Как найти ускорение груза подвешенного на пружине

Механическая колебательная система, состоящая из пружины с коэффициентом упругости (жёсткостью) (k), один конец которой жёстко закреплён, а на втором находится груз массы (m), называется пружинным маятником.

колебанияvilcināšanāshesitation.gif

Рис. (1). Колебания пружинного маятника

Рассмотрим простейший пружинный маятник — движущееся по горизонтальной плоскости твёрдое тело (груз), прикреплённое пружиной к стене (рис. (1)). Допустим, что силы трения не оказывают существенного влияния на движение груза.

Первоначально пружина не деформирована (не растянута и не сжата), поэтому никакие силы в горизонтальном направлении на груз не действуют. Точка О — положение равновесия груза.

Переместим груз вправо. Пружина при этом растянется, и в ней возникнет сила упругости, направленная влево, к положению равновесия, и по модулю равная:

где (x=A) — максимальное (амплитудное) отклонение груза от положения равновесия.

Если отпустить груз, то под действием силы упругости он начнёт ускоренно перемещаться влево, к точке (О), по мере приближения к которой скорость груза будет возрастать от нуля до некоторого максимального значения. При приближении к точке равновесия деформация пружины уменьшается, а значит, уменьшается и сила упругости. Так как груз имеет скорость при прохождении положения равновесия, то он по инерции продолжает свое движение влево. Теперь пружина начинает сжиматься (деформация сжатия), что приводит к возникновению силы упругости, направленной вправо, т.е. к положению равновесия. По мере возрастания степени деформации пружины сила растет и все больше тормозит движение груза. В конце концов, груз останавливается.

Но сила упругости, направленная к точке (О), будет продолжать действовать, поэтому груз вновь придёт в движение в обратную сторону, вправо, и на обратном пути его скорость будет возрастать от нуля до максимального значения в точке (О).

Движение груза от точки (О) к крайней правой точке снова приведёт к растяжению пружины, опять возникнет сила упругости, направленная к положению равновесия и замедляющая движение груза до полной его остановки.

Мы описали одно полное колебание.

В каждой точке траектории, кроме положения равновесия, на груз действует сила упругости пружины, которая направлена к положению равновесия.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

a=−kmx

 — ускорение пружинного маятника.

Обрати внимание!

Данная формула справедлива и для вертикального пружинного маятника (рис. (2)) в котором действуют сила тяжести груза и сила упругости пружины.

вертикальный маятник.gif

Рис. (2). Колебания вертикального пружинного маятника

Обрати внимание!

Ускорение тела, колеблющегося на пружине, не зависит от силы тяжести, действующей на это тело. Сила тяжести только приводит к первоначальному изменению (смещению вниз) положения равновесия (рис. (3)).

схема движения.png

Рис. (3). Изображение смещения маятника

Период свободных колебаний пружинного маятника определяется по формуле Гюйгенса:

(m) — масса груза,

(k) — коэффициент жёсткости пружины.

Пружинные маятники широко используются в качестве акселерометра в системах управления баллистических ракет, контактных взрывателях артиллерийских и авиационных боеприпасов и т. п.

Акселерометр (лат. accelero — «ускоряю» и др.-греч. μετρέω — «измеряю») — прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Как правило, акселерометр представляет собой чувствительную массу, закреплённую в упругом подвесе. Отклонение массы от её первоначального положения при наличии кажущегося ускорения несёт информацию о величине этого ускорения.

400px-Pendular_accel_ru.svg.png

Рис. (4). Схема акселерометра

На рисунке (4) — схема простейшего акселерометра. Груз закреплён на пружине. Демпфер подавляет колебания груза. Чем больше кажущееся ускорение, тем сильнее деформируется пружина, изменяя показания прибора.

Источники:

Рис. 1. Колебания пружинного маятника. © ЯКласс.
Рис. 2. Колебания вертикального пружинного маятника. © ЯКласс.

Рис. 3. Изображение смещения маятника.

Рис. 4. Схема акселерометра.

§ 1.2. Уравнение движения груза, подвешенного на пружине

Согласно второму закону Ньютона произведение массы тела m на ускорение равно действующей на тело силе :

m = . (1.2.1)

Второй закон Ньютона (1.2.1) непосредственно описывает движение тела, размеры которого не оказывают существенного влияния на характер движения. В таком случае тело можно считать материальной точкой.

Чтобы записать второй закон Ньютона для проекций на оси координат, надо выбрать подходящую систему отсчета, относительно которой уравнение движения выглядит особенно просто и потому удобно для решения. Далее надо выяснить, как модули и направления сил зависят от положения (координат) тела и его скорости. Если тело движется вдоль прямой, как в случае колебаний груза на пружине, то сделать это нетрудно.

Запишем уравнение движения для груза на пружине. На груз действует сила упругости у и сила тяжести = m. Действием трения пренебрежем. Направим ось X вертикально вниз (рис. 1.7).

Начало отсчета (точку О) выберем на уровне положения равновесия. В положении равновесия пружина растянута на величину x0, значение которой определяется из закона Гука: kx0 = mg, где k — жесткость пружины, m — масса груза, a g — ускорение свободного падения. Отсюда

(1.2.2)

Проекция силы упругости

где x — координата груза относительно положения равновесия. Величина x0 + х представляет собой удлинение пружины (см. рис. 1.7).

Уравнение движения груза запишется так:

Подставляя в это уравнение значение x0 из выражения (1.2.2), получим окончательно:

Уравнение движения не содержит силы тяжести. Сила тяжести, действуя на груз, вызывает растяжение пружины на постоянную величину. Но это не влияет на характер движения груза. Просто колебания происходят относительно положения равновесия тела при растянутой на x0 пружине. В отсутствие тяготения уравнение движения (1.2.4) имело бы точно такую же форму, но только колебания происходили бы относительно конца нерастянутой пружины. Наличие силы тяжести несущественно для колебаний груза на пружине в отличие от колебаний маятника.

Масса m и жесткость пружины k — постоянные величины. Разделив левую и правую части уравнения (1.2.4) на m и введя новое обозначение

Это уравнение колебаний груза на пружине. Оно очень простое: ускорение груза прямо пропорционально его координате X, взятой с противоположным знаком. Самым замечательным является то, что такие же (с точностью до обозначений) уравнения описывают свободные колебания самых различных систем, в частности колебания математического маятника.

Постоянная ω0 имеет важный физический смысл. Как мы впоследствии увидим, — это циклическая частота колебаний груза. Она выражается в секундах в минус первой степени.

Колебания груза на пружине — формулы, уравнения и задачи

Общие сведения

Колебания — это изменения какой-либо величины в точности или приблизительно повторяющиеся во времени. Если рассматривать процесс, с точки зрения механики, то он описывается положением тела. Повторение в точности является периодическим. Математически это можно записать формулой: x (t + T) = x (t), где T — время, в течение которого совершается одно полное колебание (период). Число циклов принято обозначать буквой N. Его находят как отношение времени к периоду: N = t / T.

При исследовании процесса не всегда бывает удобно оперировать временем, поэтому часто используют число колебаний за единицу времени. Эта величина называется частотой. Находят её количество по формуле: f = 1 / T. Доказать справедливость приведённого равенства просто. Число колебаний зависит от времени и частоты: N = f * t. Отсюда: f = N / t = (t / T) / t = 1 / T.

Очень важно не только понимать суть характеристик колебания, но и знать единицы его измерения. Вот основные из них:

  • период — секунды (с);
  • частота — герцы (Гц);
  • число колебаний — безразмерная величина.

Если в течение времени меняется и координата, то периодически будет изменяться и скорость. Значит: vx (t + T) = Vx (t).

Исходя из верности равенства, можно сказать, что условие периодичности будет справедливо и для проекции, то есть изменения ускорения. Отсюда следует, что сила действующая на тело тоже будет переменной: Fx (t + T) = Fx (t).

При процессе также происходит изменение потенциальной и кинетической энергий. Действительно, так как в процессе колебания скорость не является постоянной величиной, то соответственно будет меняться кинетическая работа. Потенциальная же энергия зависит от координат. Например, если рассмотреть период колебаний пружинного маятника, то за это время тело переместится из нижнего положения в верхнее и вернётся обратно. Значит, координата физического объекта изменится от нуля до какого-то граничного значения.

Следует отметить, что периодичные движения обязательно будут происходить в той системе, в которой есть положение равновесия. Причём оно должно быть устойчивым. То есть существует равнодействующая сила, стремящаяся привести объект в положение, соответствующее покою. Поэтому для поддержания отклонений нужна дополнительная сила. Колебательную систему (осциллятор) под действием вынужденной периодической силы называют вынужденной.

Пружинный маятник

Это устройство является простейшим примером свободных колебаний. В его состав входит кронштейн, пружина и груз. В качестве последнего может выступать любое физическое тело. Масса пружины по сравнению с грузом считается малой и при исследованиях не учитывается.

При изучении такой системы важной задачей является измерение периода движения тела, подвешенного к пружине. Определение понятию пружинного маятника, которое даётся в учебниках по физике довольно обобщённое. Считается, что это конструкция, в которой тело, имеющее массу m, подвешено на упругой пружине обладающей жёсткостью K. При этом из состояния равновесия систему может вывести упругая сила F = — k * x, где: x- расстояние от середины пружинного элемента до поверхности прикреплённого к нему груза.

Можно выделить два достаточных условия возникновения свободных колебаний:

  1. Во время отклонения тела от положения равновесия должна возникать возвращающая сила.
  2. Силы сопротивления (трения) должны быть малы по сравнению со стремящей вернуть энергией тело назад.

Суть изучения гармонических колебаний состоит в определении их частоты движения или периода. В пружинном маятнике, впрочем, как и в любой колебательной системе, параметры зависят от ряда характеристик. Из основных величин, описывающих процесс, можно выделить: массу груза и жёсткость. Поэтому задача и состоит в выяснении, как период зависит от этих двух параметров.

Во время экспериментов регулировать массу довольно легко. Для этого можно взять эталонные гири и, соединяя их, увеличивать вес. Жёсткость же пружины можно изменить, добавляя параллельно или последовательно к ней другое сжимающееся тело. Чтобы выяснить, как будет изменяться характеристика растягивающегося элемента, нужно знать, что же представляет собой параметр. Так, под жёсткостью тела понимают отношение силы упругости к удлинению: k0 = F / Δ L. Измеряется величина в ньютонах, делённых на метр (Н/м).

Исходя из правила, если соединить две пружины параллельно и деформировать их, то можно утверждать, что первый и второй элемент растянется на одинаковую длину ΔL. Значит, возникнет две одинаково направленных силы упругости. Отсюда равнодействующая будет равняться: K = 2F/ ΔL = 2k0. Для последовательного же соединения длина всей системы увеличится на 2 ΔL. Сила упругости будет равна F. Соответственно, жёсткость будет изменяться по формуле: K = F / 2ΔL = k0 / 2.

Зависимость периода

При проведении эксперимента можно исследовать пять различных комбинаций поведения груза на пружине — два варианта связаны с весом и три с жёсткостью. Чтобы выполнить опыт самостоятельно нужно будет взять вертикальный кронштейн, две одинаковые пружины и два равных по весу груза. Так как в реальности период будет довольно маленький, то для его измерения можно взять время, например, пятидесяти колебаний, а потом полученный результат разделить на это число. Подсчёт времени удобно выполнять с помощью секундомера.

Вычисленные результаты нужно занести в таблицу. Примерный порядок чисел должен получиться таким:

k m m0 2m0
k0 / 2 0,68 0,93
k0 0,46 0,64
2k0 0.34 0,47

Эти данные можно проанализировать. Выводы будут следующими:

  • с ростом массы физического тела период цикличности увеличивается;
  • по мере увеличения жёсткости период колебаний уменьшается.

Приведённые утверждения, возможно, описать и количественно. Исходя из результатов, величины, стоящие в ячейке m0k0 и 2m02ko почти совпадают. С точки зрения физики, так и должно быть. Если взять грузик на пружине и измерить характеристику, а потом добавить к нему точно такую же систему, то период не поменяется. Это и можно наблюдать во время опыта. Значит, период движения зависит от того каким будет отношение массы к жёсткости.

По аналогии можно рассмотреть, как влияет жёсткость. Из эксперимента, видно, что если её увеличить дважды на одну и ту же величину, то она возрастёт в четыре раза, а значение обратное частоте уменьшится на это же число. Отсюда можно предположить, что период будет обратно пропорционален корню квадратному из жёсткости.

Объединив эти две гипотезы можно сделать заключение. Что период амплитуды колебаний груза на пружине будет прямо пропорционален корню квадратного из отношения массы к жёсткости: T = √(m / k). Проверить это утверждение можно по теории размерности. Подставив в формулу единицы измерения, получим: √(m / k) = √(кг / (Н/м)) = √(кг * м / Н). Учитывая, что ньютон — это отношение метра к секунде в квадрате или килограмму, умноженному на метр и делённому на секунду, размерное равенство примет вид: √(кг * м/Н) = √(c 2 * м/м) = √с 2 = с.

Для написания полной формулы в равенство нужно вести ещё коэффициент. Он будет равняться 2p. Значит, период колебаний пружинного маятника количественно описывается выражением: T = 2p * √ (m / k).

Примеры решения задач

Практические задания помогают лучше разобраться в теоретическом материале и запомнить нужные для решения формулы. Существуют различные примеры, с помощью которых можно довольно быстро проработать весь изученный курс. Вот два задания с подробным описанием решения на вычисления параметров пружинных колебаний тела. Разобравшись в них, можно переходить к самостоятельному вычислению более сложных примеров.

Задание № 1. Груз, подвешенный к пружине, перемещается циклически по вертикальной оси. За восемь секунд он совершил тридцать два колебания. Определить частоту. Итак, по условию задания дано время t = 8 c и число полного перемещения тела N = 32. Чтобы решить эту задачу нужно воспользоваться формулой нахождения периода: T = t / N. Все величины для этого есть: T = 8 c / 32 = 1 / 4 = 0,25 секунды. Частота связана с периодом выражением: f = 1 / T. После подстановки чисел получится ответ равный четырём герцам.

Задание № 2. Грузик совершает колебания на пружине с жёсткостью сто ньютон на метр. При этом максимальная скорость движения составляет два метра в секунду. Вычислить массу тела учитывая, что максимальная амплитуда отклонения от точки покоя составляет десять сантиметров. Силой трения пренебречь.

При решении примера нужно рассуждать следующим образом. Когда будет максимальное растяжение пружины, то скорость груза равна нулю: V1 = 0. Значит, кинетическая энергия тоже будет нулевой: Ek1 = 0.

В этот момент останется только потенциальная энергия вытянутой пружины Ep1. В положении равновесия скорость тела максимальная и равняется V = 2 м/с. Так как пружина в этот момент нерастянута и несжатая, то Ep = 0.

По закону сохранения энергии: Ek1 + Ep1 = Ek + Ep. Кинетическая работа при растянутой пружине равняется нулю, так же как и потенциальная в состоянии покоя, значит, Ep1 = (k * L 2 ) / 2, где L — удлинение, а k — жёсткость. Энергию же можно найти так: Ek = mV 2 / 2. Так как тело совершает колебания около положения равновесия, то вытянутость пружины будет равняться амплитуде.

Перед тем как непосредственно переходить к составлению итоговой формулы и вычислениям необходимо все значения измерений привести в соответствии с СИ. Так, амплитуда указана в сантиметрах, поэтому её нужно перевести в метры. Теперь можно переходить к составлению отношения и подстановки данных: (k * L 2 ) / 2 = mV 2 / 2. Отсюда: m = (k * L) / V 2 = (100 Н/м * 0,1 2 м) / 2 2 м/с = 1 / 4 = 0,25 килограмма.

Динамические уравнения и законы движения груза на пружине

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

В этом соотношении – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы , прикрепленный к пружине жесткости , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Рисунок 2.2.1.

Круговая частота свободных колебаний груза на пружине находится из второго закона Ньютона:

откуда

Частота называется собственной частотой колебательной системы.

Период гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину , равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты и периода колебаний справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела и координатой : ускорение является второй производной координаты тела по времени :

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

или

(*)

где

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний или период . Такие параметры колебательного процесса, как амплитуда m и начальная фаза , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние и затем в момент времени отпущен без начальной скорости, то m = , .

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость то

Таким образом, амплитуда m свободных колебаний и его начальная фаза определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол возникает момент сил упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина аналогична жесткости пружины . Второй закон Ньютона для вращательного движения диска записывается в виде (см. §1.23)

где – момент инерции диска относительно оси, проходящий через центр масс, – угловое ускорение.

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

источники:

http://nauka.club/fizika/kolebaniya-gruza-na-pruzhine.html

http://physics.ru/courses/op25part1/content/chapter2/section/paragraph2/theory.html

эвелина — 28 ноября, 2008 — 14:48

На тело 1 кг действует сила упругости, возникающая при деформации пружины (растягиваем). Определите ускорение тела, если жёсткость пружины k = 40 H/м, а её деформация 2,5 см. Силой трения при движении пренебречь.

Задачу задали в школе 83. 10 класс.

Теги:

  • динамика
  • силы в природе
  • задачи с подсказками
  • сила упругости
  • версия для печати
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Комментарии

Опубликовано 28 ноября, 2008 — 19:20 пользователем В. Грабцевич

Ускорение, которое получает тело, есть результат приложенных к телу сил.

Сделайте рисунок, расставьте приложенные силы к телу, запишите уравнение второго закона Ньютона в векторной форме. Выберите направление оси координат (по направлению ускорения, например) и спроецируйте уравнение второго закона на направление оси. Выразите искомое ускорение. Решение опубликуйте, проверим.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Опубликовано 28 июля, 2011 — 00:37 пользователем Elitmango

По 2 закону Ньютона: Fупр + mg + N = ma.

x| Fупр = ma.

По определению, Fупр = kΔl.

Значит, kΔl = ma   ⇒   a = kΔl / m.

Подставим числа: a = 40 × 0.025 / 1 = 1 м/с2.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Опубликовано 29 июля, 2011 — 21:23 пользователем В. Грабцевич

Если под силой трения при движении мы понимаем взаимодействие поверхностей, то решение будет верным для случая горизонтального движения, а если движение будет по вертикали? Ответ будет другим. Есть ли в задаче четкое указание, как движется тело?

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Опубликовано 29 июля, 2011 — 22:35 пользователем Elitmango

Да, точно, Вы правы. Тогда:

По 2 закону Ньютона Fупр + mg = ma.

y| mg − Fупр = ma.

По определению, Fупр = kΔl.

Тогда mg − kΔl = ma   ⇒   a = mg − kΔl/m.

Подставим числа: a = 1 × 10 − 40 × 0.025 / 1 = 9 м/с2.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Опубликовано 29 июля, 2011 — 22:39 пользователем В. Грабцевич

Дело в том, что мы просто обязаны при прочтении условия задачи быть внимательными, трактовать условие однозначно или исследовать ситуации, если условие будет не совсем корректным.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Опубликовано 29 июля, 2011 — 23:20 пользователем Elitmango

Да, я понимаю. Сразу не увидел два случая. Спасибо, что помогли увидеть второй.

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

В этой главе …

  • Изучаем закон Гука
  • Осваиваем основы простого гармонического движения
  • Изучаем особенности простого гармонического движения
  • Измеряем энергию простого гармонического движения
  • Вычисляем период колебаний маятника

Эта глава посвящена описанию еще одного типа движения, а именно: описанию периодического движения. Примерами такого движения являются колебания грузика на пружинке, качания маятника и даже прыжки с высоты с помощью эластичной веревки. В этой главе рассматриваются закономерности и особенности таких повторяющихся, т.е. периодических движений. Здесь мы научимся вычислять характеристики периодического движения: период колебаний пружинки и маятника, упругую энергию сжатой пружины и т.д.

Содержание

  • Постигаем закон Гука
    • Растягиваем и сжимаем пружины
    • Изучаем особенности закона Гука
  • Движется дальше: простое гармоническое движение
    • Изучаем простое гармоническое движение по горизонтали и по вертикали
    • Изучаем свойства простого гармонического движения
      • Изучаем траекторию простого гармонического движения
      • Определяем период простого гармонического движения
      • Определяем скорость в простом гармоническом движении
      • Определяем ускорение в простом гармоническом движении
    • Определяем частоту колебаний груза на пружине
  • Вычисляем энергию простого гармонического движения
  • Качаемся вместе с маятником

Постигаем закон Гука

Все объекты природы могут деформироваться, т.е. менять свою форму или объем, под действием приложенной силы. Если такие деформации (т.е. изменения) исчезают после прекращения действия приложенной силы, то они называются упругими. Упругость играет важную роль в технике. Упругие пружины используются для гашения удара при посадке космического корабля на поверхность планеты. Свернутые в спираль упругие пластины применяются в заводных механизмах часов. Даже в мышеловке используется упругая деформация пружины.

Еще в XVII-M веке английский физик Роберт Гук, изучая упругие свойства разных материалов, вывел закон, названный его именем. Согласно закону Гука, для упругого деформирования материала требуется приложить силу, величина которой прямо пропорциональна его деформации. Например, чтобы растянуть пружину на величину ​( x )​, потребуется приложить внешнюю силу ​( F_{вн} )​, которая равна:

где ​( k )​ — это коэффициент пропорциональности.

Точнее говоря, вектор деформации ​( mathbf{x} )​ всегда направлен противоположно силе сопротивления пружины (или силе упругости) ( mathbf{F} ), а потому в векторную формулировку закона Гука обычно входит знак “минус”:

Растягиваем и сжимаем пружины

Следует помнить, что закон Гука относится только к упруго деформируемым материалам.

В реальном мире, помимо упругих деформаций, имеются еще и пластические деформации. Так называют деформации, которые остаются в объекте, хотя бы частично, даже после прекращения действия внешних сил. Если сила не превосходит некоторой известной величины, которая называется пределом упругости, то возникающая деформация будет пластической. Предел упругости имеет разные значения для разных материалов. Если деформируемый объект, например пружина, испытывает только упругие деформации, то его называют идеально упругим, например, идеально упругой пружиной. Коэффициент пропорциональности ​( k )​ в законе Гука ​( F=kx )​ называется коэффициентом упругости объекта, который зависит от материала объекта, его размеров и измеряется в Н/м.

Допустим, вам нужно спроектировать подвеску автомобиля массой 1000 кг, состоящую из 4 пружин, которые могут идеально упруго деформироваться на расстояние 0,5 м. Каким коэффициентом упругости должна обладать пружина, чтобы выдержать вес автомобиля?

Вес автомобиля равен ​( mg )​, где ​( g )​ — это ускорение свободного падения под действием силы гравитационного притяжения. Это значит, что на каждую пружину приходится вчетверо меньшая нагрузка ​( mg/4 )​.

Определим упругую деформацию пружины под действием этой нагрузки по формуле закона Гука:

т.е. коэффициент упругости равен:

Подставляя значения, получим:

Итак, чтобы выдержать вес автомобиля, потребуется пружина с коэффициентом упругости равным 4,9·103 Н/м. Не забудьте, что каждый элемент подвески автомобиля должен обладать определенным запасом прочности, чтобы выдерживать непредсказуемые превышения нагрузки, например на ухабах. Однако эта задача выходит за рамки данного курса.

Изучаем особенности закона Гука

Как уже упоминалось выше, в векторную формулировку закона Гука обычно входит знак “минус”:

Таким образом, знак “минус” выражает следующую особенность упругой деформации: сила упругости всегда противоположна деформации. На рис. 12.1 схематически показаны направления силы упругости и деформации при сжатии и растяжении пружины.

Как видите, при отсутствии растяжении или сжатия нет и деформации (см. схему А на рис. 12.1). Если пружина сжимается влево, то сила упругости направлена вправо (см. схему Б на рис. 12.1), а если пружина растягивается вправо, то сила упругости направлена влево (см. схему В на рис. 12.1).

Сила упругости пружины не зря называется силой сопротивления, ведь она стремится установить равновесие.

Движется дальше: простое гармоническое движение

Простым гармоническим движением называется такое движение, при котором сила сопротивления движению пропорциональна перемещению. При этом сила трения не учитывается, и никакие другие внешние силы не оказывают никакого влияния на движение. Такое движение будет выполняться периодически и бесконечно долго. Конечно же, в реальной ситуации так не бывает, но здесь имеется в виду именно идеализированная ситуация.

Изучаем простое гармоническое движение по горизонтали и по вертикали

На рис. 12.1 показан пример движения мячика, прикрепленного к пружине. При сжатии пружины внешней силой справа налево в пружине возникает сила упругости, которая стремится вернуть мячик в исходное положение. После возврата мячика в исходное положение он останавливается не сразу, а спустя какое-то время. Оно необходимо для торможения ускорившегося мячика с помощью силы упругости, возникающей при растягивании вправо. Дело в том, что мячик обладает некоторой массой, и инерция (см. главу 11) не позволяет ему остановиться мгновенно. В результате имеем следующую последовательность событий (см. рис. 12.1).

  • Схема А. Мячик находится в состоянии равновесия. Никакие силы не действуют на него. Пружина находится в нерастянутом и в несжатом состоянии.
  • Схема Б. Внешняя сила сжала пружину справа налево. В пружине возникла упругая сила сопротивления ​( F )​.
  • Схема В. Внешняя сила отпускает пружину (и далее не участвует в процессе движения). Упругая сила сопротивления пружины ​( F )​ стремится распрямить пружину, т.е. вернуть мячик в исходное состояние. Мячик начинает ускоренное движение.

Когда мячик проходит точку исходного положения, его скорость становится очень большой (фактически максимальной) и он продолжает движение вправо. При этом возникает деформация растяжения и соответственно направленная противоположно упругая сила сопротивления пружины. Именно так и происходит при повторяющихся движениях мячика слева направо и, наоборот, справа налево. После первоначального толчка из неподвижного состояния мячик начинает совершать периодические колебания из самого крайнего левого положения в самое крайнее правое положение.

В примере на рис. 12.1 предполагается, что силы трения нет. А что будет, если пружинку с мячиком подвесить вертикально, как показано на рис. 12.2?

В подвешенном состоянии изменится положение равновесия, но после воздействия внешней силы мячик будет совершать аналогичные периодические движения, но теперь уже вверх-вниз.

Это новое равновесное положение определяется равенством веса мячика ​( mg )​ и силы упругости ​( ky_0 )​ растянутой пружины под действием этого веса:

Итак, новое положение исходного равновесия будет определяться формулой:

Теперь если потянуть мячик вниз с помощью внешней силы и отпустить мячик, то он начнет совершать периодическое движение, как и в прежнем примере (см. рис. 12.1), но теперь уже относительно нового положения равновесия.

Периодическое движение подобного рода называется периодическим колебанием, а крайние положения мячика при таком периодическом движении мячика называются амплитудами периодических колебаний. Амплитуда является важным элементом математического описания простого гармонического движения.

Изучаем свойства простого гармонического движения

Представьте себе, что для изучения простого гармонического движения ученые решили освещенный фонариком мячик из предыдущего примера заснять на движущуюся по горизонтали фотопленку.

После проявки фотопленки на ней оказался четкий волнообразный след, который показан на рис. 12.3.

Оказывается, мячик действительно совершает периодические движения вверх-вниз относительно исходного равновесного положения с амплитудой А. Вблизи точки равновесия скорость мячика максимальна, а в точках амплитуды минимальна.

Траектория мячика очень похожа на синусоидальную кривую, т.е. след мячика на движущейся фотопленке описывается графиком функции ​( sin )​ (“синус”) либо ​( cos )​ (“косинус”) со сдвигом от начала координат. Действительно, решением уравнения простого гармонического движения является функция ​( sin )​ или ​( cos )​.

Изучаем траекторию простого гармонического движения

Построим и рассмотрим внимательно кривую функции:

Наверняка эта функция и ее графическое представление в виде синусоидальной кривой уже знакомо многим читателям этой книги из курса математики. Ее часто можно встретить на экранах разных приборов в реальной жизни или даже в виртуальном мире кино и компьютерных игр.

Пусть освещенный фонариком мячик движется по окружности перпендикулярной плоскости страницы и снимается на движущуюся по горизонтали фотопленку. Тогда после проявки фотопленки на ней снова появится синусоидальная кривая, как показано на рис. 12.4.

Если расположить окружность так, чтобы она была параллельна плоскости страницы (рис. 12.5), то можно легко заметить, что положение мячика определяется формулой:

где ​( x )​ — это текущее смещение мячика по оси X от положения равновесия, ​( theta )​ — это угол поворота мячика при вращении по окружности, а ​( A )​ — это амплитуда периодического движения.

Если мячик вращается по окружности с постоянной угловой скоростью, то ​( theta=omega t )​ и ​( x=Acos(omega t) )​.

Определяем период простого гармонического движения

Прохождение мячиком пути, равного длине окружности, называется циклом, а время его прохождения — периодом. Период обозначается символом ​( T )​ и измеряется в секундах.

На рис. 12.4 и 12.5 полный цикл соответствует движению мячика от исходного положения с амплитудой ​( A )​, затем к положению с амплитудой ​( -A )​, а потом снова к положению с амплитудой ( A ).

Как связан период с уже знакомыми нам параметрами движения? За один цикл мячик проходит угол величиной ​( 2pi )​ за период ​( T )​, т.е. его угловая скорость равна:

Откуда получаем выражение для периода:

Для характеристики периодического движения часто используют понятие частота, которое равно количеству циклов за единицу времени. Например, если мячик на рис. 12.4 совершает 1000 полных оборотов в секунду, то его частота равна 1000 с-1. В системе СИ частоту измеряют в герцах (или сокращенно Гц), т.е. 1 с-1 = 1 Гц. Таким образом, частота вращения мячика по окружности равна 1000 Гц.

Частота ​( f )​ и период ​( T )​ связаны очень простым соотношением:

Поскольку:

то теперь можно легко найти связь между частотой и угловой скоростью:

При описании периодических движений угловую скорость ​( omega )​ часто называют циклической частотой.

Определяем скорость в простом гармоническом движении

На рис. 12.5 мячик совершает движение по окружности, а координата перемещения по оси X определяется формулой:

где ​( x )​ — это текущее смещение мячика по оси X от положения равновесия, ​( omega )​ — это угловая скорость мячика при вращении по окружности, а ​( A )​ — это амплитуда периодического движения.

В любой точке с координатой х мячик обладает некоторой скоростью, которая зависит от времени. Как выразить ее с помощью математической формулы?

Очень просто, ведь для этого достаточно вспомнить о связи между угловой ​( omega )​ и тангенциальной ​( v )​ скоростью (см. главу 10):

Поскольку в данном случае ​( r=A )​, то в итоге получим для тангенциальной скорости:

Теперь для определения скорости периодических колебаний следа мячика по оси X на фотопленке нужно вычислить проекцию тангенциальной скорости на ось X:

(Здесь знак “минус” возникает, поскольку фотопленка движется вниз и ось Y направлена вниз, а потому угол ​( beta )​ между вектором скорости и осью X равен ​( 180^circ+theta )​, a ​( sin(beta)=sin(180^circ+theta )=-sin(theta) )​. — Примеч. ред.)

После подстановки выражений для ​( theta=omega t )​ и для ​( v=Aomega )​ получим:

Обратите внимание, что скорость меняется от исходного положения с амплитудой перемещения ​( A )​ и амплитудой скорости ​( 0 )​, затем к положению с амплитудой перемещения ​( 0 )​ и амплитудой скорости ​( -Aomega )​, потом к положению с амплитудой перемещения ​( -A )​ и амплитудой скорости ​( 0 )​, затем к положению с амплитудой перемещения ​( 0 )​ и амплитудой скорости ​( Aomega )​, а потом снова к положению с амплитудой перемещения ​( A )​ и амплитудой скорости ​( 0 )​.

Как видите, в простом гармоническом движении амплитуда скорости ​( A_v=Aomega )​ связана с амплитудой перемещения ​( A_х=A )​ формулой:

Рассмотрим следующий простой пример. Представьте себе, что несколько отчаянных парней и девушек прыгают с высоты с помощью эластичной веревки. Известно, что при прыжке с некоторой высоты относительно точки равновесия максимальная скорость в точке равновесия одного из смельчаков достигает величины 4 м/с. Он решает в 10 раз увеличить высоту прыжка. Какой будет его максимальная скорость в точке равновесия?

Итак, амплитуда скорости в первом прыжке ​( A_{v1}=-A_{х1}omega )​ равна 4 м/с. Амплитуда перемещения во втором прыжке (с новой высоты) в 10 раз больше амплитуды перемещения в начале, т.е. ​( A_{х2}=10A_{х1} )​. Вопрос: чему равна амплитуда скорости ( A_{v2}=-A_{х2}omega ) во втором прыжке? Подставляя выражение для ( A_{х2}=-omega/A_{v1} ) в формулу ( A_{х2}=10A_{х1} ), а затем в формулу ( A_{v2}=-A_{х2}omega ), получим:

Итак, при увеличении амплитуды прыжка в 10 раз амплитуда скорости возрастает тоже в 10 раз, т.е. становится равной 40 м/с.

Определяем ускорение в простом гармоническом движении

Вернемся к примеру на рис. 12.5, где мячик совершает движение по окружности. Его координата перемещения по оси X определяется формулой:

где ​( x )​ — это текущее смещение мячика по оси X от положения равновесия, ​( omega )​ — это угловая скорость мячика при вращении по окружности, а ​( A )​ — это амплитуда периодического движения.

Как мы уже выяснили в предыдущем разделе, его скорость перемещения по оси X определяется формулой:

Однако вращательное движение мячика также характеризуется центростремительным ускорением. Как выразить ее с помощью математической формулы?

Как известно (см. главу 10), угловая скорость ​( omega )​ центростремительное ускорение ​( a )​ связаны следующей формулой:

Поскольку в данном случае ​( r=A )​, то в итоге получим для центростремительного ускорения:

Теперь для определения ускорения периодических колебаний следа мячика по оси X на фотопленке нужно вычислить проекцию центростремительного ускорения на ось X:

(Здесь знак “минус” возникает, поскольку фотопленка движется вниз и ось Y направлена вниз, а потому угол ​( gamma )​ между вектором центростремительного ускорения и осью X равен ​( 180^circ + theta )​, a ​( cos(gamma)=cos(180^circ + theta)=-cos(theta) )​. — Примеч. ред.)

После подстановки выражений для ​( theta=omega t )​ и для ​( a=Aomega^2 )​ получим:

Как видите, в простом гармоническом движении амплитуда ускорения ​( A_а=Aomega^2 )​ связана с амплитудой перемещения ​( A_х=A )​ формулой:

Рассмотрим еще один простой пример. Пусть диафрагма (тоненькая пластинка) в трубке домашнего телефона совершает простое гармоническое движение с частотой ​( theta=omega t )​ величиной 1 кГц (т.е. 1000 Гц) и амплитудой перемещения ( A_х=A ) величиной 1,0·10-4 м. Чему равна амплитуда ускорения мембраны ​( A_а )​?

Поскольку ​( omega=2pi!f )​, то после подстановки этого выражения в предыдущую формулу ( A_а=-A_хomega^2 ) получим:

Подставляя численные значения, получим:

Как видите, мембрана обычного телефона испытывает очень большое ускорение, которое почти в 400 раз больше ускорения свободного падения ​( g )​ = 9,8 м/с2 под действием гравитационного притяжения Земли.

Определяем частоту колебаний груза на пружине

С математической точки зрения колебания груза на пружине и движение мячика по окружности (см. предыдущие разделы этой главы) принципиально не отличаются. Дело в том, что оба эти движения являются простыми гармоничными. Поэтому их основные характеристики (например, скорость, ускорение, частота и период колебаний) должны описываться аналогичными математическими формулами. Остановимся и подробно проследим за этой аналогией.

Как известно, согласно закону Гука (см. выше в этой главе), при растяжении пружины на величину ​( x )​ возникает упругая сила ​( F )​, которая равна:

где ​( k )​ — это коэффициент пропорциональности.

Согласно закону Ньютона (см. главу 5), сила и вызванное ею ускорение ​( a )​ связаны следующим соотношением:

откуда получаем:

Из предыдущего раздела нам уже известно, что в простом гармоническом движении перемещение и ускорение выражаются следующими формулами:

и

Подставляя эти выражения в предыдущую формулу, полученную на основе законов Гука и Ньютона, получим:

Сокращая некоторые переменные, получим:

Откуда легко можно выразить циклическую частоту:

Поскольку ​( omega=2pi!f )​ и ( omega=2pi/T )​, то после подстановки предыдущего выражения в эти формулы получим:

и

Пусть пружина на рис. 12.1 обладает коэффициентом упругости ​( k )​, равным 1,0·10-2 Н/м, а к ней прикреплен груз массой 4 г. Чему будет равен период колебаний груза на пружине? Подставляя значения в предыдущую формулу для периода, получим:

А какова частота этих колебаний? Снова подставляя значения в предыдущую формулу для частоты, получим:

Используя формулы перемещения, скорости и ускорения для простого гармонического движения (см. ранее в этой главе):

можно вычислить координату, скорость и ускорение груза на пружине в произвольный момент времени. Как будут выглядеть эти формулы для задачи с грузиком на пружине?

Сначала вычислим циклическую частоту:

Если амплитуда ​( A )​ равна 10 см, то получим:

Вычисляем энергию простого гармонического движения

В простом гармоническом движении периодически происходит увеличение и уменьшение кинетической энергии, например груза на пружине. Ясно, что кинетическая энергия груза не пропадает, а преобразуется в энергию сжатой или растянутой пружины. Эта энергия называется упругой потенциальной энергией пружины. Сколько энергии запасено в сжатой или растянутой пружине?

Попробуем вычислить ее с помощью простых соображений. Как известно, работа ​( A )​ силы ​( F )​ при перемещении на расстояние ​( s )​ равна:

При сжатии или растяжении пружины сила ​( F )​ меняется линейно с расстоянием, поэтому работу этой силы по сжатию или растяжению пружины на расстояние ( s ) можно представить как произведение средней силы ​( overline{F} )​ на перемещение ( s ):

Средняя ( overline{F} ) сила определяется как:

где ​( F_1=-kx_1 )​ — это сила упругости в точке с координатой ​( x_1 )​, a ( F_2=-kx_2 ) — сила упругости в точке с координатой ( x_2 )​. При этом перемещение ​( s )​ будет равно:

Подставляя выражения для ( s ) и ( overline{F} ) в формулу работы, получим:

Члены ​( frac{kx^2_1}{2} )​ и ( frac{kx^2_2}{2} ) выражают упругую потенциальную энергию пружины ​( E_{у1} )​ и ( E_{у2} ) в точках с координатами ​( x_1 )​ и ( x_2 ), соответственно. Таким образом, работа силы упругости равна изменению упругой потенциальной энергии пружины:

Рассмотрим простой пример. Насколько возрастет упругая потенциальная энергия пружины с коэффициентом упругости 1,0·10-2 Н/м при сжатии ее на 10 см? Подставляя значения в формулу

получим:

Учтите, что при изменении упругой потенциальной пружины с грузом (при отсутствии внешних сил) изменяется кинетическая энергия груза. Причем эти изменения происходят так, что неизменной остается полная энергия системы, состоящей из пружины и груза. Например, при достижении точки равновесия пружина полностью разжимается, и ее упругая потенциальная энергия становится равной нулю, а кинетическая энергия груза при этом становится максимальной. И наоборот, при максимальном сжатии или растяжении пружины ее упругая потенциальная энергия становится максимальной, а кинетическая энергия груза при этом становится равной нулю.

Качаемся вместе с маятником

Еще одним типичным примером простого гармонического движения (кроме груза на пружине) является простой маятник, который показан на рис. 12.6.

Можно ли движение маятника описать математическими формулами простого гармонического движения, которые (выше в этой главе) использовались для описания движения груза на пружине? Да, и вот почему.

Дело в том, что на маятник, подвешенный на нити длиной ​( L )​ и отклоненный на угол ​( theta )​, действует сила гравитационного притяжения ​( mathbf{F}=mmathbf{g} )​. Перпендикулярная нити компонента силы создает сопротивление движению:

Момент этой компоненты силы

определяет угловое ускорение маятника ​( alpha )​:

Отсюда получаем формулу математического маятника:

(Математическим маятником называется идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешен груз с массой, сосредоточенной в одной точке. — Примеч. ред.)

При малых колебаниях, т.е. при малых значениях угла ​( theta )​; можно считать, что ​( sin(theta)approxtheta )​, и тогда прежняя формула приобретает следующий вид:

Эта формула связи ускорения и перемещения объекта очень похожа на прежние формулы простого гармонического движения груза на пружине и мячика по окружности (см. ранее в этой главе). Но прежде в эту формулу входило линейное перемещение, а теперь — угловое.

По аналогии с прежними формулами связи ускорения и перемещения объекта, совершающего простое гармоническое движение, коэффициент пропорциональности между ускорением и перемещением ​( g/L )​ равен квадрату циклической частоты ​( omega^2 )​. Отсюда получаем, что:

Далее, поскольку ​( omega=2pi!f )​ и ( omega=2pi/T ), то после подстановки предыдущего выражения в эти формулы получим:

и

Обратите внимание, что период качаний математического маятника не зависит от его массы!

Глава 12. Сжимаем пружины: простое гармоническое движение

3.1 (62.5%) 16 votes

Пружинный маятник, формулы и примеры

Определения и формулы пружинного маятника

Рис.1. Пружинный маятник: а) в положении равновесия; б) в состоянии колебаний

Когда пружина не деформирована, тело находится в положении равновесия (рис.1,а). Если растянув или сжав пружину, вывести тело из положения равновесия, на него будет действовать сила упругости со стороны деформированной пружины. Эта сила направлена к положению равновесия и в данном случае является возвращающей силой.

Сила упругости в пружинном маятнике

Сила упругости пропорциональна смещению тела (удлинению пружины):

здесь — коэффициент жесткости пружины.

В положении, соответствующем максимальному отклонению тела от положения равновесия (смещение тела равно амплитуде колебаний) сила упругости максимальна, поэтому максимально и ускорение тела. По мере приближения тела к положению равновесия удлинение пружины уменьшается, и, следовательно, уменьшается ускорение тела, которое обусловлено силой упругости. Достигнув положения равновесия, тело не остановится, хотя в этот момент сила упругости равна нулю. Скорость тела в момент прохождения им положения равновесия имеет максимальное значение, и тело по инерции будет двигаться дальше, растягивая пружину. Возникающая при этом сила упругости будет тормозить тело, так как теперь она направлена в сторону, противоположную движению тела. Дойдя до крайнего положения, тело остановится и начнет движение в противоположном направлении. Движение тела будет повторяться в описанной последовательности.

Таким образом, причинами свободных колебаний пружинного маятника является сила упругости деформированной пружины (возвращающая сила) и инертность тела.

Период свободных колебаний пружинного маятника

Период свободных колебаний пружинного маятника определяется по формуле:

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Пружинные маятники: графики, скорости, пути.

В этой статье все задачи связаны с пружинным маятником. Мы научимся читать информацию о колебаниях по графику смещения, находить скорость по зависимости смещения от времени, записывать закон колебаний.

Задача 1. Во сколько раз отличаются периоды колебаний пружинных маятников одинаковой массы, составленных из двух пружин жесткостью и , соединенных один раз последовательно, а другой раз параллельно?

При последовательном соединении определим жесткость такого соединения:

Если на последовательное соединение воздействует сила , то первая пружина удлинится на , а вторая на , а вместе их удлинение составит величину

Тогда

Тогда период колебаний равен

При параллельном соединении пружин их жесткости складываются, поэтому период будет равен

Теперь определим отношение периодов:

Ответ:

Задача 2. На пружине жесткостью Н/м подвешен груз массой г. Построить график зависимости смещения этого груза, если амплитуда А = 10 см, а в начальный момент времени груз проходил положение равновесия.

Определим период колебаний такой системы:

Тогда угловая частота будет равна

Теперь можно записать закон колебаний (колебания будут происходить по синусоидальному закону, так как если бы это был косинус – то тело бы находилось в начальный момент в самой дальней от положения равновесия точке):

Начальная фаза колебаний равна нулю – это следует из условия, что груз проходил положение равновесия в начальный момент времени.

Теперь можно и график построить:

К задаче 2

Задача 3. Груз массой 2 кг подвешен на пружине и совершает колебания, график которых приведен на рисунке . Определить жесткость пружины.

К задаче 3

Из графика определяем: м, с. Тогда

Откуда жесткость пружины равна

Ответ: Н/м.

Задача 4. Телу массой , подвешенному на пружине жесткостью , в положении равновесия сообщают скорость , направленную вертикально вниз. Определить путь, пройденный телом, за промежуток времени от  до , считая возникающие колебания гармоническими.

Закон колебаний может быть записан:

Начальная фаза равна нулю, так как указано, что скорость сообщили телу в положении равновесия.

Скорость является производной координаты:

Так как скорость максимальна  именно при прохождении телом положения равновесия, то . Следовательно, амплитуда колебаний

Путь – это разность координат и – это справедливо, так как движение от до происходит в одну сторону (на первой четверти периода).

Ответ: .
Задача 5. Тело, подвешенное на пружине, смещают из положения равновесия вертикально вниз на расстояние и отпускают. Определить путь, пройденный телом за промежуток времени от  до , считая возникающие колебания гармоническими.
Максимальное смещение тела – амплитуда колебаний – равно .

Путь – это разность координат и – это справедливо, так как движение от до происходит в одну сторону (на второй четверти периода) Но на второй четверти тело уже возвращается обратно к положению равновесия, следовательно, координата его первоначального положения больше, чем координата последующего положения, тогда:

Ответ: .

easy-physic.ru

период и амплитуда колебани1, формула, жесткость

Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

Определения пружинного маятника

Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

  1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
  2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
  3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
  4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

  1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
  2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
  3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

Примером можно назвать случай, когда колебательные движения не требуются:

  1. Создание запорных элементов.
  2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.

Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

  1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
  2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
  3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
  4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

Распространены оба варианта исполнения. При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации.

Сила упругости в пружинном маятнике

Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.

Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:

  1. Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
  2. При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
  3. На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
  4. После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
  5. Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.

Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.

Уравнения колебаний пружинного маятника

Колебания пружинного маятника совершаются по гармоническому закону. Формула, по которой проводится расчет, выглядит следующим образом: F(t)=ma(t)=-mw2x(t).

В приведенной выше формуле указывается (w) радиальная частота гармонического колебания. Она свойственна силе, которая распространяется в границах применимости закона Гука. Уравнение движения может существенно отличаться, все зависит от конкретного случая.

Если рассматривать колебательное движение, то следует уделить внимание следующим моментам:

  1. Колебательные движения наблюдаются только в конце перемещения тела. Изначально оно прямолинейное до полного освобождения усилия. При этом сила упругости сохраняется на протяжении всего времени, пока тело находится в максимально отдаленном положении от нуля координат.
  2. После растяжения тело возвращается в исходное положение. Возникающая инерция становится причиной, по которой может оказываться воздействие на пружину. Инерция во многом зависит от массы тела, развитой скорости и многих других моментов.

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Формулы периода и частоты колебаний пружинного маятника

При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

  1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
  2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

Формулы амплитуды и начальной фазы пружинного маятника

Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

Для определения амплитуды может использоваться формула: А=√x2+v2/w2. Начальная фаза высчитывается по формуле: tgf=-v/xw.

Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

Энергия колебаний пружинного маятника

Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

  1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
  2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
  3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
  4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx2/2+mw2x2/2=const. Применяемая формула говорит о следующем:

  1. Максимальная кинетическая энергия установленного маятника прямо пропорциональна максимальному значению потенциальной.
  2. На момент осциллятора среднее значение обоих сил равны.

Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Формулы пружинного маятника в физике

Определение и формулы пружинного маятника

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

[ddot{x}+{omega }^2_0x=0left(1right),]

где ${щu}^2_0=frac{k}{m}$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

[x=A{cos left({omega }_0t+varphi right)=A{sin left({omega }_0t+{varphi }_1right) } }left(2right),]

где ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; ${(omega }_0t+varphi )$ — фаза колебаний; $varphi $ и ${varphi }_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde{x}=Releft(Acdot exp left(ileft({omega }_0t+varphi right)right)right)left(3right).]

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

[T=2pi sqrt{frac{m}{k}}left(4right).]

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

[nu =frac{1}{T}=frac{1}{2pi }sqrt{frac{k}{m}}left(5right).]

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

[A=sqrt{x^2_0+frac{v^2_0}{{omega }^2_0}}left(6right),]

начальная фаза при этом:

[tg varphi =-frac{v_0}{x_0{omega }_0}left(7right),]

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

[E_p=-frac{dF}{dx}(8)]

учитывая, что для пружинного маятника $F=-kx$,

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

[E_p=frac{kx^2}{2}=frac{m{{omega }_0}^2x^2}{2}left(9right).]

Закон сохранения энергии для пружинного маятника запишем как:

[frac{m{dot{x}}^2}{2}+frac{m{{omega }_0}^2x^2}{2}=const left(10right),]

где $dot{x}=v$ — скорость движения груза; $E_k=frac{m{dot{x}}^2}{2}$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Примеры задач с решением

Пример 1

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac{м}{с}$?

Решение. Сделаем рисунок.

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

[E_{pmax}=E_{kmax }left(1.1right),]

где $E_{pmax}$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax }$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

[E_{kmax }=frac{mv^2}{2}left(1.2right).]

Потенциальная энергия равна:

[E_{pmax}=frac{k{x_0}^2}{2}left(1.3right).]

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

[frac{mv^2}{2}=frac{k{x_0}^2}{2}left(1.4right).]

Из (1.4) выразим искомую величину:

[x_0=vsqrt{frac{m}{k}}.]

Вычислим начальное (максимальное) смещение груза от положения равновесия:

[x_0=1cdot sqrt{frac{0,36}{1600}}=1,5 cdot {10}^{-3}(м).]

Ответ. $x_0=1,5$ мм

Пример 2

Задание. Пружинный маятник совершает колебания по закону: $x=A{cos left(omega tright), } $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.
В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

[F=-kx=-kA{cos left(omega tright)left(2.1right). }]

Потенциальную энергию колебаний груза найдем как:

[E_p=frac{kx^2}{2}=frac{kA^2{{cos }^2 left(omega tright) }}{2}left(2.2right).]

В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:

[frac{E_{p0}}{F_0}=-frac{A}{2}{cos left(omega tright) }to t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }.]

Ответ. $t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }$

Читать дальше: формулы равноускоренного прямолинейного движения.

www.webmath.ru

как найти скорость и ускорение пружинного маятника

Вы искали как найти скорость и ускорение пружинного маятника? На нашем сайте вы можете получить ответ на любой математический вопрос. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и колебания пружинного маятника, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «как найти скорость и ускорение пружинного маятника».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как как найти скорость и ускорение пружинного маятника,колебания пружинного маятника,период колебания пружинного маятника формула,период пружинного маятника формула,пружинного маятника формулы,пружинный маятник,пружинный маятник формулы,формула амплитуды колебаний пружинного маятника,формула периода колебаний пружинного маятника,формула периода колебания пружинного маятника,формула периода пружинного маятника,формула пружинного маятника,формула частоты колебаний пружинного маятника,частота колебаний пружинного маятника формула,частота пружинного маятника формула. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и как найти скорость и ускорение пружинного маятника. Просто введите задачу в окошко и нажмите
«решить» здесь или введите в окно ввода ниже свой запрос (например, период колебания пружинного маятника формула).

Где можно решить любую задачу по математике, а так же как найти скорость и ускорение пружинного маятника Онлайн?

Решить задачу как найти скорость и ускорение пружинного маятника вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать — это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на этой
странице.

www.pocketteacher.ru

1.2. Скорость, ускорение, энергия колеблющейся точки

Скорость колеблющейся точки –
это первая производная от смещения
точки по времени (за основу возьмем
второе из пары уравнений (1.1)):

.
(1.4)

Здесь max
= A
ω0максимальнаяскорость,илиамплитуда скорости.

Ускорение – это втоpая пpоизводная
от смещения точки по времени:

(1.5)

где amax = Aω02
максимальное ускорение,илиамплитуда ускорения.

Из формул (1.1), (1.4) и (1.5) видно, что смещение,
скорость и ускорение не совпадают
по фазе (pис. 1.2). В моменты вpемени,
когда смещение максимально, скоpость
pавна нулю, а ускоpение пpинимает
максимальное отpицательное значение.
Смещение и ускоpение находятся впpотивофазе— так говоpят, когда
pазность фаз pавна.
Ускоpение всегда напpавлено в стоpону,
пpотивоположную смещению.

Полная энергия колебаний равна
сумме кинетической и потенциальной
энеpгий колеблющейся точки:

W = Wк
+
Wп = m
2 / 2 + kx2 /
2.

Подставим в это выражение формулы (1.4)
и (1.1) с учетом k = mω02(как будет показано ниже), получим

W = k A2
/ 2 =m A2 ω02
/2. (1.6)

Из сопоставления графиков функций
х(t), Wк(t)
и Wп(t)
(рис.1.3) видно, что частота колебаний
энергии в два раза больше частоты
колебаний смещения.

Рис. 1.2

Рис.
1.3

Cреднее значение
потенциальной и кинетической энергии
за периодТравно половине полной
энергии (рис. 1.3):

П р и м е р 1. Материальная точка
массой 5 г совершает колебания согласно
уравнению
гдеx – смещение, см.
Определить максимальную силу и полную
энергию.

Р е ш е н и е. Максимальная сила
выражается формулойгде(см. формулу (1.5)). ТогдаFmax=mAω02.
Из уравнения колебания следует, чтоПодставим числовые значения:Fmax=5∙10-3
0,1∙4 = 2∙10-3Н = 2мН.

Полная энергия
В итогеE= 0,5∙5∙10-3∙4∙10-2= 10-4Дж.

1.3. Диффеpенциальное
уpавнение

Свободных незатухающих колебаний. Маятники

Система, состоящая из тела массой m,
подвешенного к пружине, второй конец
которой закреплён, называютпружинным
маятником
(рис. 1.4). Такая система
служит модельюлинейного осциллятора.

Если растянуть (сжать) пружину на величину
х, то возникнет упругая сила, которая
стремится вернуть тело в положение
равновесия. При небольших деформациях
справедлив закон Гука:F = — kx, гдеk— коэффициент жесткости пpужины. Запишем
второй закон Ньютона:

ma = — kx. (1.7)

Знак «минус» означает, что сила
упругости направлена в сторону,
противоположную смещению x.Подставим в это уpавнение ускоpениеaколеблющейся точки из уpавнения (1.5),
получим
— m
ω02 x = —
k x,
откудаk = m ω02, Пеpиод колебаний

(1.8)

Таким образом, период колебаний не
зависит от амплитуды.

П р и м е р 2. Под действием силы
тяжести груза пружина растянулась на
5 см. После вывода ее из состояния покоя
груз совершает гармонические колебания.
Определить период этих колебаний.

Р е ш е н и е. Период колебаний
пружинного маятника находим по формуле
(1.8). Коэффициент жесткости пружины
рассчитаем по закону Гука, исходя из
того, что пружина растягивается под
действием силы тяжести:mg
= —
kx, откуда модульk = mg/x.
Подставимkв формулу
(1.8):

Выполним вычисления и вывод единицы
измерения:

Из формулы (1.7) следует дифференциальное
уравнение гармонических колебаний:

или

Заменив отношение k/m = ω02
, получимдифференциальное уравнениесобственных незатухающих колебаний в
виде


(1.9)

Его решениями являются выражения (1.1).

П р и м е р 3. Дифференциальное
уравнение незатухающих гармонических
колебаний имеет вид.
Найти частоту и период этих колебаний.

Р е ш е н и е. Запишем уравнение в
виде:.

Отсюда
следует, чтоаПериод колебаний определяется по
формуле:Следовательно,Т= 2∙3,14/2 = 3,14 с.

Физическим маятникомназывают
твёрдое тело, которое совершает колебания
под действием силы тяжести вокруг
неподвижной горизонтальной оси (рис.
1.5), проходящей через точкуО, не
совпадающую с центром массС тела.

Момент силы тяжести mgотносительно
оси вращенияО

,

где

длина физического
маятника(pасстояние от точки подвеса до центpа
масс маятника
= OC
).

По основному закону динамики вpащательного
движения I
= M,
ЗдесьI– момент
инерции маятника относительно оси,
проходящей через точку подвесаО,
угловое ускорение.

Для малых отклонений sin = ,
тогда

(1.10)

Из сравнения уравнений (1.9) и (1.10) следует,
что
и пеpиод колебаний

(1.11)

Математический
маятник
представляет
собой материальную точку массойm,
подвешенную на абсолютно упругой
нерастяжимой нити и совершающую
колебания под действием силы тяжести
(рис. 1.6).

В формулу (1.11) подставим момент инерции
материальной точки относительно оси,
проходящей через точку подвеса,
,
получим

Рис. 1.6

. (1.12)

Из выражений (1.11) и (1.12) следует, что
физический маятник имеет такой же период
колебаний, как и математический с длиной

.

Эту величину называют приведённой длинойфизического маятника.
Отметим, чтоI— момент
инеpцииотносительнооси, пpоходящей
чеpез точку подвеса
O. По теоpеме
Штейнеpа

где IC
— момент инеpцииотносительно
оси
,пpоходящей чеpез центp массмаятника. Пpедставим пpиведенную длину
маятника в виде

откуда видно, что пpиведенная длина
физического маятника больше его длины

Если от точки подвеса О отложить(см. рис. 1.5), то найдём точкуО1,
которая называетсяцентром качания.
Точка подвеса и центр качания являются
сопряженными. Это значит, что маятник,
подвешенный за центр качанияО1,
не изменит периода колебаний, а точкаOсделается новым центром качания.

П р и м е р 4. Однородный стержень
длинойb совершает
колебания в вертикальной плоскости
вокруг оси, проходящей через один из
его концов (рис.1.7). Определить период
колебаний.

Ре ш е н и е. Воспользуемся формулой
для определения периода колебаний
физического маятника (1.11), где=ОС– расстояние от оси вращения до
центра масс. Это расстояниеℓ=b/2
(рис. 1.7). Момент инерции стержня
относительно его концаI=1/3mb2. Следовательно,

Сила, возвpащающая маятник в положение
pавновесия (рис. 1.6),
т. е. пpопоpциональна смещениюx, но
эта сила не упpугая по своей пpиpоде,
поэтому она называетсяквазиупругой.

Таким образом, механические гармонические
колебания возникают в системах под
действием сил, пропорциональных смещению.

studfiles.net

Пружинный маятник | Объединение учителей Санкт-Петербурга

Колебания пружинного маятника.

В вертикальном положении на груз на пружине действуют сила тяжести и сила упругости пружины. Под действием силы тяжести пружина растягивается на х1, а затем мы отклоняем его от этого положения на х.

Тогда согласно второму закону Ньютона, учитывая знаки проекций, получим: . Но ,

тогда: .

Или  — ускорение тела, колеблющегося на пружине, не зависит от силы тяжести, действующей на это тело. Сила тяжести только приводит к изменению положения равновесия.

Выразим ускорение:.

Сравним полученное уравнение с уравнением колебательного движения .

Видно, что  или  — циклическая частота при колебаниях пружинного маятника.

Период колебаний  или  (формула Гюйгенса).

Формула Гюйгенса: 

Аналогичные вычисления можно проделать с помощью закона сохранения энергии. Учтем, что потенциальная энергия упруго деформированного тела равна, а полная механическая энергия равна максимальной потенциальной или кинетической.

Запишем закон сохранения энергии и возьмем производную от левой и правой частей уравнения:.

Т.к. производная от постоянной величины равна нулю, то .

Производная суммы равна сумме производных:  и .

Следовательно:,  а значит .

В данном случае этот способ более трудоемкий, но он более общий.

www.eduspb.com

Понравилась статья? Поделить с друзьями:
  • Нашел шляпу а она мне как раз
  • Как составить правильно доверенность на деньги
  • Как правильно составить дорожную карту по плану мероприятий
  • Диспетчер устройств как найти оперативную память
  • Как составить синквейн по повести