно  задать    различными  способами. 

Уравнения (3.42) неудобны в использовании, так как не дают представления о расположении  прямой  относительно  выбранной  системы координат.  
Поэтому выведем более  удобные  уравнения,  эквивалентные  (3.42),  то  есть  из  бесконечного  множества плоскостей, проходящих через данную прямую, выберем в некотором смысле более заметную пару.

Канонические уравнения прямой в пространстве

Пусть  в  некоторой  пдск  задана  прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач,  проходящая  через  точку Аналитическая геометрия - примеры с решением заданий и выполнением задач  параллельно  ненулевому  вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.  Такой  вектор называется направляющим вектором этой прямой.  
Аналитическая геометрия - примеры с решением заданий и выполнением задач                                                                      

Для произвольной точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач вектор  Аналитическая геометрия - примеры с решением заданий и выполнением задач где  t  – не-который  числовой  множитель.  Кроме того,  Аналитическая геометрия - примеры с решением заданий и выполнением задач –  радиус-вектор точки  M , Аналитическая геометрия - примеры с решением заданий и выполнением задач – радиус вектор точки  A  
(рис. 49).  

Отсюда Аналитическая геометрия - примеры с решением заданий и выполнением задач                                            
(3.43) – векторное уравнение прямой в пространстве. Из (3.43) получаем: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.44) – параметрические уравнения прямой в пространстве, Аналитическая геометрия - примеры с решением заданий и выполнением задач – параметр.  

Выразим из каждого уравнения (3.44) параметр:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.45)  –  канонические  уравнения  прямой  в  пространстве,  то  есть  уравнения прямой, проходящей через точку Аналитическая геометрия - примеры с решением заданий и выполнением задач параллельно вектору Аналитическая геометрия - примеры с решением заданий и выполнением задач.  

Заметим, что уравнения (3.45) задают прямую  как результат пересечения плоскостей   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
одна из которых параллельна OZ , а вторая – OY   или как

Аналитическая геометрия - примеры с решением заданий и выполнением задач

где первая плоскость параллельна OZ , а вторая – OX . 

Если прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через две заданные точки Аналитическая геометрия - примеры с решением заданий и выполнением задач, то Аналитическая геометрия - примеры с решением заданий и выполнением задач направляющий вектор этой прямой, поэтому из (3.45) получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
(3.46) – уравнения пространственной прямой, проходящей через две заданные точки.  
 

Угол между прямыми в пространстве

Рассмотрим прямые, заданные в некоторой пдск каноническими уравнениями:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Определение:  Углом  между  прямыми  в  пространстве  называется угол между двумя пересекающимися прямыми, проходящими через произвольную точку пространства параллельно данным. 
Из определения следует, что Аналитическая геометрия - примеры с решением заданий и выполнением задач. Если Аналитическая геометрия - примеры с решением заданий и выполнением задач , то  
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
1)Аналитическая геометрия - примеры с решением заданий и выполнением задач–  условие перпендикулярности прямых. 
2)Аналитическая геометрия - примеры с решением заданий и выполнением задач  –  условие  параллельности  прямых  в пространстве.

Пример №25

Найти угол между прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач и прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, проходящей через точки  Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Заметим, что уравнение прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач имеет вид: Аналитическая геометрия - примеры с решением заданий и выполнением задач. В данном случае  ноль  в  знаменателе    писать  принято:  он  означает,  что  направляющий вектор прямой (и сама прямая) параллелен плоскости  XOZ . Эта прямая является результатом пересечения плоскостей Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Приведение общих уравнений прямой в пространстве к каноническому виду

Рассмотрим  прямую Аналитическая геометрия - примеры с решением заданий и выполнением задач, заданную  общими  уравнениями (3.42) в пространстве:  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Привести эти уравнения к каноническому виду можно двумя способами: 

  1. найти  координаты  какой-либо  точки Аналитическая геометрия - примеры с решением заданий и выполнением задач,  лежащей  на Аналитическая геометрия - примеры с решением заданий и выполнением задач, ее направляющий вектор  s  и написать уравнения (3.45); 
  2. найти координаты двух точек, лежащих на Аналитическая геометрия - примеры с решением заданий и выполнением задач, и воспользоваться уравнениями (3.46). 

1 способ.

Координаты точки  A – любое частное решение системы линейных уравнений (3.42). Эта система имеет бесконечное множество решений, так как  ранги  основной  и  расширенной  матриц Аналитическая геометрия - примеры с решением заданий и выполнением задач,  а  число  неизвестных Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач, поэтому Аналитическая геометрия - примеры с решением заданий и выполнением задач– нормаль плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач – нормаль плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач. Из определения векторного произведения векторов следует, что тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач. Так как Аналитическая геометрия - примеры с решением заданий и выполнением задач – произвольный вектор, параллельный Аналитическая геометрия - примеры с решением заданий и выполнением задач, то будем  считать, что Аналитическая геометрия - примеры с решением заданий и выполнением задач.

Пример №26

Привести уравнения прямой Аналитическая геометрия - примеры с решением заданий и выполнением задач к каноническому виду. 
Найдем  какое-нибудь  частное  решение  этой  системы:  пусть,  например, 
Аналитическая геометрия - примеры с решением заданий и выполнением задач,  то  есть  точка  A(1,2,0) лежит  на прямой. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Таким образом, Аналитическая геометрия - примеры с решением заданий и выполнением задач – канонические уравнения данной прямой. 
 

2  способ.  

Найдем  два  произвольных  частных  решения  системы  уравнений, задающей прямую. 
В рассмотренном примере Аналитическая геометрия - примеры с решением заданий и выполнением задач . Пусть теперь 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач – направляющий вектор  прямой, который  отличается  от  найденного  ранее  только  знаком.  Поэтому  уравнения Аналитическая геометрия - примеры с решением заданий и выполнением задач совпадают (с точностью до знака) с уже найденными. 
 

Угол между прямой и плоскостью

Определение: Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. 
Пусть в некоторой пдск заданы плоскость  
Аналитическая геометрия - примеры с решением заданий и выполнением задач
и прямая

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задачАналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Определение общих точек прямой и плоскости

Чтобы найти общие точки прямой : Аналитическая геометрия - примеры с решением заданий и выполнением задач  и плоскостиАналитическая геометрия - примеры с решением заданий и выполнением задач, надо решить систему  линейных уравнений: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Решение этой системы будет наименее трудоемким, если перейти  к параметрическим  уравнениям прямой (3.44): 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

1) Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Это значит, что прямая не параллельна плоскости, а потому они имеют одну общую точку. Из (3.47) найдем   
Аналитическая геометрия - примеры с решением заданий и выполнением задач 
и по формулам (3.44) M(x,y,z) – их  точку пересечения. 

2) Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Это означает, что в (3.47) решений нет: выполнено  условие  параллельности  прямой  и  плоскости,  при  этом  точка Аналитическая геометрия - примеры с решением заданий и выполнением задач , но не лежит в плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач, значит, прямая и плоскость общих точек не имеют. 

3)  Пусть Аналитическая геометрия - примеры с решением заданий и выполнением задач. Тогда любое Аналитическая геометрия - примеры с решением заданий и выполнением задач – решение (3.47) и система имеет бесконечно много решений: выполнено условие параллельности прямой и плоскости и  точка   Аналитическая геометрия - примеры с решением заданий и выполнением задач, лежащая на прямой, лежит в плоскости. Это значит, что прямая лежит в плоскости, то есть имеет с ней бесконечное множество  общих точек. 
 

Пример №27

Найти    проекцию    точки Аналитическая геометрия - примеры с решением заданий и выполнением задач  на    плоскость Аналитическая геометрия - примеры с решением заданий и выполнением задач(рис. 53). 

Пусть прямая Аналитическая геометрия - примеры с решением заданий и выполнением задач проходит через точку  М  перпендикулярно плоскости  Аналитическая геометрия - примеры с решением заданий и выполнением задач. Точка ее пересечения с плоскостью и будет искомой проекцией. В качестве направляющего вектора Аналитическая геометрия - примеры с решением заданий и выполнением задач можно взять нормаль к плоскости Аналитическая геометрия - примеры с решением заданий и выполнением задач

Напишем канонические уравнения  прямой  (3.45):

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач  Подставим   x,y,z   в уравнение плоскости: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач, то есть  P 1,2,0  – искомая проекция.                                                     
 

Цилиндрические поверхности

Уравнение  F(x, y, z)=0  задает в пространстве некоторую поверхность.  

Пусть  уравнение содержит только две переменные, например,  F(x,y)=0.Рассмотренное  в  плоскости  XOY ,  оно  задает  некоторую  кривую.  Но  ему  будут удовлетворять и все точки пространства, которые проецируются в точки  этой кривой, так как в уравнении отсутствует  z , то есть все точки  M(x,y,z)  у которых  х и у  связаны соотношением  Аналитическая геометрия - примеры с решением заданий и выполнением задач – произвольно. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
 

Пример №28

Построить  поверхность Аналитическая геометрия - примеры с решением заданий и выполнением задач 
На  плоскости  это  уравнение  задает окружность  с центром О(0, 0) и  R=1. 
В  пространстве  ему  удовлетворяют координаты  всех  точек,  проекция  которых  на  плоскость  ХОУ  лежит  на этой  окружности.  Очевидно,  что  эта поверхность  –  круговой    цилиндр 
(рис. 54).  
Цилиндрические поверхности бывают не только круговыми.

Определение: Цилиндрической называется поверхность, полученная движением  прямой,  параллельной  некоторому  вектору,  и  пересекающей  при движении некоторую кривую. При этом движущаяся прямая называется образующей,  а  кривая,  которую  она  пересекает,  называется  направляющей  цилиндрической поверхности. 
Для поверхности  Аналитическая геометрия - примеры с решением заданий и выполнением задач образующая параллельна оси OZ  (так как в уравнении  z  отсутствует), а направляющей является окружность в плоскости  XOY . 

ВЫВОД. Если уравнение поверхности содержит только две переменные, то оно задает цилиндрическую поверхность. У поверхности  F(y,z) ,образующая параллельна  OX , а направляющая лежит в плоскости  YOZ . Для поверхности  F(x,z) ,образующая параллельна OY , направляющая в плоскости  XOZ . 
 

Пример №29

Построить и назвать поверхности Аналитическая геометрия - примеры с решением заданий и выполнением задачЭти уравнения задают цилиндрические поверхности. В первом случае направляющей является парабола в плоскости  YOZ , а образующая параллельна  OX  (рис. 55). Во втором – образующая синусоида в плоскости  XOZ , образующая параллельна OY  (рис. 56).

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Поверхности вращения

Определение: Поверхностью вращения называется поверхность, полученная  в  результате  вращения  плоской  кривой  вокруг  оси,  лежащей  в  ее 
плоскости. 

Из определения следует, что сечением такой поверхности любой плоскостью, перпендикулярной оси вращения, является окружность.  

Пусть в плоскости  YOZ  задана кривая Аналитическая геометрия - примеры с решением заданий и выполнением задач – координаты точки  в  плоской  системе  координат  YOZ .  Эта  кривая  вращается  вокруг  оси OZ . Выведем уравнение поверхности вращения. 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Пусть  M(x,y,z)  –  произвольная  точка  на  поверхности, Аналитическая геометрия - примеры с решением заданий и выполнением задач,  z–  центр  окружности сечения,  проходящего  через точку  M ,  а  Аналитическая геометрия - примеры с решением заданий и выполнением задач –  точка, лежащая  на кривой и одновременно в рассматриваемом  сечении (рис. 57). 

Тогда Аналитическая геометрия - примеры с решением заданий и выполнением задач– радиусы сечения. 
Но Аналитическая геометрия - примеры с решением заданий и выполнением задач

Таким образом, уравнение поверхности вращения получим, если в уравнении  кривой Аналитическая геометрия - примеры с решением заданий и выполнением задач заменим  на Аналитическая геометрия - примеры с решением заданий и выполнением задач  –  на  z.  Тогда  получим: 
Аналитическая геометрия - примеры с решением заданий и выполнением задач – уравнение поверхности вращения (OZ  – ось вращения). 

Очевидно, что  если  кривая  F(y,z)=0 вращается    вокруг  OY ,  то  уравнение 
поверхности вращения имеет вид:  Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Аналитическая геометрия - примеры с решением заданий и выполнением задач

Некоторые поверхности второго порядка

1. Пусть эллипс Аналитическая геометрия - примеры с решением заданий и выполнением задачвращается вокруг оси OY .  
Аналитическая геометрия - примеры с решением заданий и выполнением задач 

Полученная поверхность является поверхностью  второго  порядка, так ее уравнение Аналитическая геометрия - примеры с решением заданий и выполнением задач – второй  степени  относительно  переменных  x,y,z .  Она  называется эллипсоидом вращения (рис. 58). 
Поверхность, задаваемая уравнением  Аналитическая геометрия - примеры с решением заданий и выполнением задач , называется трехосным эллипсоидом. 

2. Если гипербола  Аналитическая геометрия - примеры с решением заданий и выполнением задачвращается вокруг оси OZ , то уравнение 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
поверхности вращения имеет вид   
Аналитическая геометрия - примеры с решением заданий и выполнением задач
или  
Аналитическая геометрия - примеры с решением заданий и выполнением задач

Такая поверхность называется однополостным гиперболоидом вращения (рис. 59). 

3. Если гипербола Аналитическая геометрия - примеры с решением заданий и выполнением задач  вращается вокруг оси  OY , то уравнение поверхности имеет вид  Аналитическая геометрия - примеры с решением заданий и выполнением задач . Такая поверхность называется двуполостным гиперболоидом вращения (рис. 60). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач
Аналитическая геометрия - примеры с решением заданий и выполнением задач

4. Если пара пересекающихся прямых Аналитическая геометрия - примеры с решением заданий и выполнением задач  вращается вокруг оси OY , то получается  конус вращения с уравнением Аналитическая геометрия - примеры с решением заданий и выполнением задач или  Аналитическая геометрия - примеры с решением заданий и выполнением задач (рис. 61). 
Аналитическая геометрия - примеры с решением заданий и выполнением задач

5. При вращении параболы Аналитическая геометрия - примеры с решением заданий и выполнением задач вокруг оси OZ  получается поверхность Аналитическая геометрия - примеры с решением заданий и выполнением задач, которая называется эллиптическим параболоидом вращения (рис. 62). 

Лекции по предметам:

  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Геометрия
  6. Высшая математика
  7. Дискретная математика
  8. Математический анализ
  9. Теория вероятностей
  10. Математическая статистика
  11. Математическая логика

План урока:

Уравнение линии в координатах

Уравнение окружности

Уравнение прямой

Задачи на пересечение двух фигур

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

1 linii na ploskosti

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х2.

2 linii na ploskosti

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

3 linii na ploskosti

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

4 linii na ploskosti

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

5 linii na ploskosti

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

6 linii na ploskosti

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

7 linii na ploskosti

Справедливость равенства означает, что D принадлежит линии.

Ответ: А и D.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

8 linii na ploskosti

Но расстояние между точками М и С может быть вычислено по формуле

9 linii na ploskosti

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

10 linii na ploskosti

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

11 linii na ploskosti

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

12 linii na ploskosti

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

13 linii na ploskosti

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

14 linii na ploskosti

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры xи yокруж-ти равны нулю, и уравнение

15 linii na ploskosti

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

16 linii na ploskosti

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

17 linii na ploskosti

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

x2 + y2 = 25

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

18 linii na ploskosti

Это ошибочное равенство, ведь в реальности левая часть больше:

32 > 25

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

19 linii na ploskosti

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

20 linii na ploskosti

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

21 linii na ploskosti

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

22 linii na ploskosti

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

23 linii na ploskosti

Задание. Дано уравнение окружности

(x — 2)2 + (y — 4)2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

24 linii na ploskosti

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

25 linii na ploskosti

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

26 linii na ploskosti

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

27 linii na ploskosti

Далее можно, например, вычесть из (2) уравнение (3):

28 linii na ploskosti

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

29 linii na ploskosti

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

30 linii na ploskosti

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

31 linii na ploskosti

Ответ: (х – 3)2 + (у – 3)2 = 25

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая оказалась серединным перпендикуляром для отрезка АВ:

32 linii na ploskosti

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

33 linii na ploskosti

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

34 linii na ploskosti

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

35 linii na ploskosti

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

36 linii na ploskosti

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

37 linii na ploskosti

получим линейную функцию:

y = kx + d (3)

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

38 linii na ploskosti

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

39 linii na ploskosti

40 linii na ploskosti

Задание. Прямая задана уравнением

4x + 2y + 6 = 0

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

41 linii na ploskosti

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

42 linii na ploskosti

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

ax + by + c = 0

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

43 linii na ploskosti

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

44 linii na ploskosti

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

45 linii na ploskosti

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Способ 2

Уравнение прямой может иметь либо вид

y = kx + d

если прямая является графиком линейной функции, либо вид

x = C

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

y = kx + d

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

46 linii na ploskosti

Итак, уравнение можно записать так:

47 linii na ploskosti

Задание. Запишите уравнение прямой, если ей принадлежат точки:

48 linii na ploskosti

Подставим сюда уже известное нам значение d:

49 linii na ploskosti

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

50 linii na ploskosti

То, что коэффициент оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

51 linii na ploskosti

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

y = kx + b

Значит, оно имеет другой вид:

x = C

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

x = 2

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

52 linii na ploskosti

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

yM = 0

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

53 linii na ploskosti

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

54 linii na ploskosti

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

55 linii na ploskosti

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

56 linii na ploskosti

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

57 linii na ploskosti

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Ответ: (3; – 2).

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

58 linii na ploskosti

Решаем квадратное уравнение, используя дискриминант:

59 linii na ploskosti

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

60 linii na ploskosti

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

61 linii na ploskosti

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

62 linii na ploskosti

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

63 linii na ploskosti

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

64 linii na ploskosti

Получили точки (5; 2) и (4; 3).

Ответ:(5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

65 linii na ploskosti

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

66 linii na ploskosti

Нам надо найти коэффициенты и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

67 linii na ploskosti

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

68 linii na ploskosti

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

69 linii na ploskosti

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.

Понравилась статья? Поделить с друзьями:
  • Как составить рецензию на образовательную программу
  • Как найти косинус угла 130
  • Как найти полезную площадь здания
  • Как составить представления прокурора об устранении нарушений
  • Как найти сопротивление электрического устройства