Как найти ускорение автомобиля по графику

В этой статье мы узнаем, как найти ускорение на графике скорости от времени, используя несколько примеров, и решим некоторые задачи.

Ускорение — это разность скоростей, изменяющаяся во времени; следовательно, по графику скорость-время мы можем найти ускорение, измерив наклон графика.

График скорости во времени для положительного ускорения

Давайте посмотрим, как найти ускорение по графику скорость-время. Ниже приводится график зависимости скорости от времени.

как найти ускорение на графике скорость-время

График зависимости скорости от времени для положительного ускорения

По оси x отложено время в секундах, а по оси y отложена скорость объекта в разное время. Наклон графика определяется выражением m=Δy/Δt. Здесь наклон графика скорость-время дает ускорение объекта.

а = м = ΔV/ΔT = v2-v1/t2-t1

Из приведенного выше графика ускорение будет положительным, если V2>V1 то есть, если скорость объекта увеличивается со временем. То же самое будет отрицательным, если V2<V1, то есть если скорость объекта уменьшается со временем. Это тот случай, когда объект замедляется. Так и в том случае, даже когда объект движется в противоположном направлении от направления его движения.

Подробнее о Как найти ускорение с постоянной скоростью: факты и примеры задач.

1 задачи: Рассмотрим объект круглой формы, покоящийся на вершине холма. К объекту прикладывают силу, чтобы сместить его с места. При приложении силы объект ускоряется вниз к подножию холма. Скорость объекта увеличивается до 4 м/с после прохождения расстояния 16 метров. Постройте график для того же, а затем рассчитайте ускорение объекта, учитывая начальную скорость объекта 2 м/с в определенный момент времени.

Решение: Изменение скорости объекта определяется как.

Скорость, равная 4 м/с, наблюдалась после того, как объект прошел расстояние 16 метров. Следовательно, время, затрачиваемое на перемещение 16 м и ускорение тела, равно

2м/с=16м/т

t=16м/2м/с=8с

Следовательно, скорость объекта в момент времени t = 8 секунд была 4 м/с. Теперь мы можем построить график для того же, что и ниже.

График скорости-времени

Судя по графику, скорость v1=2 м/с при t1=4 сек и скорость v2=4 м/с при t1=8 сек.

Следовательно, ускорение объекта между временными интервалами от 4 до 8 секунд равно

а = v2-v1/t2-t1 = 4-2/8-4 = 2/4 = 1/2 = 0.5 м/с2

Ускорение тела равно 0.5 м/с.2.

График зависимости скорости от времени для нулевого ускорения

Приведенный ниже график показывает, что скорость объекта не меняется со временем и остается постоянной. Это означает, что между этими интервалами времени ускорения объекта не было.

График зависимости скорости от времени для Постоянная скорость

Приведенный выше график показывает, что скорость объекта остается неизменной все время, поэтому мы получаем прямую линию на графике зависимости скорости от времени. Это ясно указывает на то, что в этом случае график зависимости скорости от времени не дает наклона. Поскольку наклон графика отсутствует, ускорение, равное наклону, равно нулю.

Это означает, что перемещение объекта одинаково для разных интервалов времени, следовательно, скорость постоянна.

2 задачи:Скорость объекта, движущегося по плоской поверхности, оказалась равной 0.5 м/с. Через 5 минут другой наблюдатель обнаружил, что скорость равна 0.5 м/с. Тогда каково ускорение объекта на основе наблюдения?

Решение: V1=0.5 м/с; В2=0.5 м/с, временной интервал t=5 минут=300 секунд.

а=в2-v1/t2-t1= 0.5-0.5/300 =0

Поскольку изменений скорости объекта не наблюдалось, ускорение объекта равно нулю.

Подробнее о ускорение.

График зависимости скорости от времени для отрицательного ускорения

Если объект замедляется со временем, то наклон графика скорость-время будет отрицательным. Это показано на приведенном ниже графике зависимости скорости от времени.

График зависимости скорости от времени для отрицательного ускорения

Поскольку разница между конечной и начальной рассматриваемой точкой по оси ординат отрицательна, наклон графика ускорения объекта будет отрицательным.

3 задачи: Рассмотрим объект, замедляющийся со временем, как показано на графике ниже.

График скорости-времени

Вычислите ускорение тела на пути от А до В.

Решение: Скорость объекта в точке А в момент времени t1= 2 секунды v1=10 м/с и в момент времени t2= 5 секунд v2=4м/с. Поэтому ускорение тела равно

а = v2-v1/t2-t1 = 4-10/5-2= -6/3= -2m/s2

Поскольку скорость объекта со временем уменьшается, ускорение объекта отрицательно и равно -2 м/с.2.

Подробнее о График постоянного отрицательного ускорения: что, как, примеры.

График отрицательной скорости для отрицательного ускорения

Когда объект удаляется от точки назначения по отрицательной оси, смещение объекта принимается как отрицательное по отрицательной оси Y. Если положение объекта отклоняется от направления его движения, то считается, что смещение объекта происходит в отрицательном направлении.

Отрицательная скорость В/с График времени

Выше приведен график зависимости скорости от времени для отрицательного ускорения. Видно, что скорость со временем уменьшается, наклон графика оказывается отрицательным, а значит, и ускорение отрицательное.

График отрицательной скорости во времени для положительного ускорения

Ниже приведен график зависимости отрицательной скорости от времени в секунду, который дает положительное ускорение.

Отрицательный график зависимости скорости от времени

Поскольку замедляющийся объект однажды начинает ускоряться обратно за счет какого-то внешнего силы, то ускорение, равное наклону График зависимости скорости от времени положителен, потому что скорость объекта продолжает расти со временем.

Подробнее о Отрицательная скорость и нулевое ускорение: как, когда, пример и проблемы.

Часто задаваемые вопросы

Q1. Из приведенного ниже графика вычислите ускорение объекта из точки О в А, из А в В и из В в С; а затем вычислить среднее ускорение объекта от O до C.

График скорости-времени

Решение: От О до А, v1=0 при t1=0; в2=8 м/с при t2= 4s

Следовательно, ускорение тела из точки О в точку А равно

а = v2-v1/t2-t1=8-0/4-0=8/4=2m/s2

От А до Б, в1=8 м/с при t1=4с; в2=5 м/с при t2= 8s

Следовательно, ускорение тела из точки А в точку В равно

а=в2-v1/t2-t1=5-8/8-4=-3/4=-0.75m/s2

От B до C, v1=5 м/с при t1=8с; в2=5 м/с при t2= 12s

Следовательно, ускорение тела из точки В в С равно

а=в2-v1/t2-t1=5-5/12-8=0/4=0

Среднее ускорение графика от O до C равно

Aсредний= aoa+aab+abc/3

=2-0.75+0/3=1.25/3=0.42m/s2

Следовательно, среднее ускорение тела от О до А равно 0.42 м/с.2.

Почему ускорение является векторной величиной?

Ускорение имеет величину и направление.

Направление ускорения такое же, как и направление скорости после изменения; следовательно, это векторная величина.

  • Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением (a=const).
  • Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a.
  • Единица измерения ускорения — метр в секунду в квадрате (м/с2).
  • Акселерометр — прибор для измерения ускорения.

Формула ускорения

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

v — скорость тела в данный момент времени, v0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Проекция ускорения

Проекция ускорения на ось ОХ

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

  • Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
  • Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают (а↑↑v).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу (а↑↓v).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

  • Если график лежит выше оси времени, движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
  • Если график лежит ниже оси времени, движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

В момент времени t1 = 1с ускорение a = 2 м/с2. В момент времени t2 = 3 ускорение a = 0 м/с2.

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17992

Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м/с. После прохождения расстояния 40 м его скорость оказалась равной 15 м/c. Чему равно ускорение автомобиля?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу, связывающую известные из условия задачи величины.
  3. Выразить из формулы искомую величину.
  4. Вычислить искомую величину, подставив в формулу исходные данные.

Решение

Запишем исходные данные:

  • Начальная скорость v0 = 5 м/с.
  • Конечная скорость v = 15 м/с.
  • Пройденный путь s = 40 м.

Формула, которая связывает ускорение тела с пройденным путем:

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Подставим известные данные и вычислим ускорение автомобиля:

Ответ: 2,5

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18202

Внимательно прочитайте текст задания и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков  совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?


Алгоритм решения

  1. Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
  2. Вычислить ускорение движение тела на этом участке.
  3. Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

  • t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
  • t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.

Используем для вычислений следующую формулу:

Подставим в нее известные данные и сделаем вычисления:

Этому значению соответствует график «г».

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18027

На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении по оси х. Определите модуль ускорения тела.


Алгоритм решения

  1. Записать формулу ускорения.
  2. Записать формулу для вычисления модуля ускорения.
  3. Выбрать любые 2 точки графика.
  4. Определить для этих точек значения времени и проекции скорости (получить исходные данные).
  5. Подставить данные формулу и вычислить ускорение.

Решение

Записываем формулу ускорения:

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Выбираем любые 2 точки графика. Пусть это будут:

  • t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
  • t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.

Подставляем данные формулу и вычисляем модуль ускорения:

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 13.9k

Ускорение автомобиля

Одним из важнейших показателей
динамических качеств автомобиля является
интенсивность разгона — ускорение.

При изменении
скорости движения возникают силы
инерции, которые автомобилю необходимо
преодолеть для обеспечения заданного
ускорения. Эти силы вызваны как
поступательно движущимися массами
автомобиля m, так и моментами инерции
вращающихся деталей двигателя, трансмиссии
и колес.

Для удобства
проведения расчетов пользуются
комплексным показателем — приведенными
силами инерции
:

где δвр
— коэффициент учета вращающихся масс.

Величина
ускорения j = dv/dt, которое может
развить автомобиль при движении по
горизонтальному участку дороги на
заданной передаче и с заданной скоростью,
находится в результате преобразования
формулы для определения запаса мощности,
которая расходуется на разгон:

,

или по
динамической характеристике:

D = f +.

Отсюда:
j = .

Для определения
ускорения на подъеме или спуске пользуются
формулой:

.

Способность
автомобиля к быстрому разгону особенно
важна в условиях городской езды.
Увеличенные ускорения для автомобиля
могут быть получены за счет увеличения
передаточного числа u0главной передачи и соответствующего
выбора характеристики изменения
крутящего момента двигателя.

Максимальное
ускорение при разгоне находится в
пределах:

— для легковых автомобилей на первой
передаче 2,0…3,5 м/с2;

— для легковых
автомобилей на прямой передаче 0,8…2,0
м/с2;

— для грузовых
автомобилей на второй передаче 1,8…2,8
м/с2;

— для грузовых
автомобилей на прямой передаче 0,4…0,8
м/с2.

Время и путь разгона автомобиля

Величина ускорения в ряде случаев не
является достаточно наглядным показателем
способности автомобиля к разгону. Для
этой цели удобно применять такие
показатели, как время и путь разгонадо заданной скорости и графики,
отображающие зависимость скорости от
времени и пути разгона.

Так как j
=
, тоdt =.

Отсюда путем
интегрирования полученного уравнения
находим время разгона tв заданном
интервале изменения скоростей отv1доv2:

.

Определение
пути разгона Sв заданном интервале
изменения скоростей осуществляют
следующим образом. Так как скорость
является первой производной пути по
времени, то дифференциал путиdS=v·dt,
или путь разгона в интервале изменения
скоростей отv1доv2равен:

.

В условиях
реальной эксплуатации автомобиля
затраты времени на операции переключения
передач и буксование сцепления увеличивают
время разгона по сравнению с теоретическим
(расчетным) его значением. Время,
затрачиваемое на переключение передач,
зависит от конструкции коробки передач.
При применении автоматической коробки
передач это время практически равно
нулю.

Кроме того,
разгон не все время происходит при
полной подаче топлива, как это
предполагается в изложенном методе.
Это также увеличивает реальное время
разгона.

При применении
механической коробки передач важным
моментом является правильный выбор
наиболее выгодных скоростей переключения
передач v1-2, v2-3и т.д. (см. раздел «Тяговый расчет
автомобиля»).

Для оценки
способности автомобиля к разгону в
качестве показателя используют также
время разгона после трогания с места
на пути в 100 и 500 м.


Построение графиков ускорений

В практических
расчетах принимают, что разгон происходит
на горизонтальной дороге с твердым
покрытием. Сцепление включено и не
пробуксовывает. Орган управления режимом
работы двигателя находится в положении
полной подачи топлива. При этом обеспечено
сцепление колес с дорогой без
пробуксовывания. Предполагается также,
что изменение параметров двигателя
происходит по внешней скоростной
характеристике.

Полагают,
что разгон для легковых автомобилей
начинается с минимально устойчивой
скорости на низшей передаче порядка v0= 1,5…2,0м/сдо значенийvт= 27,8м/с(100км/ч). Для грузовых
автомобилей принимают:vт= 16,7м/с(60км/ч).

Последовательно,
начиная со скорости v0=
1,5…2,0м/сна первой передачи и
последующих передачах, на динамической
характеристике (рис.1) для выбранных по
оси абсциссvрасчетных точек (не
менее пяти) определяют запас динамического
фактора при разгоне как разность ординат
(D – f)на различных передачах.
Коэффициент учета вращающихся масс
(δвр) для каждой передачи
подсчитывают по формуле:

δвр= 1,04 + 0,05·iкп2.

Ускорения
автомобиля определяют по формуле:

j = .

По полученным
данным строят графики ускорений j=f(v)(рис.2).

Рис.2.
Характеристика ускорений автомобиля.

При правильном расчете и построении
кривая ускорений на высшей передаче
пересечет абсциссу в точке максимальной
скорости. Достижение максимальной
скорости происходит при полном
использовании запаса динамического
фактора: D – f = 0.

Построение графика времени разгона
t = f(v)

Этот график
строят, используя график ускорения
автомобиля j=f(v)(рис.2). Шкалу скоростей
графика разгона разбивают на равные
участки, например, через каждый 1м/с,
и из начала каждого участка проводят
перпендикуляры до пересечения с кривыми
ускорения (рис.3).

Площадь каждой из полученных элементарных
трапеций в принятом масштабе равна
времени разгона для данного участка
скорости, если считать, что на каждом
участке скорости разгон происходит с
постоянным (средним) ускорением:

jср= (j1
+ j
2)/2,

где j1
, j
2— ускорения соответственно
в начале и в конце рассматриваемого
участка скоростей,м/с2.

В данном расчете не учитывается время
на переключение передач и другие факторы,
приводящие к завышению времени разгона.
Поэтому вместо среднего ускорения
принимают ускорение jiв
начале произвольно взятого участка
(определяют по шкале).

С учетом
сделанного допущения время разгонана каждом участке приращения скоростиΔvопределится как:

ti=Δv/ji,с.

Рис. 3. Построение
графика времени разгона

По полученным
данным строят график времени разгона
t = f(v). Полное время разгона отv0до значенийvтопределяют
как сумму времени разгона (с нарастающим
итогом) по всем участкам:

t1=Δv/j1 ,t2=t1 +(Δv/j2),t3= t2 +(Δv/j3)и так далее доtтконечного
времени разгона:

.

При построении
графика времени разгона удобно
пользоваться таблицей и принять Δv= 1м/с.

Участки скорости
vi
, м/с

№ участков

1

2

3

4

5

6

7

и
т.д.

ji
, м/с
2

ti
, с

Врем
разгона с нарастающим итогом

Напомним,
что построенный (теоретический) график
разгона (рис.4) отличается от действительного
тем, что не учтено реальное время на
переключение передач. На рис.4 время
(1,0 с) на переключение передач
отображено условно для иллюстрации
момента переключения.

При
использовании механической (ступенчатой)
трансмиссии на автомобиле действительный
график времени разгона характеризуется
потерей скорости в моменты переключения
передач. Это также увеличивает время
на разгон. У автомобиля с коробкой
передач с синхронизаторами интенсивность
разгона выше. Наибольшая интенсивность
у автомобиля с автоматической
бесступенчатой трансмиссией.

Время разгона отечественных легковых
автомобилей малого класса с места до
скорости 100 км/ч(28м/с) составляет
порядка 13…20с. Для автомобилей
среднего и большого класса оно не
превышает 8…10с.

Рис.
4. Характеристика разгона автомобиля
по времени.

Время разгона грузовых автомобилей до
скорости 60 км/ч(17м/с) составляет
35…45си выше, что свидетельствует
о недостаточной их динамичности.

Путь разгона для легковых автомобилей
до скорости 100 км/чсоставляет 500…800м.

Сравнительные данные по времени разгона
автомобилей отечественного и зарубежного
производства приведены в табл. 3.4.

Таблица 3.4.

Время разгона
легковых автомобилей до скорости 100км/ч
(28 м/с)

Автомобиль

Время,
с

Автомобиль

Время,
с

ВАЗ-2106
1,6 (74)

17,5

Alfa
Romeo-156 2,0 (155)

9,0

ВАЗ-2121
1,6 (74)

25

Audi
A6 Tdi 2,5 (150)

9,5

Москвич
2,0 (113)

11,5

BMW-320i
2,0 (150)

9,9

ЗИЛ-117

13

Cadillac
Sevilie 4,6 (395)

7,2

ГАЗель-3302
D 2,1 (95)

24

Mercedes
S 220 CD (125)

11,0

ЗАЗ-1102
1,1 (51)

16,2

Peugeot-406
3.0 (191)

7,9

ВАЗ-2110
1,5 (94)

12,0

Porsche-911
3,4 (300)

5,2

Ford
Focus 2,0 (130)

9,2

VW
Polo Sdi 1,7 (60)

17,4

Fiat
Marea 2,0 (147)

8,8

Honda
Civic 1,6 (160)

8,0

Примечание:
Рядом с типом автомобиля указан рабочий
объем (л)
и мощность (в скобках) двигателя (л.с.).

Построение графика пути разгона
автомобиля
S
= f(v)

Аналогичным
образом проводится графическое
интегрирование раннее построенной
зави­симости
t
=
f(V)
для получения зависимости пути разгона
S
от скорости автомобиля.
В
данном случае кривая графика
времени разгона автомобиля
(рис. 5) разбивается на интервалы по
вре­мени,
для каждого из которых находятся
соответствующие значения Vcр
k.

Рис.5. Схема,
поясняющая использование графика
времени разгона автомобиля

t
=
f(V)
для
построения графика пути разгона
S
= f(
V).

Площадь
элементарного прямоугольника, например,
в интервале Δt5
есть
путь, который проходит автомобиль от
отметки t4
до отметки t5,
двигаясь
с постоянной скоростью Vcр
5.

Величина
площади элементарного прямоугольника
определяется сле­дующим
образом:

ΔSk
= Vcр
k
(t
k

t
k-1)
= Vcр
k
·
Δ
t
k
.

где k
= l…m
— порядковый номер интервала, m
выбирается произвольно, но считается
удобным для расчета, когда m
= n.

Например (рис. 5), если Vср5
=12,5 м/с;
t
4
=10 с;
t5
=14 с,
то ΔS5
= 12,5(14 — 10) = 5 м.

Путь разгона от скорости
V0
до скорости V1
: S1
= ΔS1;

до скорости V2
: S2
= ΔS1
+ ΔS2;

до скорости Vn
: Sn
= ΔS1
+ ΔS2
+ … + ΔSn
=
.

Результаты расчета заносятся
в таблицу и представляются в виде
гра­фика (рис. 6).

Путь разгона для легковых автомобилей
до скорости 100 км/чсоставляет 300…600м. Для грузовых автомобилей путь
разгона до скорости 50км/чравен
150…300м.

Рис.6. Графика
пути
разгона
автомобиля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание материала

  1. Как найти ускорение по графику формула?
  2. Видео
  3. Равноускоренное движение в направлении оси, скорость увеличивается
  4. Равноускоренное движение против оси
  5. Как составить уравнение скорости по графику?
  6. График отрицательной скорости для отрицательного ускорения
  7. Графики равноускоренного движения

Как найти ускорение по графику формула?

График ускорения — графическое представление уравнения ускорения тела а = а(t). График а(t) служит для описания движение тела. На этом графике представлено равноУскоренное движение. Как будут выглядеть графики, придуманные вами, можно увидеть здесь.

Видео

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Рис.4. Тело движется равноускорено – рис. а) по на

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Рис.5. Тело движется равноускорено противоположно

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Как составить уравнение скорости по графику?

График скорости График скорости — графическое представление уравнения скорости тела v = v(t). График v(t) служит для описания движение тела. На этом графике представлено равноУскоренное движение.

График отрицательной скорости для отрицательного ускорения

Когда объект удаляется от точки назначения по отрицательной оси, смещение объекта принимается как отрицательное по отрицательной оси Y. Если положение объекта отклоняется от направления его движения, то считается, что смещение объекта происходит в отрицательном направлении.

Отрицательная скорость В/с График времени

Отрицательная скорость В/с График времени

Выше приведен график зависимости скорости от времени для отрицательного ускорения. Видно, что скорость со временем уменьшается, наклон графика оказывается отрицательным, а значит, и ускорение отрицательное.

Графики равноускоренного движения

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.

Зависимость скорости от времени. При равномерном д

Зависимость скорости от времени. При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.



Пусть начальная координата тела , скорость движе

Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t): Уск

Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

Зависимость пути от времени. При равноускоренном д

Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости . В координатах зависимость имеет вид . Графиком является ветка параболы.

График движения при .      График движения при График движения при .      График движения при

График движения при . График движения при

График движения при .         График движения при График движения при .         График движения при

График движения при Теги. График движения при Теги

Теги

Равноускоренное движение

О чем эта статья:

Основные определения

Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. Иногда его определяют как скорость изменения скорости. Проще говоря, ускорение показывает, на какую величину изменяется скорость за 1 секунду.

Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется на одну и ту же величину за равные промежутки времени. Под «изменяется» мы подразумеваем не только ускорение (т. е. увеличение скорости), но и замедление. Торможение также относится к движению с постоянным ускорением.

Несколько примеров равноускоренного движения:

разгон самолета перед взлетом;

торможение лыжника на горном склоне;

свободное падение в результате прыжка с парашютом;

велосипедист, спускающийся с горки;

мальчишки, играющие в догонялки.

Кстати, уже известное нам равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.

Формула ускорения при равноускоренном движении

где a — ускорение тела [м/с 2 ],
V — мгновенная скорость [м/с],
V0 — начальная скорость [м/с],
t — время [с].

Во время движения тела ускорение остается постоянным. График зависимости ускорения от времени имеет следующий вид:

При прямолинейном равноускоренном движении скорость тела в момент времени t численно равна площади фигуры под графиком зависимости ускорения от времени.

Если из формулы ускорения выразить мгновенную скорость, т. е. скорость в момент времени t, то мы получим уравнение скорости при равноускоренном движении:

V(t) = V0 + at,
где V(t) — скорость в момент времени t [м/с],
V0 — начальная скорость [м/с],
a — ускорение тела [м/с 2 ],
t — время [с].

Задача 1

Арсений, двигавшийся на электросамокате со скоростью 6 м/с, начал разгоняться на горке. Чeму будeт paвнa его cкopocть чepeз 10 с, ecли уcкopeниe пpи разгоне paвнo 0,5 м/с 2 ?

Решение.

По условию задачи Арсений ускоряется, следовательно, его скорость увеличивается. Подставим числа в закон изменения скорости при равноускоренном движении:

V(10) = 6 + 0,5 · 10 = 11 м/с.

Ответ: за 10 с Арсений разгонится до скорости 11 м/с.

Важно запомнить, что ускорение — это векторная величина. А взаимное расположение векторов ускорения и начальной скорости определяет характер движения. Рассмотрим анимацию.

Как мы видим, оранжевый автомобиль увеличивает свою скорость, т. е. совершает разгон. В то же время синий автомобиль уменьшает скорость и тормозит. В случае а движение называется равноускоренным. Вектор ускорения сонаправлен с вектором начальной скорости. Следовательно, мгновенная скорость растет с течением времени. В случае б движение называется равнозамедленным. Ускорение и начальная скорость имеют противоположные направления. Следовательно, мгновенная скорость со временем уменьшается.

Зачастую в задачах мы будем работать с проекцией ускорения на координатные оси. Если проекция ускорения на ось положительна, тело увеличивает свою скорость, а если отрицательна — уменьшает.

График зависимости скорости от времени при равноускоренном движении

Из уравнения скорости следует, что зависимость скорости автомобиля от времени описывается линейной функцией, график которой — прямая.

На анимации мы видим разгон автомобиля с некоторой начальной скоростью. Проекция ускорения на ось Ox положительна. На графике этому соответствует монотонно возрастающая прямая, выходящая из точки (0; V0).

При равнозамедленном движении прямая на графике будет убывать.

С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени:

Из графика скорости получим формулу пути при равноускоренном движении тела.

Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника V0t и треугольника .

Формула пути при равноускоренном движении

,
где S — путь, пройденный за время t [м],
V0 — начальная скорость [м/с],
a — ускорение тела [м/с 2 ],
t — время [с].

В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:

,
где S — путь, пройденный за время t [м],
V0 — начальная скорость [м/с],
V — скорость в момент времени t [м/с],
a — ускорение тела [м/с 2 ].

Задача 2

Таксист Роман получил заказ и начал движение с ускорением 0,1 м/с 2 после долгой остановки. Ha кaкoм paccтoянии oт нaчaлa движeния его cкopocть cтaнeт paвнoй 15 м/с?

Решение.

По условию задачи таксист начал движение из состояния покоя, следовательно, начальная скорость равна нулю.

Поскольку время движения неизвестно, то определим путь по второй формуле:

Подставим числа и выполним расчет:

Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.

Перемещение при равноускоренном движении

Важно напомнить разницу между путем и перемещением тела.

Путь — длина траектории. Если тело движется в любом направлении, то его путь увеличивается. Шагомер в вашем телефоне или смарт-часах измеряет именно путь. Для расчета пути по графику скорости необходимо найти площади отдельных фигур и сложить их, как было показано выше.

Перемещение — вектор, соединяющий начальное и конечное положение тела. Чтобы по графику скорости найти перемещение, необходимо взять площади над осью времени со знаком «+», под осью — со знаком «−», а затем найти их сумму.

Например, на этом графике путь тела равен S1 + S2, а перемещение — S1 − S2.

Уравнение перемещения при равноускоренном движении

,
где S — перемещение за время t [м],
V0 — начальная скорость [м/с],
a — ускорение тела [м/с 2 ],
t — время [с].

Вы, скорее всего, заметили удивительное сходство формул расстояния при равноускоренном движении. Так и есть, только помните, что проекция перемещения может принимать отрицательное значение, а путь — нет. В некоторых задачах путь и перемещение могут совпадать, но далеко не всегда.

Важнейшая задача кинематики — определение положения тела относительно других тел с течением времени. Для ее решения вам понадобится знать зависимость координаты от времени (уравнение движения).

Уравнение равноускоренного движения

,
где x(t) — координата в момент времени t [м],
x0 — начальная координата [м],
V0 — начальная скорость [м/с],
a — ускорение тела [м/с 2 ],
t — время [с].

Задача 3

Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2 с после начала движения из начала координат.

Решение.

Поскольку скорость лыжника увеличивается, он движется с положительным ускорением. Начальная скорость V0 = 3 м/с. Начальная координата равна нулю.

Найдем ускорение из формулы пути при равноускоренном движении:

Составим уравнение движения лыжника:

По уравнению определим координату лыжника в момент времени t = 2 с:

Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.

Графики равноускоренного движения

Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.

Обратите внимание, что, когда проекция скорости меняет знак, автомобиль совершает разворот и движется в противоположном направлении.

Вся наша жизнь — в движении, а онлайн-уроки физики в Skysmart помогут вам ускориться на пути к освоению теории и покорению самых разнообразных задач!

Уравнение движения, графики равномерного прямолинейного движения

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin x=x_0+s=x_0+vt\ x=20+10t end

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin x=x_0-st=x_0-vt\ x=20-10t end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

Построим графики зависимости координаты от времени для нашего примера:

x=20+10t — машина движется вправо (в направлении оси OX)
x=20-10t — машина движется влево (в направлении, противоположном оси OX)
x=20 — машина стоит

п.5. Как найти уравнение движения по графику движения?

п.6. График скорости vx=vx(t)

Для рассмотренного примера:

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости:

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:


По графику находим: begin x_1=x(5)=8cdot 5=40 text<(м)>\ x_2=x(10)=8cdot 10=80 text <(м)>end
б) Скорость (v_x=8) м/с — постоянная величина, её график:

$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text <(м)>$$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).

Найдем скорость корабля (v_x): $$ v_x=frac=frac<56-38><2-1>=18 (text<тыс.км/ч>) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text<тыс.км/ч>) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text<тыс.км>) $$
г) Переведем скорость в км/с: $$ 18000frac<text<км>><text<ч>>=frac<18000 text<км>><1 text<ч>>=frac<18000 text<км>><3600 text>=5 text <км/c>$$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

Равномерное прямолинейное движение

Всё в мире находится в движении.

Каждый день, когда мы выходим из дома, мы стараемся рассчитать, насколько быстро доберемся до школы или работы.

Может, однажды мы захотим научиться чему-то новому и купим машину.

А физика объяснит тебе, как не попасть в аварию и как всюду успевать.

Равномерное прямолинейное движение — коротко о главном

Сегодня ты узнал:

А еще ты научился решать задачи разного уровня сложности!

Ой, я что, не сказал? Там сложные были!

Ты, наверное, и не заметил 😉

О том, как решить основную задачу механики

Мы помним, что основная задача механики – указать положение тела в пространстве в любой момент времени, не только в настоящем, но и в будущем.

Итак, что нужно знать для того, чтобы найти положение тела в пространстве?

Неплохо было бы знать, где оно находилось в начале своего движения, его начальные координаты. Ведь нам важно, откуда мы выдвигаемся в путь.

Зависят ли начальные координаты тела от времени? Совсем нет: мы просто принимаем то, что тело где-то есть.

А еще нам важно знать, как далеко оказалось тело от своего начального положения и куда вообще двигалось. Важно знать перемещение этого тела.

Давай опробуем свои силы! Думаю, мы уже готовы решить главную задачу!

Рассмотрим какое-то тело. Оно подвигалось, изменило свое положение, оказалось в другой точке.

Назовем ее конечной и постараемся найти ее координаты, то есть узнать положение тела после совершенного им перемещения.

Помним, что перемещение – вектор, поэтому изобразим его:

Уже сейчас мы можем указать начальные координаты тела! Нет чисел – не пугаемся, используем буквы:

Нам нужно узнать конечное положение тела. Отметим координаты тела в конце, их нам и нужно найти, чтобы определить положение тела в конце:

Но как найти эти координаты, зная лишь начальное положение тела и его перемещение? Как нам попасть из (<_<0>>) в (x) и из (<_<0>>) в (y) ?

Все очень просто! Если есть вектор, то какая-нибудь проекция-то найдется, правда?

Теперь ответить на вопрос, как добраться из начала в конец становится очень легким: просто нужно прибавить к начальной точке проекцию перемещения для нужной оси!

То есть положение точки в любой момент времени можно записать так:

Поздравляю! Мы только что решили основную задачу механики!

Правда, сделали это в общем виде… Но перемещение ведь может быть очень разнообразным! Как вообще его найти? Не всегда же оно будет дано!

Это зависит от движения тела.

Равномерное прямолинейное движение

Определение равномерного прямолинейного движения

Самым простым движением по праву считается равномерное прямолинейное движение. Мы начнем с него.

Давай попробуем дать ему определение.

Всегда стоить помнить, что знать определения наизусть вовсе не обязательно. Главное – научиться строить его самостоятельно.

Успех любого хорошего определения заключается в правильной его структуре.

Равномерное прямолинейное движение – это движение. Мы нашли главное слово нашего определения. Давай развивать его.

Мы уже знаем, что такое движение. Давай дополним это определение.

Что значит равномерное? Равная мера… Но что является этой самой равной мерой?

Тело проходит равные пути. Логично, что происходит это за какие-то промежутки времени.

А за какие промежутки? За равные. За секунду, за минуту, за час. Не обязательно за ОДНУ секунду, ОДНУ минуту, ОДИН час. Равными промежутками времени могут быть, например, три часа или две секунды.

Но что значит прямолинейное? Можно сказать, что это движение по прямой. Но давайте объясним это, исходя из уже знакомых нам понятий.

Представь: какое-то тело движется, у нас в руках секундомер.

Прошла секунда – тело переместилось на метр. Еще секунда – еще метр. В том же направлении.

То есть тело совершает равные перемещения!

Равномерное прямолинейное движение — такое движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

С перемещением намного проще объяснить, почему за равные промежутки времени можно принимать абсолютно любое количество единиц времени.

Пусть тело совершает за 1 секунду перемещение (vec).

Тогда за две секунды совершает перемещение (2vec):

Будет ли тело все еще совершать равные перемещения за каждые 2 секунды? Конечно! Давай посмотрим:

Скорость

Равномерное прямолинейное движение тоже бывает разным: быстрым и медленным. Чтобы охарактеризовать его, существует скорость.

Чем большее перемещение совершает тело за промежуток времени, тем больше его скорость. Это очевидно: за одно и то же время гепард преодолевает расстояние во много раз большее, чем термит.

То есть скорость прямо пропорциональна перемещению!

А еще мы помним, что нам действительно важно направление скорости, ведь нам важно направление движения. То есть скорость – величина векторная. Давай убедимся в этом.

Скорость равномерного прямолинейного движения есть физическая величина, равная отношению вектора перемещения ко времени, за которое оно произошло.

Запишем это в виде формулы:

Векторы с обеих сторон, верно, но… Мы ведь учились умножать векторы, а не делить их. При делении тоже вектор получается?

Да. Ведь любое деление можно представить в виде умножения, смотри:

Время – скалярная величина. Оно не имеет направления. Поэтому можно сказать, что скорость есть перемещение, умноженное на скаляр, то есть тоже вектор! Более того, вектор перемещения и скорости сонаправлены.

Подробнее о свойствах векторов можно прочитать в Большой теории по векторам.

Помнишь, мы чуть выше выясняли, будет ли тело все так же совершать одинаковые перемещения за 2 секунды, а не за одну? Причем эти перемещения сами будут в два раза больше. Значит отношение останется прежним, вот так:

Отсюда делаем вывод:

Скорость равномерного прямолинейного движения постоянна.

Как это записать? Кажется, очевидно, но это «задачка со звездочкой». Вот так:

Мы не можем приравнять векторную величину к скалярной. Поэтому над константой тоже нужно ставить вектор.

Решение основной задачи механики для равномерного прямолинейного движения

Из уравнения скорости можно легко выразить перемещения, что сделает нас на шаг ближе к конкретному решению основной задачи. Давай сделаем это:

Из свойств векторов мы помним, что это будет справедливо и для проекций:

Стоп-стоп-стоп… Мы что, можем уже с помощью этого определить положение точки?

Да, почему нет? Просто подставим это вместо проекций перемещения туда, где мы решали основную задачу механики в общем виде:

Обычно в задачах по физике мы стараемся выбрать оси так, чтобы было проще работать с проекциями. Мы стараемся расположить их так, чтобы как можно больше векторов располагалось параллельно один осям и перпендикулярно другим, вот так:

Проекция перемещения на ось Y будет равняться нулю, мы можем не обращать на нее внимания.

По оси Y тело вообще не меняло своего положения, верно?

Именно поэтому в задачах чаще всего мы будем использовать упрощенный вариант нахождения конечного положения тела. Его координата будет описана лишь одним числом.

То есть используем лишь одну ось:

Работаем с проекциями. Настораживаемся. Вспоминаем о знаках.

Здесь все просто: если проекция скорости положительна, тело движется вдоль оси. Если она отрицательна, тело движется против оси.

Помни, что работаем мы с координатной осью! Начальное положение тела тоже может быть отрицательным. Это зависит лишь от того, как расположено тело относительно начала координат:

Графики равномерного прямолинейного движения

Построение графика

Очень важно уметь описывать движение графиком. Это может значительно упростить решение задачи.

Давай посмотрим, как с помощью графика описать равномерное прямолинейное движение.

Любой график – множество точек, который показывает зависимость одного значения от другого. Эта зависимость определяется каким-то уравнением.

Например, когда мы строим параболу, мы руководствуемся уравнением (y=<^<2>>). Как еще это можно записать?

Вот так: (f(x)=<^<2>>). Это показывает, что функция (f) зависит от значения (x).

Давай аналогично составим график движения тела. Вспомним то главное уравнение:

Иными словами, это график зависимости координаты тела от времени. Давай так и запишем:

Начинаем работать с уравнением. Предположим, что нам известна проекция скорости и начальное положение тела. Работать с конкретными числами удобнее.

Тогда уравнение имеет вид: (x=3+0.5cdot t)

Нарисуем оси и обозначим их. Так как у нас даны единицы измерения (метры и секунды), мы обязательно должны подписать их рядом с названиями осей!

Теперь можем взять и рассмотреть положение тела в любую секунду: хоть в первую, хоть в двенадцатую!

Отметим точки и соединим их. Получим график движения.

А теперь вопрос на засыпку: может ли время быть отрицательным?

Могу ли я указать положение тела в минус третью секунду? Могу.

Для этого стоит помнить, что «нулевая» секунда – момент, когда мы запускаем секундомер, когда мы только начинаем наблюдать за телом. Но оно могло двигаться и до того, как мы включили таймер, верно?

Давай покажем движение тела до наших наблюдений пунктирной линией:

Зачастую точки пересечения графика с осями несут в себе очень важную информацию!

Например, когда мы только включили секундомер ((t=0)с), тело находилось в начальном положении ((<_<0>>=3)м), и это видно по графику!

А когда координата тела была равна нулю?

Все очень просто: за 6 секунд до того, как мы включили секундомер! Прямая пересекает ось времени в точке -6.

Итак, мы выяснили, что…

График равномерного прямолинейного движения представляет собой прямую.

Точка пересечения ее с осью Х есть координата в начальный момент времени.

Точка пересечения с осью времени показывает ту секунду, когда тело находится в начале координат.

И действительно, само уравнение (x=<_<0>>+<_>cdot t) уже напоминает стандартное уравнение прямой, которое мы изучаем на математике: (y=kx+m), где (m) — точка пресечения графика с осью Х, а (k) — коэффициент наклона прямой.

В нашем случае роль коэффициента наклона играет проекция скорости.

Зависимость графика от проекции скорости

Давай изобразим несколько графиков в общем виде, то есть без каких-либо конкретных значений. Например, пусть у нас есть два движущихся тела, вот так:

Чем отличаются движения этих двух тел?

Ну, прежде всего, у них разные начальные положения. Ладно.

А что насчет проекции скорости?

Рассмотрим первое тело. С течением времени оно все больше удаляется от начала координат. А вот второе к нему приближается: оно даже достигает начала координат через некоторое время (когда пересекает ось).

Значит, первое тело идет вдоль оси, а второе против нее, то есть к началу! Мы помним, что это определяет знак проекции скорости.

А именно: проекция скорости первого тела положительна. Проекция скорости второго тела отрицательна.

Со знаками разобрались. А как быть, если попросят узнать, какая проекция скорости больше?

Рассмотрим следующий график. Чтобы было легче его анализировать, представим, что два тела имеют одинаковое положение, когда мы включаем секундомер:

Чтобы понять, чья скорость больше, рассмотрим определенный промежуток времени, отделим его вертикальной пунктирной линией. А еще обозначим начальную и конечную координаты тел в этот промежуток времени:

Теперь посмотрим, чем отличаются графики. Ну так, навскидку. Они отличаются наклоном.

График движения второго тела расположен к оси Х значительно ближе. Что это значит?

Рассмотрим, какое расстояние прошло первое тело, обозначим его на рисунке. Оно численно равно проекции перемещения, убедимся с помощью формулы:

Теперь рассмотрим расстояние, которое преодолело второе тело:

Видим, что за одинаковый промежуток времени второе тело прошло значительно большее расстояние! Это значит, что его скорость больше.

Чем ближе к оси Х расположена прямая, тем больше скорость движения тела.

А что будешь делать с таким графиком?

Координата тела с течением времени не меняется. Значит ли это, что тело не движется вовсе?

Нет. Тело не движется лишь по этой оси. Но по какой-нибудь другой оси оно двигаться может.

Например, вот так:

Тело не меняет координаты по оси Х, однако движется по оси Y.

Если мы видим такой график, мы можем лишь утверждать, что проекция скорости равна нулю. О самой скорости говорить не можем.

Встреча

Помнишь самый первый рисунок с двумя телами? Вот этот:

В нем есть одна интересная деталь. Графики движения тел пересекаются.

Со временем все понятно: оно для всех идет одинаково, ничего не поделаешь.

А вот с координатой интереснее: ведь мы можем утверждать, что в какой-то момент тела встретились. То есть в какой-то момент их координаты на оси Х стали равны. Обозначим момент встречи и координату («место») встречи:

Встреча – такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Это еще один момент, о котором стоит помнить при решении задач на графики.

А еще стоит обратить внимание на то, что координаты тел должны совпадать в один момент времени! Если в лесу мимо дуба пробежала лань, а через несколько дней мимо этого же дуба пробежал енот, мы не можем сказать, что они встретились.

Просто у них совпала траектория.

График зависимости проекции скорости от времени. Нахождение проекции перемещения

Рассмотрим несколько другой график. График зависимости проекции скорости от времени при равномерном прямоли…

Стоп, чего? Какой зависимости? Скорость ведь постоянная и не меняется со временем.

Ты абсолютно прав. А график-то начертить можем, вот так:

Скучный график. Просто прямая, параллельная оси времени. Проекция скорости не меняется, а время всё идет и идет.

Давай хоть что-то найдем по графику. Хоть площадь под ним. Обозначим эту область:

Получили прямоугольник. Его площадь ищем путем перемножения двух соседних сторон, то есть мы берем проекцию скорости и умножаем еще на время.

Где-то мы это слышали.

Верно, ведь именно так ищется проекция перемещения!

Совпадение? Не думаю.

Искать проекцию перемещения таким способом можно не только для равномерного прямолинейного движения, но и для других его видов!

Проекция перемещения тела численно равна площади под графиком скорости тела.

Решение простейших задач и задач на графики равномерного прямолинейного движения

Текстовые задачи

Задача 1. Охарактеризуйте движение соседки, которая спускается по лестнице и одновременно с этим закатывает рукава, услышав в 11 часов вечера громкую музыку из квартиры снизу, если уравнение ее движения: (x=2cdot t), а ось направлена вниз по лестнице.

Решение:

Итак, для начала вспомним уравнение движения в общем виде:

Соответствует ли уравнение движения соседки уравнению выше? Конечно!

Почему? По глазам вижу, догадываешься! Потому что его можно записать так:

Начальная координата соседки равна нулю: соседка двигалась из начала координат. С этим разобрались. Осталось определить тип ее движения.

Она движется вниз по лестнице. Значит, идет по прямой в одном направлении. Это прямолинейное движение.

Она свирепеет и ускоряется? Нет. Она движется равномерно. Давай вспомним уравнение движения для равномерного прямолинейного движения:

И еще раз посмотрим на наше:

Сопоставляем их и понимаем, что рядом с временем расположена проекция скорости. Она, как видим, положительна и равна 2 м/с. Соседка двигается вдоль оси. Ось направлена вниз и соседка движется туда же!

Подробно мы разбирали зависимость направления от знака проекции в Большой теории по векторам.

Таким образом, соседка совершает равномерное прямолинейное движение вдоль оси из начала координат, а проекция ее скорости на эту ось равняется 2 м/с.

Задача 2. Таракан Вася совершает равномерное прямолинейное движение вдоль линейки (соответствующей оси Х) на столе семиклассника Вовы, который, старательно уча уроки, уже неделю не выносит из комнаты мусор. Проекция скорости таракана на эту ось 0.1 м/с. Вова берет секундомер и начинает отсчет в тот момент, когда таракан находится на втором сантиметре линейки.

На каком сантиметре линейки окажется таракан через две секунды?

Решение:

Первое правило решающих физику: увидеть тему и писать формулы по теме.

Второе правило решающих физику: увидеть тему и писать ВСЕ формулы по теме. Могут пригодиться.

Знаем тип движения! Равномерное прямолинейное!

Знаем уравнение равномерного прямолинейного движения! Пишем:

Делов-то! Начнем подставлять известные величины для таракана. Из задачи знаем, что в начале отсчета таракан находится на втором сантиметре линейки…

Никогда не теряй бдительность, боец. Всегда проверяй величины.

Переведем все, что есть, в СИ. Скорость – в м/с. Отлично, уже есть. Как быть с линейкой? Просто перевести сантиметры в метры!

Таракан был на втором сантиметре, а значит на 0.02 метре линейки!

Теперь можем записать уравнение его движения:

Чтобы узнать, где окажется таракан через 2 секунды, просто подставим цифру 2 в это уравнение:

На 0.22 метре линейки! Получили ответ. Но в задаче спрашивается, на каком сантиметре будет находится таракан. Переводим наш ответ в сантиметры и получаем, что таракан будет находится на 22-ом сантиметре линейки!

Задача 3. По коридору мчится восьмиклассник Петя, уравнение его движения можно описать следующим уравнением: (x=6+2cdot t). За ним несётся разъяренный директор Максим Михайлович, уравнение его движения: (x=3+3cdot t).

Догонит ли директор Петю и, если догонит, когда и на каком метре коридора это произойдет? Скорость измерять в м/с, время в секундах.

Решение:

Итак, давай разберемся. Что вообще значит «догонит»? То же самое, что «встретит», верно?

Мы знаем, что такое встреча. Это такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Чтобы понять, встретятся ли они вообще, давай построим графики движения Пети (П) и директора (Д):

Видим, что прямые пересекаются. В какой-то момент времени их координаты действительно одинаковы.

Но как узнать, в какой?

Что-что? Видно по графику? Ну уж нет! Думаешь, там координата 12? А вдруг там 11.999?

Всегда нужно проверять себя аналитически.

Запишем два уравнения:

(<_>=3+3cdot t) — директора

При встрече у них одинаковые координаты: (<_

>=<_>)

Да… Наверное, другие части уравнений приравнять будет полезнее:

(6+2cdot t=3+3cdot t)

Отсюда легко вычислить время встречи:

Значит, через три секунды после начала отсчета их координаты будут одинаковы, они встретятся. Найдем место встречи, просто подставив время в одно из двух (какое больше нравится 🙂 ) уравнений:

Директор догонит Петю через 3 секунды. Это произойдет на 12-ти метрах от начала коридора.

Задачи на графики

Задача 4. Написать уравнение движение тела, если график этого движения:

Решение:

Какое это движение? Видим, что графиком движения является прямая. Значит, это равномерное прямолинейное движение.

Удивительно, но начнем с уравнения:

График очень информативный. По крайней мере мы уже знаем начальную координату: (<_<0>>=8) м

Как найти проекцию скорости? Ну, давай ее выразим для начала.

Дальше все очень просто: сделаем так, чтобы она осталось единственной неизвестной. Подставим в уравнение координату и время из графика, абсолютно любую пару, вот так:

Проекция скорости отрицательна. И правда: с течением времени тело приближается к началу координат, то есть движется против оси.

Подставим в уравнение:

(x=8-t) — уравнение движения тела.

Задача 5. Тело движется вдоль оси Х. Описать движение на каждом участке графика. Найти проекции скоростей. Построить графики проекции скорости и пройденного пути от времени.

Решение:

Опишем движение. Какое оно?

«Ха! Это не прямая, — скажешь ты, — а ломаная!»

И будешь абсолютно прав.

А я скажу: «А что такое ломаная? Это просто соединенные между собой отрезки! А отрезки — части прямых!»

Поэтому давай рассматривать этот график частями!

С первым отрезком все понятно: равномерное прямолинейное движения, ведь эта часть графика – прямая. С течением времени тело приближается к началу координат, значит движется против оси.

Найдем проекцию скорости.

Для начала, что есть скорость?

Мы помним, что скорость – отношение перемещения к промежутку времени.

Знаем, что это справедливо и для проекций:

Ну, время у нас есть. А проекцию перемещения откуда взять?

Давай вспомним, что это такое. Перемещение – вектор, проведенный из начального положения тела в конечное. А проекция перемещения – проекция этого вектора. Логично, правда? То есть:

Подробнее о проекциях можно узнать в Большой теории по векторам.

Вот и нашли проекцию скорости:

Подставим в уравнение выше значения необходимых величин:

Проекция скорости на первом участке графика равна -3м/с.

Второй отрезок необычнее: тело не меняет координату. Тело на этом участке неподвижно.

Так как в условии сказано, что тело движется именно вдоль оси Х, модуль проекции скорости на эту ось равен длине вектора скорости.

Так как тело не меняет координату, проекция его перемещения равна нулю. А значит и проекция скорости равна нулю.

Третий отрезок описывает равномерное прямолинейное движение. Тело отдаляется от начала координат и движется туда же, куда направлена ось.

Найдем проекцию скорости на третьем участке:

Так. Давай разберемся, почему там 12-7.

Помнишь, мы считаем отношение проекции перемещения к ПРОМЕЖУТКУ времени. А от 7 до 12 секунды промежуток времени составляет 5 секунд.

Проекция скорости на третьем участке равна 1м/с.

Всё нашли, осталось лишь построить графики! Начнем с графика зависимости проекции скорости от времени. Начертим и обозначим оси, обязательно обозначив единицы измерения и помня, что проекция может быть отрицательна:

Работаем с первой частью:

Мы выяснили, что в течение первых двух секунд проекция скорости была постоянна (как-никак, равномерное прямолинейное движение 🙂 ) и равна -3 м/с.

На втором участке проекция скорости равна нулю, а на третьем – единице.

Избавимся от вспомогательных линий и получим:

Что-то мне подсказывает, что на графике пути тоже будет три участка. Приступим.

Нарисуем оси и обозначим их:

Логично будет утверждать, что, пока тело не начало двигаться, оно и путь никакой не прошло. Отметим это точкой на графике:

Первые две секунды тело двигалось равномерно со скоростью 3 метра в секунду. Значит, за две секунды тело прошло (3cdot 2=6) метров! Отметим это. Нет, не так, на графике отметим:

Движемся дальше. Мы знаем, что на втором участке тело было неподвижно, а значит путь никакой не проходило. За промежуток времени второго участка тело не прошло никакой путь.

Однако суммарно за всё свое движение тело все так же прошло 6 метров:

На третьем участке тело движется. Значит, суммарно пройденный путь увеличится. Оно двигалось со скоростью 1м/с. Посмотрим сколько оно прошло за 5 (12-7) секунд.

Оно пройдет 5 метров.

Добавим их к нашим уже пройденным 6 метрам и получим 11 метров:

Остается только соединить точки прямой:

Задача 6. Найти проекцию перемещения тела по графику

Решение:

Определимся, из чего вообще складывается то, что нам нужно найти. В разные промежутки времени тело двигалось с разными постоянными скоростями.

Значит, проекция перемещения складывается из проекций перемещения в разных промежутках времени! Их 6:

Попробуем найти первую проекцию. Помнишь, мы знаем, что проекция перемещения есть площадь под графиком?

«Под графиком» означает «между графиком и осью», то есть вот эта:

Что ж, давай найдем перемещение:

Проекция скорости есть -2м/с, а промежуток времени – 3с.

Попробуем найти площадь второго прямоугольника:

Сразу обрати внимание на то, что промежуток времени – с третьей по пятую секунду, то есть 2 секунды!

Аналогично для остальных:

Посмотрим, чему равна проекция перемещения:

Тяжело в учении – легко в бою. Давай поднажмём и составим график зависимости проекции перемещения от времени.

Когда мы включили таймер, она была равна нулю:

В конце первого промежутка времени она становится равна -6м:

А, ну дальше-то все легко: отмечаем 4, потом отмечаем 9… Нет!

Мы ведь работаем с ОБЩЕЙ проекцией. А общая проекция есть сумма.

Тогда в конце второго промежутка проекция будет равна:

Дальше – больше слагаемых.

Следующая точка: (-6+4=-2) м

А после нее:(-6+4+9=7) м и т.д.

Теперь соединяем точки по порядку:

Задача 7. Постройте траекторию движения колибри, если начальное положение его по оси Х – 1 м, по оси Y – 3 м, а проекция его скорости на оси, расположенные перпендикулярно друг другу, описывается следующими графиками:

Решение:

Увидел сложную задачу – пиши всё, что знаешь! Зачем? Так надо! Пиши!

Скорость изменяется скачками, но на отдельных промежутках она постоянна. Тело движется равномерно.

Тело изменяет свое положение в пространстве. Изменяет свою координату.

Вспомним, как записывается уравнение координаты тела при равномерном прямолинейном движении:

Мы учились делать это раньше. Построим графики зависимости координаты от времени.

Итак, по оси Х у нас 3 участка, обозначим их вспомогательными линиями на нашем новом графике:

Начнем с первого участка. Знаем проекцию скорости и даже начальную координату! Подарок судьбы.

Строим его на первом промежутке:

Теперь координата тела – 17м и тело начинает двигаться с другой скоростью. Из координаты 17 тело движется со скоростью… А, ни с какой скоростью. Проекция скорости на эту ось равна нулю, поэтому:

Координата не меняется. Рисуем:

Тело на 17 м. Оттуда продолжаем движение с проекцией скорости -2 м/с. Тогда: (x=17-2cdot t)

Аналогично строим график для оси Y. Теперь у нас есть два графика:

Построим траекторию движения в плоскости. Для этого нам нужны оси Х и Y одновременно!

Давай построим их:

Всегда бери длину с запасом! Чтобы потом не перечерчивать оси. Наибольшее значение по Х – 17м. По Y – 15м. На всякий случай будем брать 20Х20.

Давай будем анализировать по секундам. Каковы были координаты тела в момент начала отсчета? Давай посмотрим.

В начальный момент времени координата по Х равна 1м, по Y – 3м. В конечный момент по Х координата равна 13, по Y – 15м.

Отметим эти точки:

Дальше будем рассматривать «переломные моменты». Для первого графика это 8 и 10с, для второго – 4 и 6с.

То есть секунды: 4, 6, 8, 10.

Запишем координаты точек для нужных нам секунд:

Отметим их и соединим прямой, укажем последовательность:

Теперь ты знаешь, как работать с графиками равномерного прямолинейного движения и их уравнениями! Движемся дальше. Иронично звучит 🙂

Средняя скорость по перемещению. Средняя путевая скорость

Хочешь, покажу фокус?

Из горной пещеры вылетает дракон, а за ним в ту же секунду выбегает доблестный рыцарь. Дракон хочет разрушить замок, находящийся от пещеры на расстоянии 7 километров. Задача рыцаря – добраться до замка первым и остановить дракона.

Рыцарь скачет на лошади прямо к замку по равнине в течении 20 минут. Он обнаруживает, что мост через реку на пути к замку разрушен, поэтому решает переплыть реку, и (спасибо его хорошей подготовке) у него уходит лишь 5 минут на то, чтобы снять с себя доспехи и сделать это. Затем в течении 10 минут он продолжает движение к замку.

Дракон после вылета из пещеры движется вперед и вверх, на это у него уходит 15 минут. На какой-то высоте он останавливается, потому что видит стаю пролетающих мимо уток. Драконы, динозавры, птицы… Смекаешь, да? Он решает поиграться со своими «родственниками», на что у него уходит 15 минут. Затем он вспоминает о замке и стремительно пикирует к нему на протяжении 5 минут.

Давай всё это изобразим для наглядности:

Дракон и рыцарь совершили одинаковые перемещения, так? 7 км, ведь они оказались у замка, двигаясь из пещеры.

Давай посчитаем время каждого в пути. И для дракона, и для рыцаря оно составило 35 минут. Они прибыли к замку одновременно.

Так что ж получается… Они совершили одинаковое перемещение за одинаковый промежуток времени.

Но их траектории были очень различны! И двигались они по-разному!

Для того, чтобы описать это, существует средняя скорость по перемещению.

Средняя скорость тела векторная физическая величина, равная отношению перемещения тела на определенном участке траектории ко времени, за которое оно совершено.

Средняя скорость дракона и рыцаря по перемещению одинакова, ведь они пришли одновременно в одно и то же место.

Есть подвох, о котором тебе на математике не рассказали. Ты все время работал не с этой средней скоростью. А с этой:

Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Понял, да? Путевая – про путь, а не про перемещение. Средняя путевая скорость совпадает (по модулю) со средней скоростью по перемещению только в том случае, если тело двигалось по прямой в одном направлении.

Средняя путевая скорость дракона сильно отличается от средней путевой скорости рыцаря.

Если не помнишь, в чем отличие пути от перемещения, советую посмотреть основные определения кинематики!

Относительность движения. Операции над скоростями

Давай вспомним одну из важнейших вещей, когда мы говорим про движение. Мы давали ему определение, когда говорили о кинематике в целом.

Это тело отсчета. То тело, относительно которого мы рассматриваем движение.

Мы уже знаем, что относительно одного тела тело может нестись с бешеной скоростью, а относительно другого не двигаться вовсе.

От системы отсчета зависит изменение положения тела. А что еще от нее зависит? Траектория зависит?

Однажды человек изобрел колесо и изменил мир. Давай воспользуемся этим изобретением для того, чтобы найти ответ на вопрос выше.

Возьмем какую-то точку на колесе и пусть оно катится по дороге! Как движется эта точка относительно оси колеса? По кругу.

А относительно Земли?

Эта кривая называется циклоида. И она точно отличается от траектории движения точки относительно оси колеса.

Сегодня мы научимся определять и связывать скорости в разных системах отсчета.

А еще на относительности основан главный закон скоростей – закон об их сложении.

Поступим как настоящие ученые. Готовые формулы – для слабаков. Мы будем выводить их сами.

По реке плывет плот (П) со спортсменом (С). На берегу реки сидит рыбак (Р) и наблюдает за этим. В какой-то момент пловец прыгает с плота и движется к другому берегу реки. Их несёт течение реки.

Давай изобразим это:

Давай нарисуем вектор перемещения спортсмена относительно плота и назовем его относительным перемещением:

Теперь нарисуем вектор перемещения плота, которого несет течение. Назовем этот вектор переносным:

А теперь посмотрим, как спортсмен двигался относительно рыбака, и назовем вектор этого перемещения абсолютным:

Ты только посмотри! У нас тут треугольник!

Нет, оставь свои теории заговора и иллюминатов. Не тот треугольник. Треугольник суммы векторов!

Переносное перемещение и относительное в сумме дают абсолютное!

Как связать перемещение со скоростью? Нужно поделить его на время!

источники:

http://reshator.com/sprav/fizika/7-klass/uravnenie-dvizheniya-grafiki-ravnomernogo-pryamolinejnogo-dvizheniya/

http://youclever.org/physics/ravnomernoe-pryamolinejnoe-dvizhenie/

Понравилась статья? Поделить с друзьями:
  • Как найти площадь под графиком синуса
  • Человека не могут найти как его уволить
  • Как найти картинки на iphone
  • Как найти потребитель на плате
  • Как найти корабли противника в морском бое