Как найти ускорение по 3 силами


Download Article


Download Article

If you’ve ever watched a bright red Ferrari fly ahead of your Honda Civic after a stoplight, you’ve experienced differing rates of acceleration firsthand. Acceleration is the rate of change in the velocity of an object as it moves. You can calculate this rate of acceleration, measured in meters per second, based on the time it takes you to go from one velocity to another, or based on the mass of an object.[1]

  1. Image titled 728025 4 1

    1

    Define Newton’s Second Law of Motion. Newton’s second law of motion states that when the forces acting on an object are unbalanced, the object will accelerate. This acceleration is dependent upon the net forces that act upon the object and the object’s mass.[2]
    Using this law, acceleration can be calculated when a known force is acting on an object of known mass.

    • Newton’s law can be represented by the equation Fnet = m x a, where Fnet is the total force acting on the object, m is the object’s mass, and a is the acceleration of the object.
    • When using this equation, keep your units in the metric system. Use kilograms (kg) for mass, newtons (N) for force, and meters per second squared (m/s2) for acceleration.
  2. Image titled 728025 5 1

    2

    Find the mass of your object. To find the mass of an object, simply place it on a balance or scale and find its mass in grams. If you have a very large object, you may need to find a reference that can provide you with the mass.[3]
    Larger objects will likely have a mass with the unit of kilograms (kg).

    • For this equation, you will want to convert the mass into kilograms. If the mass you have is in grams simply divide that mass by 1000 to convert to kilograms.

    Advertisement

  3. Image titled 728025 6 1

    3

    Calculate the net force acting on your object. A net force is an unbalanced force. If you have two forces opposing each other and one is larger than the other, you will have a net force in the direction of the larger force.[4]
    Acceleration happens when an unbalanced force acts on an object, causing it to change speeds towards the direction the force is pushing or pulling it.

    • For example: Let’s say you and your big brother are playing tug-of-war. You pull the rope to the left with a force of 5 newtons while your brother pulls the rope in the opposite direction with a force of 7 newtons. The net force on the rope is 2 newtons to the right, in the direction of your brother.
    • In order to properly understand the units, know that 1 newton (N) is equal to 1 kilogram X meter/second squared (kg X m/s2).[5]
  4. Image titled 728025 7 1

    4

    Rearrange the equation F = ma to solve for acceleration. You can change this formula around to solve for acceleration by dividing both sides by the mass, so: a = F/m.[6]
    To find the acceleration, simply divide the force by the mass of the object being accelerated.

    • Force is directly proportional to the acceleration, meaning that a greater force will lead to a greater acceleration.
    • Mass is inversely proportional to acceleration, meaning that with a greater mass, the acceleration will decrease.
  5. Image titled 728025 8 1

    5

    Use the formula to solve for acceleration. Acceleration is equal to the net force acting on an object divided by the mass of the object. Once you’ve established the values for your variables, do the simple division to find the acceleration of the object.

    • For example: A 10 Newton force acts uniformly on a mass of 2 kilograms. What is the object’s acceleration?
    • a = F/m = 10/2 = 5 m/s2
  6. Advertisement

  1. Image titled 728025 1 1

    1

    Define the equation for average acceleration. You can calculate the average acceleration of an object over a period of time based on its velocity (its speed traveling in a specific direction), before and after that time. To do this you need to know equation for acceleration: a = Δv / Δt where a is acceleration, Δv is the change in velocity, and Δt is the amount of time it took for that change to occur.[7]

    • The unit for acceleration is meters per second per second or m/s2.[8]
    • Acceleration is a vector quantity, meaning it has both a magnitude and a direction.[9]
      The magnitude is the total amount of acceleration whereas the direction is the way in which the object is moving. If it is slowing down the acceleration will be negative.
  2. Image titled 728025 2 1

    2

    Understand the variables. You can further define Δv and Δt: Δv = vf — vi and Δt = tf — ti where vf is the final velocity, vi is the initial velocity, tf is the ending time, and ti is the starting time.[10]

    • Because acceleration has a direction, it is important to always subtract the initial velocity from the final velocity. If you reverse them, the direction of your acceleration will be incorrect.
    • Unless otherwise stated in the problem, the starting time is usually 0 seconds.
  3. Image titled 728025 3 1

    3

    Use the formula to find acceleration. First write down your equation and all of the given variables. The equation is a = Δv / Δt = (vf — vi)/(tf — ti). Subtract the initial velocity from the final velocity, then divide the result by the time interval. The final result is your average acceleration over that time.

    • If the final velocity is less than the initial velocity, acceleration will turn out to be a negative quantity or the rate at which an object slows down.
    • Example 1: A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. What is its average acceleration?
      • Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
      • Define the variables: vf = 46.1 m/s, vi = 18.5 m/s, tf = 2.47 s, ti = 0 s.
      • Solve: a = (46.1 – 18.5)/2.47 = 11.17 meters/second2.
    • Example 2: A biker traveling at 22.4 m/s comes to halt in 2.55 s after applying brakes. Find his deceleration.
      • Write the equation: a = Δv / Δt = (vf — vi)/(tf — ti)
      • Define the variables: vf = 0 m/s, vi = 22.4 m/s, tf = 2.55 s, ti = 0 s.
      • Solve: a = (0 – 22.4)/2.55 = -8.78 meters/second2.
  4. Advertisement

  1. Image titled 728025 9 1

    1

    Understand the Direction of Acceleration. The physics concept of acceleration doesn’t always match how we would use the term in everyday life. Every acceleration has a direction, usually represented as positive if it’s UP or RIGHT, and negative if DOWN or LEFT. See if your answer makes sense based on this breakdown:

      Behavior of a Car How is Velocity Changing? Direction of Acceleration
      Driver moving right (+) hits gas pedal

      + → ++ (more positive)

      positive

      Driver moving right (+) hits brakes

      ++ → + (less positive)

      negative

      Driver moving left (-) hits gas pedal

      — → — (more negative)

      negative

      Driver moving left (-) hits brakes

      — → — (less negative)

      positive

      Driver moves at constant velocity

      remains the same

      acceleration is zero

  2. Image titled 728025 10 1

    2

    Understand the Direction of Force. Remember, a force only causes acceleration in the direction of the force. Some problems may try to trick you with irrelevant values.

    • Example Problem: A toy boat with mass 10kg is accelerating north at 2 m/s2. A wind blowing due west exerts a force of 100 Newtons on the boat. What is the boat’s new northward acceleration?
    • Solution: Because the force is perpendicular to the direction of motion, it does not have an effect on motion in that direction. The boat continues to accelerate north at 2 m/s2.
  3. Image titled 728025 11 1

    3

    Understand Net Force. If more than one force acts on an object, combine them into a net force before you calculate acceleration. For a problem in two dimensions, this looks something like this:

    • Example Problem: April is pulling a 400 kg container right with a force of 150 newtons. Bob stand on the left of the container and pushes with a force of 200 newtons. A wind blowing left exerts a force of 10 newtons. What is the acceleration of the container?
    • Solution: This problem uses tricky language to try and catch you. Draw a diagram and you’ll see the forces are 150 newtons right, 200 newtons right, and 10 newtons left. If «right» is the positive direction, the net force is 150 + 200 — 10 = 340 newtons. Acceleration = F / m = 340 newtons / 400 kg = 0.85 m/s2.
  4. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do you solve acceleration word problems?

    Sean Alexander, MS

    Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.

    Sean Alexander, MS

    Academic Tutor

    Expert Answer

    answer video

  • Question

    What is the SI unit for acceleration?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    SI units are standardized units that are used internationally in scientific writing. When describing acceleration, use the SI units meters per seconds squared (m/s^2).

  • Question

    How do you calculate acceleration without time?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    If you know that acceleration is constant, you can solve for it without time if you have the initial and final velocity of the object as well as the amount of displacement. Use the formula v^2=u^2+2as where v is the final velocity, u is the initial velocity, a is acceleration, and s is displacement. Solve for a to find acceleration.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Article SummaryX

To calculate acceleration, use the equation a = Δv / Δt, where Δv is the change in velocity, and Δt is how long it took for that change to occur. To calculate Δv, use the equation Δv = vf — vi, where vf is final velocity and vi is initial velocity. To caltulate Δt, use the equation Δt = tf — ti, where tf is the ending time and ti is the starting time. Once you’ve calculated Δv and Δt, plug them into the equation a = Δv / Δt to get the acceleration. To learn how to calculate acceleration from a force, read the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,764,253 times.

Reader Success Stories

  • DrDave Alpenschnee

    DrDave Alpenschnee

    Mar 5, 2018

    «I am an Alpine ski instructor, and was interested in how unbalanced forces cause one ski to accelerate more than…» more

Did this article help you?


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

  1. Изображение с названием Calculate Acceleration Step 1

    1

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]

    • Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
    • Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
      Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
  2. Изображение с названием Calculate Acceleration Step 2

    2

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк — vн и Δt = tк — tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что tн = 0.
  3. Изображение с названием Calculate Acceleration Step 3

    3

    Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк — vн)/(tк — tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
      • Вычисление: a = (46,1 — 18,5)/2,47 = 11,17 м/с2.
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
      • Вычисление: а = (0 — 22,4)/2,55 = -8,78 м/с2.

    Реклама

  1. Изображение с названием Calculate Acceleration Step 4

    1

    Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
    Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

    • Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
    • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
  2. Изображение с названием Calculate Acceleration Step 5

    2

    Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

    • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
  3. Изображение с названием Calculate Acceleration Step 6

    3

    Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
    Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

    • Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
    • Помните, что 1 Н = 1 кг∙м/с2.[8]
  4. Изображение с названием Calculate Acceleration Step 7

    4

    Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

    • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
    • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
  5. Изображение с названием Calculate Acceleration Step 8

    5

    Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

    • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
    • a = F/m = 10/2 = 5 м/с2

    Реклама

  1. 1

    Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

      Движение автомобиля Изменение скорости Значение и направление ускорения
      Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное
      Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное
      Движется влево (-) и ускоряется — → — (более отрицательное) Отрицательное
      Движется влево (-) и замедляется — → — (менее отрицательное) Положительное
      Движется с постоянной скоростью Не меняется Равно 0
  2. Изображение с названием Calculate Acceleration Step 10

    2

    Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.

    • Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
    • Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
  3. Изображение с названием Calculate Acceleration Step 11

    3

    Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    Реклама

  • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
  • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 — 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.

Об этой статье

Эту страницу просматривали 190 509 раз.

Была ли эта статья полезной?

Законы сложения сил в механике

При воздействии на одно тело нескольких сил одновременно тело начинает двигаться с ускорением, являющимся векторной суммой ускорений, которые бы возникли под воздействием каждой силы по отдельности. К действующим на тело силам, приложенным к одной точке, применяется правило сложения векторов.

Векторная сумма всех сил, одновременно воздействующих на тело, это сила равнодействующая, которая определяется по правилу векторного сложения сил:

R → = F 1 → + F 2 → + F 3 → + . . . + F n → = ∑ i = 1 n F i → .

Равнодействующая сила действует на тело также, как и сумма всех действующих на него сил.

Правило параллелограмма и правило многоугольника

Для сложения 2 -х сил используют правило параллелограмма (рисунок 1 ).

Рисунок 1 . Сложение 2 -х сил по правилу параллелограмма

Выведем формулу модуля равнодействующей силы с помощью теоремы косинусов:

R → = F 1 → 2 + F 2 → 2 + 2 F 1 → 2 F 2 → 2 cos α

При необходимости сложения более 2 -х сил используют правило многоугольника: от конца
1 -й силы необходимо провести вектор, равный и параллельный 2 -й силе; от конца 2 -й силы необходимо провести вектор, равный и параллельный 3 -й силе и т.д.

Рисунок 2 . Сложение сил правилом многоугольника

Конечный вектор, проведенный от точки приложения сил в конец последней силы, по величине и направлению равняется равнодействующей силе. Рисунок 2 наглядно иллюстрирует пример нахождения равнодействующей сил из 4 -х сил: F 1 → , F 2 → , F 3 → , F 4 → . Причем суммируемые векторы совсем необязательно должны быть в одной плоскости.

Результат действия силы на материальную точку будет зависеть только от ее модуля и направления. У твердого тела есть определенные размеры. Потому силы с одинаковыми модулями и направлениями вызывают разные движения твердого тела в зависимости от точки приложения.

Линией действия силы называют прямую, проходящую через вектор силы.

Рисунок 3 . Сложение сил, приложенных к различным точкам тела

Если силы приложены к различным точкам тела и действуют не параллельно по отношению друг к другу, тогда равнодействующая приложена к точке пересечения линий действия сил (рисунок 3 ). Точка будет находиться в равновесии, если векторная сумма всех сил, действующих на нее, равняется 0 : ∑ i = 1 n F i → = 0 → . В данном случае равняется 0 и сумма проекций данных сил на любую координатную ось.

Разложение вектора силы по направлениям

Разложение сил на две составляющие – это замена одной силы 2 -мя, приложенными в той же точке и производящими на тело такое же действие, как и эта одна сила. Разложение сил осуществляется, как и сложение, правилом параллелограмма.

Задача разложения одной силы (модуль и направление которой заданы) на 2 , приложенные в одной точке и действующие под углом друг к другу, имеет однозначное решение в следующих случаях, когда известны:

  • направления 2 -х составляющих сил;
  • модуль и направление одной из составляющих сил;
  • модули 2 -х составляющих сил.

Пример 1

Необходимо разложить силу F на 2 составляющие, находящиеся в одной плоскости с F и направленные вдоль прямых a и b (рисунок 4 ). Тогда достаточно от конца вектора F провести 2 прямые, параллельные прямым a и b . Отрезок F A и отрезок F B изображают искомые силы.

Рисунок 4 . Разложение вектора силы по направлениям

Второй вариант данной задачи – найти одну из проекций вектора силы по заданным векторам силы и 2 -й проекции (рисунок 5 а ).

Рисунок 5 . Нахождение проекции вектора силы по заданным векторам

Во втором варианте задачи необходимо построить параллелограмм по диагонали и одной из сторон, как в планиметрии. На рисунке 5 б изображен такой параллелограмм и обозначена искомая составляющая F 2 → силы F → .

Итак, 2 -й способ решения: прибавим к силе силу, равную — F 1 → (рисунок 5 в ). В итоге получаем искомую силу F → .

Три силы F 1 → = 1 Н ; F 2 → = 2 Н ; F 3 → = 3 Н приложены к одной точке, находятся в одной плоскости (рисунок 6 а ) и составляют углы с горизонталью α = 0 ° ; β = 60 ° ; γ = 30 ° соответственно. Необходимо найти равнодействующую силу.

Решение

Рисунок 6 . Нахождение равнодействующей силы по заданным векторам

Нарисуем взаимно перпендикулярные оси О Х и O Y таким образом, чтобы ось О Х совпадала с горизонталью, вдоль которой направлена сила F 1 → . Сделаем проекцию данных сил на координатные оси (рисунок 6 б ). Проекции F 2 y и F 2 x отрицательны. Сумма проекций сил на координатную ось О Х равняется проекции на данную ось равнодействующей: F 1 + F 2 cos β — F 3 cos γ = F x = 4 — 3 3 2 ≈ — 0 , 6 Н .

Точно также для проекций на ось O Y : — F 2 sin β + F 3 sin γ = F y = 3 — 2 3 2 ≈ — 0 , 2 Н .

Модуль равнодействующей определим с помощью теоремы Пифагора:

F = F x 2 + F y 2 = 0 , 36 + 0 , 04 ≈ 0 , 64 Н .

Направление равнодействующей найдем при помощи угла между равнодействующей и осью (рисунок 6 в ):

t g φ = F y F x = 3 — 2 3 4 — 3 3 ≈ 0 , 4 .

Сила F = 1 к Н приложена в точке В кронштейна и направлена вертикально вниз (рисунок 7 а ). Необходимо найти составляющие данной силы по направлениям стержней кронштейна. Все необходимые данные отображены на рисунке.

Решение

Рисунок 7 . Нахождение составляющих силы F по направлениям стержней кронштейна

Дано:

F = 1 к Н = 1000 Н

Пускай стержни прикручены к стене в точках А и С . На рисунке 7 б изображено разложение силы F → на составляющие вдоль направлений А В и В С . Отсюда понятно, что

F 1 → = F t g β ≈ 577 Н ;

F 2 → = F cos β ≈ 1155 Н .

Ответ: F 1 → = 557 Н ; F 2 → = 1155 Н .

Как найти равнодействующую трех векторов

Скорость автомобиля массой 1000 кг, движущегося вдоль оси Ox, изменяется со временем в соответствии с графиком (см. рисунок). Систему отсчета считать инерциальной. Чему равна равнодействующая всех сил, действующих на автомобиль? (Ответ дайте в ньютонах.)

Согласно второму закону Ньютона, равнодействующая всех сил, действующих на тело, связана с ускорением и массой тела соотношением Из графика определим ускорение, которое остается постоянным на протяжении всего интервала времени:

Таким образом, равнодействующая всех сил равна

а если бы ускорение было отрицательно, то и равнодействующая была бы отрицательной?

Скорость, сила, ускорение — все это векторные величины. Правильно говорить не про их знак, а про знак проекции этих векторов на некоторую ось. Если проекция скорости уменьшается, то ускорение направлено против оси, а значит, так же направлена и равнодействующая. Следовательно, проекции этих величин отрицательны. По графику модуля скорости о знаке проекций судить нельзя. Действительно, имея только график, приведенный в условии, мы не можем сказать, ускоряется тело вдоль оси или против. Проекция ускорения может быть тут как положительной, так и отрицательной.

«Систему отсчета считать инерциальной.» Возможно ошибаюсь, ребят, но, вроде, в ИСО равнодействующая всех сил равна нулю.

ИСО — это система отсчета, в которой тело, на которое не действует никаких внешних сил, двигается равномерно и прямолинейно или покоится.

Равнодействующая сил, конечно, же может и отличаться от нуля, это, согласно второму закону Ньютона, приведет к появлению ускорения.

т.е. в инерциальной системе отсчёта нет силы трения?

и ещё: вы говорите, что тело в ИСО движется равномерно, а в условии задачи дано равноускоренное движение. так бывает?

Я не так говорю, не вырывайте слова и контекста. Я даю определение ИСО: это система отсчета, в которой тело, НА КОТОРОЕ НЕ ДЕЙСТВУЮТ ВНЕШНИЕ СИЛЫ, двигается равномерно и прямолинейно, либо покоится. А вот если СИЛЫ ДЕЙСТВУЮТ, то это приводит к появлению ускорения, о чем нам и говорит второй закон Ньютона.

Наличие силы трения определяется свойством поверхностей, а не выбором системы отсчета. И в данной задаче, она, конечно, присутствует и направлена по скорости движения автомобиля, иначе бы он просто не мог бы разгоняться. Но чему она равна, мы найти из данного графика не можем, так как есть и другие силы, например, сила сопротивления воздуха. Что мы может тут определить, так это равнодействующую всех сил. Именно ей определяется ускорение.

Пыталась найти ускорение как тангенс угла наклона касательной, то есть производную от v по t. Тут угол — 45 град, тангенс = 1, ускорение, стало быть, так же 1 м/с^2.

Подскажите пожалуйста, где в моих рассуждениях ошибка?

Ошибка в том, что тангенс надо считать, учитывая масштаб графика по осям. То есть Вы должны определить катеты прямоугольного треугольника, используя числа на осях, а потом поделить один катет на другой.

Кстати, простое доказательство, почему Ваше решение не верно. Сожмем картинку с графиком по вертикали в два раза. Угол на рисунке изменится, а ускорение, конечно, же останется прежним.

а почему считают ускорение до 8с. а не до 18, если найдем ускорение по всей длине то получается 10-0/18=1,8 и получается другой ответ!

Делить нужно на 20. Масштаб по горизонтальной оси: в одной клеточке 4 с

На тело, находящееся на горизонтальной плоскости, действуют три горизонтальные силы (см. рисунок, вид сверху). Каков модуль равнодействующей этих сил, если (Ответ дайте в ньютонах и округлите до десятых.)

На рисунке обозначена равнодействующая векторов и

Поскольку модуль вектора силы равен 1 Н, заключаем, что масштаб рисунка такой, что сторона одного квадрата сетки соответствует модулю силы 1 Н. Таким образом, модуль равнодействующей равен по теореме Пифагора

А как определили эту равнодействующую трёх сил, я понять не могу?!

Чтобы найти равнодействующую, необходимо сложить вектора всех сил (например, по правилу треугольника или параллелограмма складываем вектора по два).

Если сложить вектор и вектор , получится вектор, направленный вверх длиной в одну клеточку. Теперь осталось прибавить к нему вектор . В результате и получается то, что показано красной стрелкой.

векторы F1 и F3 никак нельзя сложить правилом треугольника! дак как эту задачц решить тут решения совсем непонятные!

Когда Вы складываете параллельные вектора, у Вас просто получается «вырожденный треугольник». Правила все те же, к концу первого вектора прикладываем начало второго. Сумма векторов — это вектор, который начинается в начале первого и заканчивается в конце второго. То есть в данном случае у Вас получится вектор, направленный вверх и длиной в одну клеточку.

Две силы 3 H и 4 H приложены к одной точке тела, угол между векторами сил равен 90°. Чему равен модуль равнодействующей сил? (Ответ дайте в ньютонах.)

Силы и их равнодействующая указаны на рисунке. По теореме Пифагора, модуль равнодействующей сил равен

Под действием одной силы F1 тело движется с ускорением 4 м/с 2 . Под действием другой силы F2, направленной противоположно силе F1, ускорение тела равно 3 м/с 2 . С каким ускорением тело будет двигаться при одновременном действии сил F1 и F2? Ответ дайте в метрах на секунду в квадрате.

Согласно второму закону Ньютона, ускорение тела пропорционально равнодействующей всех сил, действующих на него: Силы и по условию, направлены противоположно, поэтому при их одновременном действии тело будет двигаться с ускорением

Тело подвешено на двух нитях и находится в равновесии. Угол между нитями равен 90°, а силы натяжения нитей равны 3 H и 4 H. Чему равна сила тяжести, действующая на тело? (Ответ дайте в ньютонах.)

Всего на тело действует три силы: сила тяжести и силы натяжения двух нитей. Поскольку тело находится в равновесии, равнодействующая всех трех сил должна равняться нулю, а значит, модуль силы тяжести равен

в условии написано,что нужно найти вес тела.

а в решении модуль силы тяжести.

Как вес может измеряться в Ньютонах.

В условии ошибка(

Вы путаете понятия массы и веса. Весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Как следует из определения, эта сила приложена даже не к телу, а к опоре. Невесомость — это состояние, когда у тела пропадает не масса, а вес, то есть тело перестает давить на другие тела.

Согласен, в решении была допущена некоторая вольность в определениях, сейчас она поправлена.

Понятие «вес тела» введен в учебную физику крайне неудачно. Если в бытовом понятии вес обозначает массу то в школьной физике, как вы правильно заметили весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Заметим, что речь идет об одной опоре и об одной нити. Если опор или нитей несколько несколько, понятие веса исчезает.

Привожу пример. Пусть в жидкости на нити подвешено тело. Оно растягивает нить и давит на жидкость с силой равной минус сила Архимеда. Почему же, говоря о весе тела в жидкости, мы не складываем эти силы, как Вы делаете в своем решении?

Я зарегистрировался на Вашем сайте, но не заметил, что же изменилось в нашем общении. Прошу извинить мою тупость, но я, будучи человеком старым, недостаточно свободно ориентируюсь на сайте.

Действительно, понятие веса тела весьма расплывчато, когда тело имеет несколько опор. Обычно вес в этом случае определяют как сумму взаимодействий со всеми опорами. При этом воздействие на газообразные и жидкие среды, как правило, исключается. Это как раз подпадает под описанный Вами пример, с подвешенным в воде грузиком.

Здесь сразу вспоминается детская задачка: «Что весит больше: килограмм пуха или килограмм свинца?» Если решать эту задачу по-честному, то нужно несомненно учитывать силу Архимеда. А под весом скорее всего мы будем понимать то, что нам будут показывать весы, то есть силу, с которой пух и свинец давят, скажем, на чашку весов. То есть здесь сила взаимодействие с воздухом как бы из понятия веса исключается.

С другой стороны, если считать, что мы откачали весь воздух и кладем на весы тело, к которому привязана веревочка. То сила тяжести будет уравновешиваться суммой силы реакции опоры и силой натяжения нити. Если мы понимаем вес как силу действия на опоры, препятствующие падению, то вес тут будет равен этой сумме силы растяжения нити и силы давления на чашку весов, то есть совпадать по величине с силой тяжести. Опять возникает вопрос: чем нитка лучше или хуже силы Архимеда?

В целом тут можно договориться до того, что понятие веса имеет смысл только в пустом пространстве, где есть только одна опора и тело. Как тут быть, это вопрос терминологии, которая, к сожалению, у каждого здесь своя, поскольку не столь уж это и важный вопрос :) И если силой Архимеда в воздухе во всех обычных случаях можно пренебречь, а значит, на величину веса она особо повлиять не может, то для тела в жидкости это уже критично.

Если уж быть совсем честным, то разделение сил на виды весьма условно. Представим себе ящик, который тащат по горизонтальной поверхности. Обычно говорят, что на ящик действуют две силы со стороны поверхности: сила реакции опоры, направленная вертикально, и сила трения, направленная горизонтально. Но ведь это две силы, действующие между одними и теми же телами, почему же мы просто не рисуем одну силу, являющуюся их векторной суммой (так, кстати, иногда и делается). Тут, это, наверное, вопрос удобства :)

Так что я немного в замешательстве, что делать с данной конкретной задачей. Проще всего, наверное, переформулировать ее и задавать вопрос про величину силы тяжести.

Не переживайте, все в порядке. При регистрации Вы должны были указать e-mail. Если теперь зайти на сайт под своим аккаунтом, то при попытке оставить комментарий в окне «Ваш e-mail» должен сразу появляться тот самый адрес. После этого система будет автоматически подписывать Ваши сообщения.

Формула модуля равнодействующей силы

На тело могут оказывать действие не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы.

Формула равнодействующей всех сил

Пусть на тело воздействуют в один и тот же момент времени N сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Сила является векторной величиной. Следовательно, силы, действующие на тело, нужно складывать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

Формула (1) — это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена также как вектор ускорения тела.

Складывают векторы, используя правило треугольника (рис.1)

правило параллелограмма (рис.2).

или многоугольника (рис.3):

Второй закон Ньютона и формула модуля равнодействующей

Основной закон динамики поступательного движения в механике можно считать формулой для нахождения модуля равнодействующей силы, приложенной к телу и вызывающей ускорение этого тела:

$overline=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета тело скорость движения тела.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Примеры задач с решением

Задание. К материальной точке приложены силы, направленные под углом $alpha =60<>^circ $ друг к другу (рис.4). Чему равен модуль равнодействующей этих сил, если $F_1=40 $Н; $F_2=20 $Н?

Решение. Силы на рис. 1 сложим, используя правило параллелограмма. Длину равнодействующей силы $overline$ найдем, применяя теорему косинусов:

Вычислим модуль равнодействующей силы:

[F=sqrt<<40>^2+<20>^2+2cdot 40cdot 20<cos (60<>^circ ) >>approx 52,92 left(Нright).]

Ответ. $F=52,92$ Н

Задание. Как изменяется модуль равнодействующей силы со временем, если материальная точка массы $m$ перемещается в соответствии с законом: $s=A<cos (omega t)(м) >$, где $s$ — путь пройденный точкой; $A=const;; omega =const?$ Чему равна максимальная величина этой силы?

Решение. По второму закону Ньютона равнодействующая сил, действующих на материальную точку равна:

Следовательно, модуль силы можно найти как:

Ускорение точки будем искать, используя связь между ним и перемещением точки:

Первая производная от $s$ по времени равна:

Подставим полученный в (2.5) результат, в формулу модуля для равнодействующей силы (2.2) запишем как:

Так как косинус может быть меньше или равен единицы, то максимальное значение модуля силы, действующей на точку, составит:

источники:

http://phys-ege.sdamgia.ru/test?theme=206

http://www.webmath.ru/poleznoe/fizika/fizika_134_formula_modulja_ravnodejstvujushhej_sily.php

Задачи на Движение
под действием нескольких сил с решениями

Тренировочные задания для подготовки к контрольным, самостоятельным, проверочным и диагностическим работам по теме «ЗАДАЧИ на Движение под действием нескольких сил с решениями»


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
Автомобиль массой 5 т трогается с места с ускорением 0,6 м/с2. Найти силу тяги, если коэффициент сопротивления движению равен 0,04.

ОТВЕТ: Fтяг = 5 кН.

РЕШЕНИЕ:ЗАДАЧИ на Движение под действием нескольких сил


Задача № 2.
Определить, пользуясь графиком, как движется поезд и какова сила тяги локомотива, если известно, что масса поезда 2500 т, а коэффициент сопротивления 0,025.

ОТВЕТ: Поезд движется равнозамедленно с ускорением 0,2 м/с2. Fтяги = 125 кН.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 3.
Троллейбус массой 10 т, трогаясь с места, на пути 50 м приобрел скорость 10 м/с. Найти коэффициент сопротивления, если сила тяги равна 14 кН.

ОТВЕТ: µ ≈ 0,04.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 4.
Автомобиль массой 3 т трогается из состояния покоя по горизонтальному пути в течение 10 с под действием силы тяги 3000 Н. Определите, с каким ускорением движется автомобиль при разгоне и какой скорости он достигает за это время? Коэффициент сопротивления движения 0,02.

ОТВЕТ: а = 0,8 м/с2; v = 8 м/с.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 5.
Груз массой 50 кг равноускоренно поднимают с помощью каната вертикально вверх в течение 2 с на высоту 10 м. Определить силу натяжения каната.

ОТВЕТ: 740 Н.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 6.
Тело массой 100 кг, двигавшееся вертикально вниз со скоростью 6 м/с, тормозится до остановки в течение 4 с. Определить силу натяжения каната, к которому прикреплено это тело.

ОТВЕТ: 1,13 кН.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 7.
Тело массой 0,6 кг падает вертикально вниз с ускорением 9,4 м/с2. Чему равна средняя сила сопротивления воздуха?

ОТВЕТ: Fc = 0,24 Н = 240 мН.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 8.
Метеорологическая ракета массой 400 кг стартуя вертикально вверх, за первые 5 с поднялась н; высоту 250 м. Найти силу тяги, если средняя сил; сопротивления воздуха на этом участке равна 2 кН.

ОТВЕТ: FT = 14 кН.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 9.
Автомобиль массой 1 т поднимается по шоссе с уклоном 30° под действием силы тяги 7 кН. Найти ускорение автомобиля, считая, что сила сопротивления не зависит от скорости движения. Коэффициент сопротивления равен 0,1. Ускорение свободного падения принять равным 10 м/с2.

ОТВЕТ: a ≈ 1,13 м/с2.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 10.
Телега массой 500 кг начинает двигаться вверх по наклонной дороге. Через 10 с от начала движения она проходит 100 м. Определите силу тяги телеги, если длина уклона дороги 1,5 км, подъем 100 м и коэффициент трения равен 0,4.

ОТВЕТ: FT ≈ 3350 Н.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 11.
Тележка массой 5 кг движется по горизонтальной поверхности под действием гири массой 2 кг, прикрепленной к концу нерастяжимой нити, перекинутой через неподвижный блок. Определить натяжение нити и ускорение движения тележки, если коэффициент трения тележки о плоскость 0,1. Массами блока и нити, а также трением в блоке пренебречь.

ОТВЕТ: Т = 15,4 Н;  а = 2,1 м/с2.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 12.
Шарик массой 500 г, подвешенный на нерастяжимой нити длиной 1 м, совершает колебания в вертикальной плоскости. Найти силу натяжения нити в момент, когда она образует с вертикалью угол 60°. Скорость шарика в этот момент 1,5 м/с.

ОТВЕТ: ≈ 3,6 Н.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 13.
Груз массой 30 кг придавливается к вертикальной стене силой 100 Н. Чему должна быть равна сила тяги, чтобы груз равномерно двигался вертикально вверх? Определить значение минимальной силы F, которой можно удержать тело в покое. Коэффициент трения о поверхность 0,2. Ускорение свободного падения принять 10 м/с2.

ОТВЕТ: Fтяги = 320 H;  Fт min = 280 H (минимальная сила).

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ


Конспект урока по физике «ЗАДАЧИ на Движение под действием нескольких сил с решениями». Тренировочные задания для подготовки к контрольным, самостоятельным, проверочным и диагностическим работам. Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по физике для 7-11 классов
  • Найти конспект через Кодификатор ОГЭ по физике
  • Найти конспект через Кодификатор ЕГЭ по физике

Как рассчитать ускорение с помощью силы и массы — это известный вопрос, на который нужно ответить. Мы знаем ускорение, которое действует на тело, где сила и масса существенно влияют на него.

Ускорение измеряет, насколько скорость изменяется в данный момент времени. Скорость — это фактическая скорость, с которой объект изменяется в соответствии с системой отсчета. Скорость зависит от того, какая сила перемещает объект вперед или назад.

Ускорение, действующее на тело, в основном зависит от силы и массы, и как рассчитать ускорение с помощью силы и массы — это то, что мы обсудим далее. Когда неуравновешенная сила не равна нулю, действие на тело будет иметь большее ускорение, когда чистая сила не равна нулю.

Когда равнодействующая сила действующее на тело больше, ускорение, действующее на тело, также будет больше. Еще один момент, который следует помнить, это то, что масса также влияет на ускорение. Чем меньше масса, тем больше ускорение.

Как мы все знаем, законы Ньютона были применены к нескольким открытиям, а для ускорения мы используем Второй закон Ньютона. Это удобно, когда мы используем его для расчета ускорения любого движущегося тела.

Согласно второму закону Ньютона сила, действующая на тело, пропорциональна массе, постоянной во всем и изменяющейся скорости. Формула имеет вид F = ма. Мы получаем ускорение как а = Ф / м.

В этом контексте мы рассматриваем заставить быть сетью сила. Потому что на тело действует несколько сил, поддерживающих его движение, например, нормальная сила, сила трения и так далее. Следовательно, мы считаем, что полная сила, действующая на тело, является равнодействующей силой.

Как найти ускорение по чистой силе и массе

Во-первых, нам нужно понять, как сила и масса влияют на ускорение движущегося тела. Масса — это вес движущегося тела, а сила — это не что иное, как чистая сила, действующая на тело, которая запускает его движение.

Все это возможно только благодаря одной формуле, которая подчиняется Второму закону Ньютона и выводится из него. Формула выглядит так: а = Ф / м.

Здесь сила имеет разные случаи; сила может быть нормальной, силой трения, силой натяжения, силой тяжести, Равнодействующая сила, и чистая сила. Здесь, в этом случае, мы рассматриваем силу как результирующую силу. И эта конкретная сила случается с неуравновешенной силой.

При воздействии на тело эта неуравновешенная сила заставляет тело менять свое положение покоя, из которого оно начинает двигаться. Тогда у тела не будет другого выбора, кроме как совершить движение.

Простые примеры, иллюстрирующие, как найти ускорение с помощью силы и массы

Когда прикладываемая масса меньше, ускорение больше и наоборот. Возьмем небольшой пример мяча массой 10 кг, катящегося под гору с силой 40 Н. Поэтому мы также должны учитывать направление, в котором движется мяч. Пусть она будет перпендикулярна зоне, по которой движется.

Согласно уравнению Второго закона Ньютона, f = mxa

Итак, a = F / m

а = 40/10

a = 4 мс-2

Давайте также проиллюстрируем другой пример для лучшего понимания. В деревне был холм, на котором мало кто пользовался, потому что на нем было слишком много камней и мелких камней, которые могли скатиться и поранить пешеходов.

Однажды из-за проливных дождей скала и камни больше не оставались неподвижными и начали быстро катиться с холма. Теперь давайте посчитаем ускорение большого камня массой 500 кг, который скатывается с силой 1500 Н.

По формуле a = F / m

а = 15000/500

a = 30 мс-2

Помимо ускорения с силой и массой, есть еще один решающий фактор: сила тяжести. Кроме того, в этом разделе мы подробно рассмотрим реальный пример того, как вычислить ускорение с помощью силы и массы.

Группа мальчиков приехала в деревню на летние каникулы. Один из мальчишек из деревни очаровал своего друга рекой, имеющей прыгающий конец. Следовательно, все мальчики захотели попробовать. Один за другим прыгали в реку с прыжковой точки.

Теперь посчитайте ускорение мальчика весом 30 кг, который прыгает в реку с силой 120 Н. Мы знаем формулу, а = Ф / м. Следовательно, a = 120/30, a = 3 мс-2.

Ускорение с силой и массой в повседневной жизни

Всегда есть любопытство по поводу того, как все работает и воплощается в реальность. Точно так же мы обычно видим движение транспортного средства, но задумывались ли мы, как физики, о физике, лежащей в основе этой причины?

Каждый день то, что мы видим, воспринимаем физику, но не осознаем ее. Как было сказано ранее, мы видим машину, движущуюся или даже едущую в ней; мы никогда не замечаем науки, стоящей за этим процессом. Поэтому главное, что нужно делать, — это замечать и признавать их в нашей повседневной жизни.

Ускорение движения тела и выводы — это то, что мы рассмотрим в этом разделе. Итак, с этого момента, где бы и когда бы мы ни увидели движущийся автомобиль или автобус, мы немедленно должны знать, что ускорение способствует такому процессу.

Во-первых, нам нужно увидеть, какое отношение масса имеет к ускорению. Масса — это вес того конкретного тела, который связан с ускорением. Когда масса мала, ускорение больше. Следовательно, вот как рассчитать ускорение с силой и массой.

Это просто здравый смысл; когда предмет тяжелый, его сложно переместить с одного места на другое. Когда масса легкая, ее можно быстро мобилизовать. Следовательно, масса имеет прямую связь с ускорением.

Задачи о том, как рассчитать ускорение с помощью силы и массы

1 задачи:

Кафе находится на углу города. Каждое утро несколько велосипедистов проезжают по городу и пересекают кафе. Скамейки кафе вынесены на улицу, поэтому вид улучшается, так как это пляжное кафе.

Однажды один из велосипедистов ехал слишком быстро, двинулся и слегка задел гигантскую статую, расположенную рядом. Эта статуя из-за своего тяжелого веса медленно упала на землю. Теперь посчитайте, с каким ускорением статуя весом 800 кг обладает силой тяжести 1100 Н.

Решение:

а = Ф / м

а = 1100/800

a = 1.375 мс-2

2 задачи:

В данный момент объект неподвижен. Когда чистая сила 175 Н действует на этот объект весом 50 кг, какое ускорение он будет использовать, чтобы выйти из своего исходного положения?

Решение:

а = Ф / м

а = 175/50

a = 3.5 мс-2

Часто задаваемый вопрос

Какие несколько примеров ускорения в повседневной деятельности?

Ускорение — это скорость, с которой объект движется в данный момент времени. Это зависит от изменения скорости с заданным временем.

  • Когда объект движется на юг на 10N м / с с постоянной скоростью, он остается в том же темпе до тех пор, пока не будет приложена сила. Таким образом, при приложении силы он будет двигаться со скоростью 2 мс-15. Теперь объект называется ускоряющимся.
  • Девушка идет на север со скоростью 10 мс-2. Говорят, что у девушки постоянная скорость, а значит, и ускорение равно нулю.
  • Когда мяч катится с холма, он ускоряется при приложении силы. Если мяч весит меньше, ускорение больше, а если мяч весит больше, ускорение со временем становится меньше.
  • Когда мальчик прыгает со скалы с приложенной к нему силой, он будет ускоряться еще больше, а затем, наконец, остановится под действием силы тяжести. Но величина необходимого ускорения будет зависеть от прилагаемой силы: если сила увеличивается, то ускорение увеличивается; если сила уменьшается, ускорение уменьшается.  
  • Мальчик движется на север с ускорением 9 мс.-2. Постепенно на мальчика действует другая сила, и теперь размер меняется на 15 мс.-2. Теперь говорят, что мальчика ускоряют за счет действующей на него чистой силы.

Понравилась статья? Поделить с друзьями:
  • Легендарные доспехи ведьмак 3 как найти
  • Как составить временный договор для работника
  • Как найти телефоны организаций минска
  • Как найти человека если очень нужно
  • Как найти путь ангела